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Abstract 

Recognizing speech in noisy environments is a challenging task that involves 

both auditory and language mechanisms. Previous studies have 

demonstrated noise-robust neural tracking of the speech envelope, i.e., 

fluctuations in sound intensity, in human auditory cortex, which provides a 

plausible neural basis for noise-robust speech recognition. The current study 

aims at teasing apart auditory and language contributions to noise-robust 

envelope tracking by comparing 2 groups of listeners, i.e., native listeners of 

the testing language and foreign listeners who do not understand the testing 

language. In the experiment, speech is mixed with spectrally matched 

stationary noise at 4 intensity levels and the neural responses are recorded 

using electroencephalography (EEG). When the noise intensity increases, an 

increase in neural response gain is observed for both groups of listeners, 

demonstrating auditory gain control mechanisms. Language comprehension 

creates no overall boost in the response gain or the envelope-tracking 

precision but instead modulates the spatial and temporal profiles of envelope-

tracking activity. Based on the spatio-temporal dynamics of envelope-tracking 

activity, the 2 groups of listeners and the 4 levels of noise intensity can be 

jointly decoded by a linear classifier. All together, the results show that without 

feedback from language processing, auditory mechanisms such as gain 

control can lead to a noise-robust speech representation. High-level language 

processing, however, further modulates the spatial-temporal profiles of the 

neural representation of the speech envelope. 

 

Keywords: electroencephalography, speech envelope, gain control, neural 

entrainment 
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Introduction 

Speech perception is a complex process involving both auditory and language 

processing and language processing can feed back and modulate basic 

auditory perception (Ganong, 1980; Warren, 1970). A sound feature that 

strongly contributes to speech intelligibility is the speech envelope, i.e., slow 

fluctuations (< 16 Hz) in sound intensity (Drullman et al., 1994; Shannon et al., 

1995). How auditory and language factors influence the neural processing of 

speech envelope has been extensively investigated but remains controversial. 

When listening to speech, neural activity tracking the speech envelope can be 

recorded either intracranially from auditory cortex (Nourski et al., 2009) or 

noninvasively by magnetoencephalography /electroencephalography 

(MEG/EEG) (Ding and Simon, 2012b). Even in noisy environments, neural 

tracking of the speech envelope remains robust as long as the speech stream 

is attended to (Ding and Simon, 2012a; Kerlin et al., 2010; Mesgarani and 

Chang, 2012; O'Sullivan et al., 2014; Zion Golumbic et al., 2013). Although it 

is well established that cortical activity can track the speech envelope, it 

remains controversial whether speech-tracking activity is generated by 

general auditory mechanisms or speech-specific neural computations (Ding 

and Simon, 2014). 

 

One hypothesis is that envelope tracking responses are generated by non-

speech-specific auditory mechanisms (Steinschneider et al., 2013), since the 
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temporal envelope is a low-level acoustic feature well represented throughout 

the auditory system (Joris et al., 2004). Consistent with this hypothesis, 

envelope tracking responses can be seen in animals (David et al., 2009) and 

in humans listening to non-speech sound, e.g., amplitude modulated noise or 

tones (Lalor et al., 2009; Wang et al., 2012). Critically, some studies have 

found similar envelope tracking responses for intelligible speech and 

unintelligible speech such as time-reversed speech (Howard and Poeppel, 

2010) and speech in an unknown language (Peña and Melloni, 2012). Based 

on the domain-general auditory encoding hypothesis, noise-robust neural 

tracking of the speech envelope can be explained by contrast gain control 

(Ding and Simon, 2013) or primitive auditory scene analysis (Bregman, 1990; 

Ding et al., 2014), i.e., sound source segregation based on acoustic features. 

Contrast gain control and primitive auditory scene analysis are general 

auditory mechanisms that have been observed in primary auditory cortex of 

animals (Micheyl et al., 2005; Rabinowitz et al., 2013; Rabinowitz et al., 2011). 

 

Another hypothesis assumes that envelope tracking responses reflect 

interactions between auditory and language processing. Consistent with this 

hypothesis, some studies show that when speech is acoustically degraded to 

compromise intelligibility, neural tracking of the speech envelope shows 

reduced precision (Gross et al., 2013; Kong et al., 2015; Luo and Poeppel, 

2007; Peelle et al., 2013). Furthermore, at the individual level, listeners 
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showing more precise envelope tracking activity tend to understand speech 

better (Ding et al., 2014; Ding and Simon, 2013; Doelling et al., 2014). A 

potential concern about whether speech intelligibility directly modulates 

envelope tracking activity, however, is that intelligibility covaries with acoustic 

changes, task difficulty, top-down attention, and individual hearing functions, 

which are factors known to modulate envelope tracking activity (Kayser et al., 

2015; Lakatos et al., 2013; Petersen et al., 2017). 

 

Here, we investigate how auditory and language mechanisms separately 

contribute to envelope-tracking speech responses in noisy environments. 

Behaviorally, it is known that language information increases speech 

intelligibility in noise (Miller et al., 1951). Based on the domain-general 

auditory processing hypothesis, language knowledge facilitates speech 

recognition at a late stage, not reflected in the envelope tracking response. 

