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Quantitative susceptibility mapping (QSM) aims to extract
the magnetic susceptibility of tissue from magnetic resonance
imaging (MRI) phase measurements. The mapping of mag-
netic susceptibility in vivo has gained broad interest in several
fields of science and medicine because it yields relevant infor-
mation on biological tissue properties, predominantly myelin,
iron and calcium. Thereby, QSM can also reveal pathological
changes of these key components in devastating diseases such
as Parkinson’s disease, Multiple Sclerosis, or hepatic iron over-
load. As QSM requires the solution of an ill-posed field-to-
source-inversion, current techniques utilize manual optimiza-
tion of regularization parameters to balance between smooth-
ing, artifacts and quantification accuracy. We trained a fully
convolutional deep neural network - DeepQSM - to invert the
magnetic dipole kernel convolution. This network is capable
of solving the ill-posed field-to-source inversion on real-world
in vivo MRI phase data without the need for manual parame-
ter tuning, which proves that this network has generalized the
underlying mathematical principle of the dipole inversion. We
demonstrate that DeepQSM’s susceptibility maps enable identi-
fication of deep brain substructures that are not visible in MRI
phase data and provide information on their respective mag-
netic tissue properties. We illustrate DeepQSM’s clinical rele-
vance in a patient with multiple sclerosis showing its sensitivity
to white matter lesions. In summary, DeepQSM can be used to
determine the composition of myelin sheets of nerve fibers in the
brain, and to assess quantitative information on iron homeosta-
sis and its dysregulation, and will subsequently contribute to a
better understanding of these biological processes in health and
disease.
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Introduction
Quantitative susceptibility mapping (QSM) is an increasingly
utilized post-processing technique that extracts magnetic sus-
ceptibility from the phase of magnetic resonance imaging
(MRI) gradient echo signal (1, 2). Magnetic susceptibility
describes the degree of magnetization of a material placed in
an external magnetic field and thereby delivers unique, non-
invasive insights into tissue composition and microstructure
(3, 4). In particular, QSM provides information about myelin

and white matter composition (5, 6), iron metabolism (7–
12), and copper accumulation (13). The measurement of iron
stores has been used to study normal aging (7, 14), Hunting-
ton’s Disease (8), Multiple Sclerosis (15–17), Alzheimer’s
Disease (18) and Parkinson’s Disease (19, 20). Furthermore,
QSM visualizes micro-bleeds (21) and differentiates them
from microcalcifications (22) due to differing magnetic sus-
ceptibilities of calcium and iron.
In order to obtain a quantitative susceptibility map, an im-
age is acquired using an MRI sequence where the signal
phase is sensitive to local magnetic field changes, such as
a gradient-recalled echo sequence (23–25). This raw signal
phase is unwrapped and magnetic field contributions from
outside the object of interest, the so-called background field,
are removed. Finally, the inverse problem relating the mea-
sured field perturbation to the underlying magnetic suscep-
tibility distribution is solved (1, 2). This critical inversion
step is ill-posed, because multiple susceptibility distributions
could result in the same field perturbation. The ill-posed na-
ture can be overcome either by additional measurements in
different orientations or by numerical stabilization strategies.
One method utilizing the acquisition of different object ori-
entations with respect to the static magnetic field is known
as ’Calculation of susceptibility through multiple orientation
sampling’ (COSMOS (26, 27)). COSMOS requires at least
three different orientations to make the field-to-susceptibility
problem over-determined and solves the inverse problem an-
alytically. Although COSMOS generates almost artifact-free
susceptibility maps, and is therefore seen as gold standard,
it assumes isotropic magnetic susceptibility and contains lit-
tle information about anisotropic tissues (28, 29). Therefore,
methods such as susceptibility tensor imaging (STI) (30) or
the Generalized Lorentzian Tensor Approach (GLTA) have
been developed that extend the magnetic susceptibility scalar
to a tensor. Common to all multi-orientation methods is their
clinical in-feasibility due to patient discomfort and scan time
requirements (1, 31). To overcome these practical limitations,
a variety of methods have been developed that compute mag-
netic susceptibility from single orientation data by employing
numerical stabilization techniques.
Numerical strategies can be subdivided into two groups (2):
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inverse filtering and iterative methods. Inverse filtering for-
mulates the problem in Fourier domain where dividing the
pre-processed phase data by the unit dipole response yields
the magnetic susceptibility. However, near-zero values in the
unit dipole response result in an amplification of noise and
errors - a manifestation of the ill-posed problem. The unit
dipole response is therefore modified and small values are
replaced by a fixed threshold. This method is known as trun-
cated k-space division (TKD (32, 33)). Due to the now inac-
curate physical model, TKD parameters need to be carefully
chosen to yield a trade-off between regularization and arti-
facts and TKD results need to be corrected for underestimat-
ing magnetic susceptibility (2).