Based on the interactive processing hypothesis, however, language 

processing feeds back and modulate envelope-tracking activity. To distinguish 

these two hypotheses, we investigate the influence of language processing by 

comparing two groups of listeners, i.e., native listeners of the testing language 

and foreign listeners who do not understand the testing language. A low-level 

auditory task is employed to ensure attention, which does not require 

language comprehension. The speech signal is mixed with spectrally matched 

stationary noise at 4 signal-to-noise ratios (SNR), and we measure envelope-

tracking activity from both groups of listeners using EEG. 
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Materials and Methods 

Participants  

Thirty-two right-handed adults participated in this experiment (18-29 years old; 

mean age, 22.9 years). All participants reported normal hearing and they were 

all undergraduate or graduate students from Zhejiang University. Sixteen 

participants (8 females) were native Cantonese listeners while the other 16 

participants (8 females) were native Mandarin listeners who did not 

understand Cantonese. Participants were paid for their participation and the 

experimental protocol was approved by the Institutional Review Board of the 

Zhejiang University Interdisciplinary Center for Social Sciences. Informed 

consents were obtained from all participants. 

 

Stimuli and procedures 

The speech recordings were selected from the fiction Legends of the Condor 

Heroes, narrated in Cantonese by a male speaker. One hundred and sixty 

sections were randomly selected from the fiction. Each section was 15 s in 

duration and was normalized to the same intensity, measured by the RMS. 

One hundred and twelve sections served as normal trials, while the other 

forty-eight sections served as outlier trials. In the outlier trials, two syllables 

were randomly selected and immediately repeated. Speech materials in the 

normal trials were checked to ensure there are no repeated syllables. For half 

of the outlier trials, the two syllables were repeated once and for the other half 
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they were repeated twice. The syllable boundaries were manually determined. 

 

Spectrally matched stationary noise was generated using a 12-order linear 

predictive coding (LPC) model estimated based on all the speech materials. 

The noise was mixed with speech at 4 signal-to-noise ratios (SNRs), i.e., +9 

dB, -6 dB, -9 dB, and -12 dB. These 4 levels of SNRs were selected since a 

previous study has shown that the envelope-tracking neural responses were 

highly robust to noise when the SNR was above -6 dB. When the SNR 

dropped below -6 dB, however, the envelope-tracking response degraded. 

Here, +9 dB was chosen as a baseline and the other 3 SNR levels were 

selected to characterize how the envelope-tracking response was affected by 

the SNR. 

 

Each SNR condition contained 40 trials, including 12 outlier trials. In the 

experiment, all 160 trials were presented in a randomized order. Background 

noise reduced the intensity contrast of speech, i.e., the standard deviation of 

the envelope divided by its mean, and distorted the spectrotemporal features, 

which was characterized by the correlation between the envelopes of the 

noisy stimulus and the underlying clean speech (Fig.1AB). 

 

After each stimulus, the listeners had to press 1 or 2 on the keyboard if they 

heard that a sound segment was repeated once or twice respectively. They 
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had to press 0 if they did not hear any repeated segment. Since the number of 

normal trials was far greater than the number of outlier trials (28 vs. 12 trials), 

behavior accuracy would be high if listeners kept pressing 0. Therefore, in the 

following, behavior accuracy was characterized by analyzing the percent of 

outlier trials in which the participants made correct responses (i.e., true 

positive rate). 

 

 

 

Fig. 1. Stimuli and behavioral results. (A) Stimulus spectrogram (top) and 

envelope (bottom) under the 4 SNR conditions. The stimuli shown here 

consists of a repeated stimulus segment and the red lines illustrate the time 

interval when the segment repeats. (B) Contrast index of the stimulus (top) 

and the correlation between the stimulus envelope and the envelope of the 

underlying speech (bottom). The blue area covers the 95th percentile of the 

contrast index of stationary noise. (C) Behavioral results of native listeners 
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(red) and foreign listeners (black) at each SNR. Error bars represent 1 SEM 

over listeners. **P<0.01, ***P<0.001 (bootstrap, FDR corrected). 

 

EEG recording and preprocessing 

EEG responses were recorded using a 64-channel Biosemi ActiveTwo 

system, sampled at 2048 Hz. Two reference channels were placed at the left 

and right mastoids respectively and four channels were used to record 

horizontal and vertical EOGs. The EEG signals were referenced offline by 

subtracting the average of the two mastoid recordings. EOGs artifacts were 

regressed out based on the least squares method (Ding et al., 2017). The 

EEG recordings and also the speech envelope were downsampled to 50 Hz 

and epoched based on the onset of each 15-s stimulus. The first 1 second of 

recording was removed to avoid the onset response. Only the normal trials 

(112 trials for each listeners) were analyzed, to avoid EEG responses evoked 

by the outliers, i.e., the repeated sound segments. 

 

EEG based envelope reconstruction 

A linear decoder was used to reconstruct the temporal envelope of the 

underlying speech from the EEG response to a speech-noise mixture. The 

decoder applied a weighted average of the EEG response over time lags and 

channels using the following equation: 

ŝ(n)= ∑ ∑ Dk(m)rk(n+m)M
m=1

64
k=1 , 
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where Dk(n) and rk(n) are the decoder weights and the EEG signal in 

channel k respectively. The order of the decoder, i.e., M, was 26, 

corresponding to a maximal time lag of 0.5 s. The decoder weights Dk(n) 

were optimized so that the reconstructed envelope, ŝ(n), approximated the 

underlying speech envelope. The decoder Dk(n) was derived based on least-

squares estimation with L2 regularization, i.e., normalized reverse correlation 

(Theunissen et al., 2001).  

 

The neural reconstruction analysis was separately applied to each listener. 

The reconstruction accuracy was defined as the Pearson correlation between 

the reconstructed envelope and the envelope of the underlying speech. It was 

evaluated using 10-fold cross validation: Each time 90% of data was used to 

train the decoder and the rest 10% of data was used to evaluate the 

reconstruction accuracy. The procedure was repeated 10 times and the 10 

reconstruction accuracy values were averaged. The regularization parameter 

for neural reconstruction was varied between 0 and 0.01 and the optimal 

value of 0.001 was chosen, which lead to the highest neural reconstruction 

accuracy averaged over conditions and participants. 

 

To characterize the frequency bands in which the EEG response was most 

correlated with the speech envelope, envelope reconstruction was applied 

separately for bandpass filtered signals. In this analysis, a filter bank was 
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used to decompose the audio and the EEG responses into narrow bands. The 

filter bank contained 25 filters with a bandwidth equal to 1 Hz, and the center 

frequencies linear increased from 1.5 Hz to 24.5 Hz in steps of 1 Hz. The 

frequency range in which the reconstruction accuracy is significantly higher 

than chance falls in the delta (1-4 Hz) and theta (4-8 Hz) bands (not shown), 

consistent with the literature (Ding and Simon, 2012b; Luo and Poeppel, 

2007). Therefore subsequent analyses were restricted to 1-8 Hz. 

  

A sigmoid function was used to characterize the relationship between 

behavioral accuracy and neural reconstruction accuracy, denoted as y and x 

respectively in the following. The sigmoid function, i.e., 

y = A+(1-A)/(1+exp(-α(x-m))), has 3 parameters, i.e., A, α, and m, which 

referred to the lower asymptote, the growth rate, and the location of this 

sigmoid function, respectively. The 3 parameters were fitted using the least 

squares method.  

 

 

Temporal response function 

Neural reconstruction characterized how accurately the speech or stimulus 

envelope was represented in the brain by integrating EEG responses over 

time and channels. A neural encoding model, i.e., the temporal response 

functions (TRF), was used to further characterize the spatial and temporal 
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patterns of the neural responses. The TRF could be formulated as the 

following: 

r(n)= ∑ TRF(m)s(n-m+m1)T
m=1 +e(n), 

where r(n), TRF(n), s(n), and e(n) was the EEG response, the TRF, the 

sound envelope, and the residual error respectively. The order of the TRF 

model, i.e., T, was 26, corresponding to 0.5 s. The integration process started 

from m = -5, so that the TRF contained a 5-sample, i.e., 0.1 s, prestimulus 

interval. The TRF was computed based on the least-squares estimation with 

L2 regularization. The regularization parameter was tuned to provide the 

highest predictive power, which was defined as the correlation between the 

predicted neural responses, i.e., ∑ TRF(m)s(n-m+m1)T
m=1 , and the actual 

responses. Specifically, the regularization parameter was varied between 0 

and 0.3 and the results showed that 0.18 was the optimal parameter that 

resulted in the highest predictive power averaged over all channels, 

conditions, and participants. 

 

Classification of the listeners and SNR 

A classification analysis was employed to quantify whether the spatial and 

temporal profiles of the TRF were modulated by the language knowledge and 

the stimulus SNR. In this analysis, the 2 groups of listeners, i.e., native and 

foreign listeners, and the 4 levels of SNR were classified based on the TRF. 

The high-dimensional (time by channel) TRF was first reduced in dimension 
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using the linear discriminant analysis (LDA), which projected high-dimensional 

data to dimensions in which data from different classes were maximally 

separated (Duda et al., 2012). A Euclidean distance-based classifier was then 

used to classify the listener groups and the SNR levels based on the first 2 

LDA dimensions. The classifier calculated the center of each class based on 

the training set and each sample in the testing set was classified based on its 

distance to all the class centers. If a testing sample was close to the center of 

class A in terms of the Euclidean distance, it was attributed to class A. Since 

there were 16 listeners in each group, the classifier’s performance was 

evaluated using 8-fold cross validation: Each time, fourteen listeners were 

used to train a classifier while the other two listeners were used to evaluate 

classification accuracy. 