It is also possible to solve the inverse problem iteratively in
the spatial domain (2). Such iterative numerical solvers re-
quire the description of the forward solution (the multiplica-
tion of the dipole kernel with the susceptibility distribution in
Fourier space) and they minimize the difference between this
predicted data and the actual data in a least-squares sense.
One example to solve this equation system is the LSQR algo-
rithm (34, 35). Most QSM inversion algorithms developed in
the last years are extensions to this basic principle but differ
in the way how regularization techniques incorporate prior
information about the susceptibility distribution. Common
to all techniques is that the regularization terms have to be
carefully optimized to yield a trade-off between data and pri-
ors (2, 36). Morphology enabled dipole inversion (MEDI)
is a spatially regularized inversion that utilizes edge infor-
mation from magnitude images to regularize the problem
(37, 38). Other methods include total generalized variation
(TGV (39)), or single-step QSM (SS-QSM (40)). Common
to all iterative methods is that the forward solution has to be
evaluated at least once in every iteration step. This results
in two consequences: 1) Iterative methods are considerably
slower than inverse filtering methods and 2) the forward so-
lution has to be simple enough to be computed in every iter-
ation.

Recently, deep neural networks have emerged as an alterna-
tive to iterative methods for solving inverse problems (41–
44) and have shown impressive results in applications such
as denoising (45), deconvolution (46), image reconstruction
(47–49) and super-resolution (50–53). The use of neural net-
works for the solution of inverse problems is motivated by the
fact that neural networks are capable of approximating any
continuous function under the assumption that the network
has enough free parameters (42, 44, 54). Researchers have
also investigated the link between iterative methods and deep
networks and found that neural networks act as a fast approx-
imated sparse coder (41, 55). A sparse coder learns the most
important features from the input data and can reconstruct the
input using a combination of basis vectors (55). It has been
shown (41) that the reconstructed images from the neural net-
work preserved complex textures better than the state-of-the
art iterative method, because the neural network learns an ef-
ficient regularization from the data, whereas iterative meth-
ods require explicit regularization. An important practical
advantage of neural networks over iterative methods is that

the trained models can produce an output extremely fast as
they only involve a single step of matrix multiplications to
produce the feed forward output (42).
Based on the recent advances in the solution of inverse prob-
lems using deep learning, we propose a deep convolutional
network that delivers fast and artifact-free solutions to the ill-
posed field-to-source problem. We test the generalizability in
four separate experiments with increasing complexity: The
first experiment tested the performance on a data set very
similar to the training data. The second experiment inves-
tigated the network’s performance on a more realistic brain
data set, containing structures that the network has never seen
during training. The third experiment goes one step further
and tests if the inversion works with real-world in vivo phase
data of a healthy participant. Finally we test the performance
of our algorithm on a clinical dataset from a patient with
multiple sclerosis. We show that DeepQSM is capable of
utilizing real-world single-orientation phase data without the
need for explicit regularization terms and manual parameter
tweaking. The solutions are fast, robust and show a high level
of detail (see Figure 1).

DeepQSMSingle Orientation 
Phase

a

b

c
d

Fig. 1. DeepQSM’s susceptibility maps enable identification of deep brain substruc-
tures. In this particular coronal slice there are indications of the following substruc-
tures: a) putamen, b) globus pallidus, c) subthalamic nucleus, d) substantia nigra.
The left column shows the same slice of the single orientation phase image used
for susceptibility reconstruction. The blue circle highlights a dipole artifact around a
vein that is removed in the QSM reconstruction.