 

When the LDA was applied to the time by channel 2-dimensional TRF (T x 

64), the TRF was reshaped to a 1-dimensional vector (64T x 1) by 

concatenating the responses from different channels. The LDA feature vector 

was therefore also a 64T x 1 vector. To characterize the spatial and temporal 

profiles of the LDA feature vector, it is reshaped back to a time by channel 2-

dimensional matrix and the spatial and temporal profiles were the first left and 

right singular vectors extracted by singular value decomposition (SVD). 
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Statistical tests 

The bootstrap significance test is based on a bias-corrected and accelerated 

procedure (Efron and Tibshirani, 1994). In this procedure, all participants were 

resampled 5000 times with replacement and each time the participants being 

sampled were averaged, resulting in 5000 mean values. For paired 

comparisons (e.g., comparisons between SNR conditions), bootstrap was 

applied to the difference between conditions, if NS out of the 5000 mean 

values were greater (or smaller) than 0, the significance level is NS/5000. For 

unpaired comparisons, i.e., comparisons between listener groups, data from 

the foreign listeners were resampled and used to estimate the null distribution. 

If the mean value over native listeners is greater (or smaller) than NS out of 

the 5000 resampled mean values of the foreign listeners, the significance 

level is NS/5000. 

 

In the neural reconstruction analysis, chance-level reconstruction accuracy 

was estimated by constructing surrogate neural responses. A surrogate neural 

response was created by the circularly shifting the actual response by time lag 

T, which was between 100 s and 300 s in steps of 2 s. This procedure 

resulted in 101 surrogate neural responses. If the actual reconstruction 

accuracy was higher than the 95% percentile of the chance-level 

reconstruction accuracy, it was statistically significant (P < 0.05). A similar 

process was used to estimate the chance-level predictive power and RMS of 
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the TRF. When multiple comparisons were involved, the p-value was further 

adjusted using the false discovery rate (FDR) correction.  

 

 

Results 

Behavioral results 

In the experiments, listeners have to detect repeated sound segments in a 

continuous speech stream. The percent of repeated segments detected by 

native and foreign listeners are shown in Fig. 1C. Two-way repeated-

measures ANOVA reveals a significant main effect of SNR (F3,90 = 180.81, P < 

0.001) and a marginally significant main effect of listener groups (F1,30 = 3.74, 

P = 0.063). The interaction between the two factors also reaches significance 

(F3,90 = 9.91, P < 0.001). Additionally, the behavioral accuracy is significant 

higher for native listeners at -6 dB (P = 0.007, bootstrap, FDR corrected) and -

9 dB (P < 0.001, bootstrap, FDR corrected). These behavioral results suggest 

that language knowledge facilitates the detection of repeated sound segments 

in noise. 

 

Neural reconstruction of speech 

To study whether speech is reliably represented in cortex in the presence of 

background noise, the temporal envelope of the underlying speech is 

reconstructed based on the neural responses to a speech-noise mixture (Fig. 
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2A). Neural reconstruction accuracy monotonically decreases with decreasing 

SNR for both native and foreign listeners. A 2-way repeated-measures 

ANOVA (listener group × SNR) is applied to the reconstruction accuracy, 

which shows significant main effects of the listener group (F1,30 = 4.22, P 

=0.049) and SNR (F3,90 = 142.41, P < 0.001) and also the interaction between 

the 2 factors (F3,90 = 4.98, P = 0.003). At +9 dB and -6 dB SNRs, the 

reconstruction accuracy is higher for foreign than native listeners (+9 dB: P < 

0.001, and -6 dB: P < 0.001, bootstrap, FDR corrected). If the relationship 

between reconstruction accuracy and SNR is fitted by a line. The slope of the 

line is significantly steeper for foreign listeners than native listeners (P < 

0.001, bootstrap). Therefore, the neural reconstruction accuracy is more 

sensitive to noise in foreign listeners than native listeners. 

 

 

  

Fig. 2. Neural reconstruction of speech envelope. (A) Reconstruction 

accuracy for native (red) and foreign listeners (black) under each SNR 
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condition. Dashed lines denote the chance level. ***P < 0.001 (bootstrap, FDR 

corrected) (B) Relationship between behavioral accuracy and the neural 

reconstruction accuracy. Results from the 4 SNR conditions are shown and 

the error bars represent 1 SEM over listeners. The relationship between 

neural and behavioral accuracy is fitted by a sigmoid function for each group 

of listeners. 

 

The relationship between behavioral accuracy and neural reconstruction 

accuracy is shown in Fig. 2B and is fitted by a sigmoid function. The growth 

rate of the fitted sigmoid function, which decides the slope of the sigmoid 

function, is significantly higher for native than foreign listeners (P = 0.0234, 

bootstrap, FDR corrected). Furthermore, the fitted location parameter of the 

sigmoid function is smaller for native than foreign listeners (P = 0.0234, 

bootstrap, FDR corrected). Those results indicate that the performance of 

detecting repeated sound segments is not entirely determined by envelope-

tracking neural activity but additionally modulated by language processing. 

 

Temporal response function (TRF) 

The TRF characterizes the time course of neural activity evoked by a unit 

power increase in the stimulus (Ding and Simon, 2012b). We first analyze the 

TRF derived from the actual stimulus, i.e., the speech-noise mixture, which 

reflects how the brain encodes the sound input. The predictive power 
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averaged over listeners is shown in Fig. 3. The predictive power describes 

how accurately the speech envelope is tracked in each EEG channel. The 

topography of TRF predictive power shows a centro-frontal distribution when it 

can be reliably estimated, i.e., at +9, -6, and -9 dB SNRs. A 2-way repeated-

measures ANOVA shows significant a main effect of SNR (F3,90 = 80, P < 

0.001) and the interaction between SNR and listener groups (F3,90 = 5.85, P = 

0.001). The main effect of listener groups, however, is not significant (F1,30 = 

3.03, P = 0.092). 

 

  
 

Fig. 3. TRF predictive power for native (red) and foreign (black) listeners. The 

bar graph shows the predictive power averaged over all channels and the 

topography of the predictive power is shown underneath. Dashed lines 

indicate the 95% confidence interval of chance level. Error bars represent 1 

SEM over listeners. *P < 0.05, **P < 0.01, ***P < 0.001, (bootstrap, FDR 

corrected). 
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Similar to neural reconstruction accuracy, the TRF predictive power is 

significantly higher for foreign listeners at +9 dB (P < 0.001, bootstrap, FDR 

corrected) and -6 dB (P = 0.003, bootstrap, FDR corrected) SNRs. At -9 dB 

SNR, however, the predictive power is higher for native listeners (P = 0.033, 

bootstrap, FDR corrected). If the relationship between predictive power and 

the SNR is fitted by a line, the slope of the line is shallower for native listeners 

(P < 0.001, bootstrap), suggesting that intelligibility enhances the robustness 

of envelope tracking in noisy environments.  

 

To test if language knowledge and stimulus SNR modulate the spatial 

distribution of TRF predictive power, a classification analysis is employed to 

distinguish the 2 groups of listeners and 4 levels of SNRs based on the 

topography of predictive power. The predictive power from the 64 channels 

was first reduced to 2 dimensions using the LDA. The 2 groups of listeners 

are well separated at high SNRs in the first two LDA dimensions (Fig. 4A). 

The first 2 LDA dimensions approximate the 64-channel predictive power as 

the weighted sum of 2 topographic patterns, which are shown in Fig. 4B. 

When classifying the 64-channel predictive power into 8 categories (2 listener 

groups x 4 SNR levels), the classification accuracy is 38.3%, significantly 

higher than the chance-level performance of 12.5% (binomial test, P < 0.001). 

The accuracy to distinguish the 2 listener groups is 63.3% (pooling together 
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SNR levels), higher than the chance performance of 50% (binomial test, P = 

0.002), and the accuracy to distinguish the 4 SNR conditions is 56.3% 

(pooling together listener groups), also higher than the chance performance of 

25% (binomial test, P < 0.001). The confusion matrix of the classification 

results is shown in Fig. 4C, which shows the decoded category of the data 

from each SNR condition for each group of listeners. 

 

 

 

Fig. 4. Classifying listener groups and SNR levels based on the topography of 

the predictive power. (A) Scatterplot of the first 2 LDA dimensions of the 64-

channel predictive power. Lighter colors denote lower SNRs. Each marker 

represents data from 1 listener. The center of each ellipse is the mean across 

listeners while and the radius is 1 SD over listeners. (B) Topography of the 

first 2 LDA dimensions. (C) Confusion matrix of the classification accuracy 
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shows a diagonal structure, indicating above-chance classification 

performance (f: foreign listener; n: native listener). 

 

The amplitude and time course of the TRF are analyzed in the following. The 

RMS of the TRF across channels (normalized by subtracting the pre-stimulus 

value) is shown in Fig. 5AB. A 2-way repeated-measures ANOVA reveals a 

main effect of SNR on the TRF total power (F3,90 = 10.16, P < 0.001). Neither 

the main effect of listener groups (F1,30 = 0.71, P = 0.406) nor the interaction 

between listener groups and SNR (F3,90 = 2.14, P = 0.101) is significant. The 

TRF total power significantly increases from 9 dB to -6 dB (foreign: P < 0.001, 

and native: P = 0.01, bootstrap, FDR corrected). For foreign listeners the 

response gain decreases from -6 dB to -9 dB (P = 0.003, bootstrap, FDR 

corrected) and for native listeners the response gain decreases from -9 dB to 

-12 dB (P = 0.01, bootstrap, FDR corrected). These results demonstrate that 

the neural response gain exhibits a U-shaped relationship with the stimulus 

SNR. When the noise is relatively weak, the neural response gain increases 

to compensate the loss of stimulus contrast. When the noise is too strong, 

however, the neural response gain stops increasing. 

 

The previous analysis shows that the response gain depends on the stimulus 

SNR. In the following, we characterize how much the observed response gain 

change deviates from an ideal model in which the change in stimulus contrast 

is fully compensated. In this analysis, a new TRF is derived based on the 
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amplitude-normalized stimulus envelope, i.e., the stimulus envelope divided 

by its standard deviation. If the change in neural response gain fully 

compensates the contrast reduction in the stimulus, the TRF derived from the 

amplitude-normalized stimulus will be independent of the stimulus SNR. The 

results, however, show that the TRF total power monotonically decreases with 

decreasing SNR, indicating that even between 9 dB and -6 dB, the change in 

response gain is not enough to fully compensate the loss of stimulus contrast. 