Methods
Network Architecture. The fully convolutional neural net-
work (DeepQSM) capable of processing 3-dimensional in-
puts is based on a modified version of an established architec-
ture (U-Net) (56). Due to memory constraints on the Graphic
Processing Units (GPUs) used for training we reduced the
amount of feature-maps compared to the original U-Net, see
Figure 2 for the architecture of DeepQSM. The fully con-
volutional nature of the chosen architecture allows an input
image of any size with dimensions divisible by 16 and the
dimensions of the output equal the dimensions of the input.
The architecture can be divided into a contracting and an ex-
panding part. The goal of the contracting part is to capture
the context of the image, while the goal of the expanding
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part is to increase the resolution (41). The contracting part
of DeepQSM consists of three-dimensional convolution lay-
ers with filters of size 3x3x3, a stride length of 1x1x1 and
rectified linear units (ReLU). Furthermore, pooling layers
are added which both increase the receptive field and make
the network translation invariant. The expanding part of the
neural network consists of two types of convolutional lay-
ers: transposed convolutional layers and convolutional lay-
ers. The transposed convolutional layers consist of filters of
size 2x2x2, a stride length of 2x2x2 and ReLUs. The con-
volutional layers in the expanding part are identical to the
convolutional layers in the contracting part. The network
has skip connections between the contracting and expanding
part of the network. The skip connections make up for the
spatial information lost during downsampling by combining
high resolution information with low resolution information.
Furthermore, it reduces the gradient vanishing problem and
increases the performance of the network (41).

Fig. 2. The DeepQSM architecture consists of a contracting and expanding part.
The contracting part is made up of a series of convolutions with a ReLU activation
function followed by a pooling layer. The expanding part consists of transposed
convolutions to undo the spatial reduction caused by the pooling operations and
convolutions with ReLUs similar to those of the contracting part. Convolutions used
a stride of 1x1x1, transposed convolutions a stride of 2x2x2, pooling a stride of
2x2x2. The input given to the image must have spatial dimensions that yield a
positive integer when divided by 16. DeepQSM will output a volume with identical
dimensions to the input.

Dipole Kernel. The dipole kernel accounts for the fact that
susceptibility is a non local property. The kernel commonly
used in QSM (1, 2, 40, 57) is built on two assumptions. The
first assumption is that the effect of the local environment on
susceptibility can be divided into near field and far field based
on the Lorentz sphere (58). Under the assumptions that the
magnetic susceptibility is a bulk property and that magnetic
moments in the near field are randomly distributed, the con-
tribution of the near field can be neglected (58). Equation 1 is
the dipole kernel in the Fourier domain, where kx,ky and kz
are k-space vectors in the respective directions. This dipole
description does not include terms for modeling anisotropy:

FT (d) = 1
3 − k2

z

k2
x+k2

y +k2
z

(1)

Training Procedure. DeepQSM was trained on 70400
48x48x48 synthetic examples in 20500 steps with 32 exam-
ples per step resulting in a total training time of 15 hours.
The synthetic 3D images were simulated and contained basic
geometric shapes such as cubes, rectangles and spheres and
served as ground truth/label data. Input data was generated
from the label data by convolving it with the dipole kernel

(see eq. 1) to create well-posed forward solutions (see Fig-
ure 3). To optimize the weights of DeepQSM during training
the ’ADAM’ optimizer (59) was used, and had the follow-
ing configurations: initial learning rate = 0.001, β1 = 0.9,
β2 = 0.99. Mean squared error between the reconstruction
from DeepQSM and the label data served as the cost func-
tion for the optimizer.
To avoid overfitting the weights during training and thereby
losing generalisability, the regularization technique ’dropout’
was used (60) to randomly turn off neurons during training
with a drop out rate of 10%. DeepQSM was implemented
using Python 3.6.1 and Tensorflow v1.3.1. Training was per-
formed on the National Computational Infrastructure cluster
’Raijin’ using NVIDIA Tesla K80 GPUs.