 

 
 

Fig. 5. TRF derived from the actual stimulus (AB) or the amplitude-normalized 

stimulus (CD). (AC) The upper panel shows the TRF time course, i.e., the 

RMS over channels, and the shaded area denotes 1 SEM over listeners. The 
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lower panel shows the time intervals in which the TRF amplitude is 

significantly higher than chance in red. Results from all SNR conditions are 

stacked vertically. (BD) Total power of the TRF. Error bar represents 1 SEM 

over listeners. *P < 0.05, **P < 0.01, (bootstrap, FDR corrected). 

 

 

 

Fig. 6. Classifying listener groups and SNR levels based on the multi-channel 

TRF (A) or channel-averaged TRF (B). The left panel shows the scatterplot of 

individual data for native (red) and unfamiliar (black) listeners. The central 

panels show the spatial and temporal profiles of the first 2 LDA dimensions. 

The right panels show the confusion matrix for the classification.  
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In the following, a classification analysis is employed to quantify if language 

knowledge and the stimulus SNR modulate the spatial and temporal profiles 

of the TRF (Fig. 6). Using a procedure similar to that applied to classify the 

TRF predictive power, it is found that the listener groups and the SNR levels 

can be jointly classified with 45.3% accuracy (higher than chance, binomial 

test, P < 0.001). Since the predictive power analysis has already shown that 

language and SNR both modulate the spatial properties of the TRF, what 

remains unclear is whether the temporal information alone suffices to classify 

listener groups and stimulus SNRs. To address this issue, we remove the 

spatial dimension of the TRF by averaging the TRF over channels. Based on 

the channel-averaged TRF, classification is still above chance (43%, binomial 

test, P < 0.001), demonstrating that language knowledge and stimulus SNR 

modulate the TRF time course. In the classification analysis, the TRF model is 

derived from stimuli with normalized amplitude. For the TRF model derived 

from the actual stimulus, similar classification results are obtained based on 

the multi-channel TRF and the channel-averaged TRF (43% and 41.4% 

respectively, significantly above chance, binomial test, P < 0.001). 

 

To further investigate whether the EEG response encodes the envelope of the 

actual stimulus, i.e., a speech-noise mixture, or the envelope of the underlying 

clear speech, we drive another TRF to describe the relationship between the 

EEG response and the underlying clear speech. As is shown in Fig. 7A, with 
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decreasing SNR, the power of this TRF monotonically decreases. For the TRF 

total power, a 2-way repeated-measures ANOVA reveals a significant main 

effect of SNR (F3,90 = 34.85, P < 0.001) and a significant interaction between 

listener group and SNR (F3,90 = 2.99, P = 0.035), but no significant main 

effect of listener groups (F1,30 = 2.15, P = 0.153). Additionally, the normalized 

power is significant higher for foreign listeners at +9 dB (P = 0.034, bootstrap, 

FDR corrected) and -6 dB (P = 0.007, bootstrap, FDR corrected) when 

comparing with native listeners. 

 

 

  

Fig. 7. TRF derived from the underlying clear speech. (A) RMS of the TRF 

across channels (upper panels) and time intervals in which the TRF amplitude 

is significantly higher than chance (red areas, lower panels). The shaded 

areas in upper panels denote 1 SEM over listeners. (B) Normalized total 

power of the TRF. (C) Predictive power of the TRF derived from underlying 
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clear speech (S) and the speech-noise mixture (M). Error bars represent 1 

SEM over listeners. *P < 0.05, **P < 0.01, ***P < 0.001, (bootstrap, FDR 

corrected). 

 

Finally, we analyze whether the actual stimulus or the underlying clean 

speech provides is better at modeling the EEG responses. Figure 7C 

compares the predictive power of the two models, which are comparable for 

native listeners. For foreign listeners, however, the model derived from clean 

speech yields slightly better predictive power at +9 dB (p < 0.001, bootstrap, 

FDR corrected) and -6 dB (p = 0.038, bootstrap, FDR corrected). This results 

indicates that even for an unknown language, the brain can actively reduce 

background noise and selectively encode the speech signal. 

 

 

 

Discussion 

The temporal envelope is an acoustic feature that strongly contributes to 

speech intelligibility. This study demonstrates that the cortical representation 

of speech envelope is modulated by both auditory and language mechanisms, 

when the listeners perform a low-level auditory task that does not require 

speech comprehension. It is shown that envelope-tracking cortical activity can 

be generated based on domain-general auditory mechanisms and auditory 

gain control mechanisms can lead to a noise-robust representation even for 
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unintelligible speech. Nevertheless, language processing does play a 

modulatory role and affect the spatial and the temporal profiles of speech-

tracking activity.  