Test. Four experiments were performed to evaluate Deep-
QSM’s ability to solve the ill-posed field-to-source inversion.
Each experiment tests DeepQSM’s performance and gener-
alisability by gradually increasing the complexity of the data
used for each experiment. Figure 3 shows how data was pro-
cessed before a DeepQSM reconstruction. For the first ex-
periment synthetic data was used, while for the second and
third experiment a single orientation background field cor-
rected tissue phase image and STI susceptibility map pub-
lished by (31) for the 2016 QSM reconstruction challenge
were used. The data set serves as a common reference for
current and future algorithms and was acquired in vivo from
a healthy 30 year old female, using a 3D gradient-echo at 3T
with 1.06mm isotropic resolution, an echo time of 25ms and
a repetition time of 35ms (31). The phase data was obtained
from a single orientation while the ground truth susceptibility
map was computed using STI χ33 (30) from 12 orientations.
The fourth experiment involved clinical data from a female
patient with multiple sclerosis (30 years of age, Clinically
Isolated Syndrome (CIS), Kurtzke Expanded Disability Sta-
tus Scale (EDSS) = 2.0). The 3D gradient-echo data were
acquired on a 3T with 1x1x2mm resolution and 6 echos with
echo times of 4.92ms to 29.2ms.

Experiment 1. The first experiment aimed to test DeepQSM’s
performance on synthetic data similar to the training data.
The goal was to see if DeepQSM would produce sensible
outputs on new synthetic data that simulated exactly the same
way as data used for training, then convolved with the dipole
kernel to generate a well-posed forward solution. Next Deep-
QSM was set to invert the applied dipole kernel to reconstruct
the simulated susceptibility map.

Experiment 2. In the second experiment the goal was to solve
the ill-posed problem on a dataset dissimilar from the train-
ing data. DeepQSM had never been introduced to images of
brains during training and therefore this experiment would
test if DeepQSM generalized the underlying physical princi-
ple of the QSM dipole inversion. The forward solution was
generated by using a brain χ33 solution as the ground truth
and convolving it with the dipole kernel.

Experiment 3. The third experiment aimed to test if Deep-
QSM can reconstruct a susceptibility map from realistic sin-
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Fig. 3. Illustration of the data-flow for experiment 1 (orange arrows), 2 (green ar-
rows), 3 (blue arrows) and 4 (red arrows). Experiment 1 and 2 gives the well posed
forward solution calculated by convolving the ground truth with the dipole kernel as
an input to DeepQSM. Experiment 3 and 4 use a background field corrected single
orientation 3D GRE MRI phase as input for DeepQSM.

gle orientation phase data and compare the reconstruction to
the thresholded k-space division (TKD)(33), a widely uti-
lized, fast, QSM reconstruction technique. TKD overcomes
the ill-posed problem by setting values close to zero to a man-
ually chosen threshold which depends on the noise and signal
characteristics of the dataset. The threshold used for this data
was 0.19 as it yielded the best-trade off between streaking
artifacts and image quality.

Experiment 4. The fourth experiment tests if DeepQSM can
reconstruct a susceptibility map from clinical single orien-
tation phase data of a patient with multiple sclerosis. The
quantitative susceptibility maps are compared with a standard
Magnetization Prepared Rapid Acquisition GRE (MPRAGE)
and a fluid-attenuated inversion recovery (FLAIR) sequence.

Results
We have trained a deep convolutional neuronal network on
forward and inverse examples generated from synthetic data
in 15 hours. The following experiments demonstrate the per-
formance of the network trained on this synthetic data and ap-
plied to a variety of datasets with increasing complexity from
experiment 1 to 4. For an illustration of the pre-processing
and calculation of the results, see Figure 3. All DeepQSM
predictions were computed in approximately 10 seconds on a
standard workstation.

Experiment 1: Synthetic Data. To verify that the network
can solve an inverse problem similar to the training data, we
applied the trained network to a synthetic dataset generated
with the same rules as the training data. Figure 4 illustrates
the prediction performance of DeepQSM on synthetic data
and compares it to the simulated ground truth. This figure
illustrates DeepQSM’s capability of reverting the effects of
the dipole on synthetic data without suffering from streaking
artifacts or introducing smoothing.

Ground Truth Forward Solution DeepQSM

-0.1-0.1 0.1-0.10.1 0.1a.u. ppmppm

Fig. 4. One representative slice from a 3D volume of synthetic data. Left: Ground
truth, Middle: Forward solution obtained after convolving the QSM dipole kernel with
the ground truth, Right: DeepQSM reconstruction of the forward solution.