 

Auditory mechanisms underlying noise-robust speech representations 

When speech is embedded in noise, the dynamic range of its intensity 

fluctuations, i.e., the intensity contrast, is compressed (Fig. 1B). If auditory 

cortex passively follows the stimulus envelope, the envelope-tracking 

response will reduce in amplitude when the noise level increases. 

Nevertheless, a number of studies have shown that a reduction in intensity 

contrast can be compensated at various auditory processing stages (Dean et 

al., 2005; Robinson and McAlpine, 2009), so that in auditory cortex neural 

activity is only weakly affected by the intensity contrast of the stimulus 

(Rabinowitz et al., 2011). MEG studies in humans show that neural tracking of 

the speech envelope is robust to noise and is barely influenced by the 

intensity contrast of the stimulus when the SNR is above ~-6 dB and the 

speech intelligibility is above ~50% (Ding and Simon, 2013). Robust neural 

encoding of the speech envelope has been attributed to auditory gain control 

mechanisms. Here, it is demonstrated that such mechanisms do not need 

feedback from high-level language processing and can be applied to 

unintelligible speech (Fig. 5A). 
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Language processing contributes to robust speech processing in noise 

High-context sentences can be better understood in noisy environments than 

low-context sentences or random words (Miller et al., 1951). Furthermore, 

prior knowledge about the content of a sentence can help the listeners to 

understand it in noise (Helfer and Freyman, 2005; Jones and Freyman, 2012; 

Kidd Jr et al., 2014; Yang et al., 2007). In the present study, we further 

demonstrate that language knowledge can even facilitate a low-level auditory 

task, i.e., detecting repeated sound patterns, at an intermediate SNR levels, 

i.e., -6 dB and -9 dB (Fig. 1C). The behavioral results are consistent with our 

neurophysiological findings that the precision of envelope-tracking activity, 

characterized by either the neural reconstruction accuracy (Fig. 2A) or the 

predictive power (Fig. 3), decreases faster for foreign listeners than native 

listeners. The current study shows that long-term language knowledge can 

influence cortical tracking of speech envelope and a recent study shows that 

recent exposure to a speech utterance can facilitate neural tracking of the 

envelope of that utterance in challenging listening environments (Wang et al., 

2018). Taken together, the behavioral and neural results from the current 

study and other recent studies show that prior knowledge, either long-term 

language knowledge or recent listening experience, can modulate neural 

encoding of acoustic features, e.g., the speech envelope, and can boost the 

performance on low-level acoustic tasks that do not require speech 

comprehension. 
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Influences of task and attention on neural tracking of speech envelope 

Task and attention differentially influence envelope-tracking activity in different 

listening environments. When the listening environment contains multiple 

auditory streams, e.g., multiple speakers, selective attention strongly 

modulates cortical tracking of each auditory steam (Ding and Simon, 2012a; 

Kerlin et al., 2010; Mesgarani and Chang, 2012; O'Sullivan et al., 2014; Zion 

Golumbic et al., 2013). In a quiet listening environment, however, attention 

does not strongly affect neural tracking of the speech envelope. One study 

finds no overall change in speech tracking activity, characterized by the cross-

correlation between EEG and speech envelope, when comparing an active 

listening condition with a condition in which the listener watch a silent movie 

(Kong et al., 2014). When comparing the same two conditions, another study 

in which the stimulus is an isochronous syllable sequence finds a subtle but 

statistically significant change in the power of envelope-tracking activity (Ding 

et al., 2018). In both these studies, the attention effects are much stronger 

when there are two competing speech streams. Task can influence attention 

allocation and can influence neural tracking of sound rhythms (Lakatos et al., 

2013). However, during speech listening, when the task changes from a 

lexical task to a low-level speaker gender detection task, neural tracking of 

words is significantly reduced but neural tracking of the speech envelope is 

not significantly affected (Ding et al., 2018). In the current experiment, we 

employ a low-level auditory task that does not rely on speech comprehension. 
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When the task changes, we expect the envelope-tracking response to be only 

weakly affected in relatively quiet listening environments. Future studies are 

needed, however, to investigate how envelope-tracking activity is influenced 

by task when the intensity of background noise is high. 

 

Intelligibility and cortical envelope tracking: stimulus manipulations 

The relationship between envelope tracking activity and speech intelligibility 

has been extensively studied using 2 approaches. One approach varies 

speech intelligibility by manipulating acoustic features or the linguistic context, 

while the other approach studies individual differences in speech intelligibility. 

When the acoustic properties of speech is manipulated, inconsistent results 

have been reported in the literature about whether higher speech intelligibility 

is associated with more precise envelope tracking, especially in quiet listening 

environments. Some studies have reported no overall reduction in the 

precision of envelope-tracking activity when speech is played backward 

(Howard and Poeppel, 2010; Zoefel and VanRullen, 2016) or when the 

speech fine structure is corrupted (Ding et al., 2014). Nevertheless, other 

studies have found that the precision of envelope-tracking activity is reduced 

when speech is played backward (Gross et al., 2013; Park et al., 2015), when 

the spectro-temporal fine structure is corrupted (Luo and Poeppel, 2007; 

Peelle et al., 2013), or when the speech envelope is corrupted (Doelling et al., 

2014). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 26, 2018. ; https://doi.org/10.1101/377838doi: bioRxiv preprint 

https://doi.org/10.1101/377838


31 
 

 

In noisy listening environments, it has been more consistently reported that 

when an acoustic interference signal reduces speech intelligibility, it also 

reduces the precision of cortical envelope tracking (Ding and Simon, 2013; 

Kong et al., 2015; Vanthornhout et al., 2018). The current results also show 

decreased envelope tracking accuracy when the noise level increases. A 

potential issue for the acoustic manipulation approach, however, is that 

although it can demonstrate the correlation between speech intelligibility and 

envelope tracking, it cannot establish a causal relationship between them 

(Ding and Simon, 2014). A related method to manipulate speech intelligibility 

is to use the priming paradigm. In some conditions, an unintelligible sentence 

becomes intelligible if the listeners hear an intelligible version of the same 

sentence in advance. Using the priming approach, however, two studies have 

concluded that intelligibility does not modulate envelope tracking (Baltzell et 

al., 2017; Millman et al., 2015). Nevertheless, the priming paradigm cannot 

distinguish sensory-level adaptation effect caused by priming and the 

intelligibility changed caused by priming. 

 

When the linguistic content of speech is manipulated, previous studies have 

shown comparable or reduced envelope-tracking for sentences than random 

syllables or words. When the linguistic structure is manipulated without 

changing the speech envelope, one study shows neural tracking of the 
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speech envelope remains unchanged (Ding et al., 2016). In another study, 

when listening to a sequence of syllables are grouped into artificial words, 

neural tracking of the syllabic-rate speech envelope is reduced after the 

listeners learn the words via statistical learning (Buiatti et al., 2009). The 

previous two studies discussed here both presented speech syllables 

isochronously.  

 

Using natural utterances, one study observes more accurate delta-band 

envelope tracking for sentences constructed by pseudowords, compared with 

sentences constructed by real words (Mai et al., 2016). One explanation for 

this phenomenon is that linguistic context provides additional cues for speech 

comprehension so that the brain relies less on acoustic cues in the speech 

envelope. Another explanation is that neural tracking of the linguistic content 

(Ding et al., 2016) competes with neural tracking of envelope and therefore 

reduces envelope-tracking activity. These two explanations are also potential 

reasons why better behavioral performance is achieved with lower envelope 

tracking precision for native listeners (Figs. 2B & 3). 

 

Intelligibility and cortical envelope tracking: individual differences 

The relationship between envelope tracking activity and intelligibility can also 

be characterized by individual differences. One study has compared the 

neural responses of native Italian and Spanish listeners while they listen to 
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Italian, Japanese, and Spanish utterances (Peña and Melloni, 2012). It is 

shown that speech intelligibility does not change in low-frequency power, a 

gross measure that can reflect both envelope-tracking activity and other 

neural responses. The current study extends this previous study by explicitly 

analyzing neural tracking of the speech envelope. In another study, when 

listening to sentences constructed by isochronously presented syllables, the 

strength of the envelope-tracking response is comparable for native and 

foreign listeners (Ding et al., 2016). The current study, however, find that 

neural tracking of the speech envelope is more precise for non-native 

listeners for utterances with a natural rhythm. 

 

Within the population of native listeners, individuals vary in their ability to 

understand speech in noisy environments. In challenging listening conditions, 

studies have consistently shown that individuals showing more precise 

envelope-tracking activity tend to understand speech better (Ding et al., 2014; 

Ding and Simon, 2013; Doelling et al., 2014; Kong et al., 2015; Vanthornhout 

et al., 2018). In contrast, a more precise envelope-tracking response is 

observed for older listeners compared with younger listeners, in both quiet 

and noisy listening environments (Presacco et al., 2016), even though older 

listeners have more trouble understanding speech in noise. Across studies, it 

is suggested that speech-tracking activity is generally related to intelligibility at 

the individual level with in a relatively homogeneous population, e.g., young 
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native listeners. It remains unclear, however, whether this effect is driven by 

individual differences in auditory ability or language ability. Across populations, 

the relationship between intelligibility and envelope tracking precision seems 

to be heterogeneous. 

 

Taken together, the current results and previous studies (Buiatti et al., 2009; 

Mai et al., 2016; Presacco et al., 2016) demonstrate that when the stimulus 

acoustic properties are controlled, language processing generally reduces the 

precision of envelope-tracking activity in quiet listening environments. 

Critically, however, we find that the precision of envelope tracking activity is 

differentially modulated by speech intelligibility in different EEG channels so 

that the topography of the TRF predictive power can be used to distinguish 

the native and foreign listeners (Fig. 4). Similarly, the time course of the TRF, 

i.e., the RMS over channels, is also sufficient to distinguish the two groups of 

listeners (Fig. 6). These results suggest that future research needs to 

consider the spatio-temporal dynamics of neural activity when discussing how 

intelligibility modulates envelope-tracking responses. 
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