Experiment 2: Forward Simulation. The second experi-
ment aims to test if the network can predict on structures
dissimilar from data during the training-phase consisting of
simple shapes. In this experiment we used a human brain
QSM reconstruction from multiple orientations as the ground
truth. This brain was then convolved with the dipole ker-
nel to generate the input for DeepQSM (well-posed forward
solution). Figure 5 shows DeepQSM’s ability to revert the
ill-posed dipole kernel operation on a realistic brain dataset
without introducing any artifacts.
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Fig. 5. Axial, sagittal and coronal middle slice from a 3D volume. First row shows
the ground truth, second row shows the result of convolving the ground truth with
the dipole kernel to generate the input data for DeepQSM. The third row shows the
resulting reconstruction by DeepQSM.

Experiment 3: Single Orientation 3D GRE MRI Phase
Data. The third experiment tests if DeepQSM can predict
susceptibility maps based on measured single orientation in
vivo phase data and compares the results to the established
inversion technique TKD with a manually chosen threshold
of 0.19 yielding the best trade-off between quantification ac-
curacy and artifacts. The result can be seen in Figure 6 that
shows how DeepQSM is able to solve the inverse problem on
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realistic phase data from a single orientation without intro-
ducing smoothing or requiring the explicit choice of regular-
ization parameters.
A zoomed version of the coronal orientation is shown in Fig-
ure 1, to illustrate how substructures of interest such as puta-
men, globus pallidus, subthalamic nucleus, and substantia ni-
gra are present in the susceptibility map resulting from Deep-
QSM.

Experiment 4: Clinical 3D GRE MRI Phase Data. A clin-
ical dataset is shown in Figure 7 to illustrate that DeepQSM
can process real-world clinical data and show the sensitiv-
ity to multiple sclerosis lesions. This example also illustrates
how little smoothing DeepQSM introduces with the conse-
quence that small blood vessels are visible in the DeepQSM
reconstruction.

Discussion
In this proof-of-concept study we demonstrated that the chal-
lenging inverse problem underlying QSM can be solved
by using a fully convolutional neural network. DeepQSM
yielded a low level of streaking artifacts and preserved small
anatomical structures. We achieved this by computing the
well-posed QSM forward solution of synthetic data consist-
ing of simple shapes and we trained the network on these in-
verse and forward solution pairs. The first experiment tested
the performance on a data set very similar to the training data.
The network was able to invert this problem, but it could have
done this by overfitting the training data due to its simple na-
ture. Therefore, the second experiment investigated the net-
work’s performance on a more realistic data set, containing
structures that the network has never seen during training.
We used the STI χ33 ground truth from the 2016 QSM recon-
struction challenge (31) and computed the well-posed QSM
forward solution. Then we used the network trained on sim-
ple shapes to invert the field-to-source problem for a data set
with realistic anatomical structures. This showed that the net-
work has learned the general concept of the dipole inversion
and not just the shapes presented during training. The third
experiment goes one step further and tests if the inversion
works with real-world in vivo phase data, containing mea-
surement noise and error propagation through previous steps
of the QSM pipeline. For this we used a single orientation
scan from the 2016 QSM reconstruction challenge (31) and
demonstrate that the network can invert this problem while
preserving fine spatial structures. Finally we show that deep-
QSM can also invert clinical data from a patient with multiple
sclerosis.
We compared the susceptibility reconstructions from Deep-
QSM with a widely utilized reconstruction method TKD and
showed that DeepQSM is capable of delivering robust re-
sults. One of the major benefits of DeepQSM compared to
TKD (and other existing algorithms) is that DeepQSM does
not utilize explicit regularization parameters to yield a bal-
ance between smoothing, artifacts and quantification accu-
racy and additionally works as an end-to-end algorithm capa-
ble of computing susceptibility maps within seconds.

Although we used a very simplistic training data set we
achieve high quality QSM reconstructions in the brain. This
shows that our network has learned to approximate the un-
derlying physics of dipole inversion and can potentially use
training data sets with anatomical priors to help condition
the ill-posed nature of the problem further. This could be
achieved by utilizing a minimum deformation model (61, 62)
of the human brain anatomy to generate high quality training
data. The more similar the training data is to the real brain
anatomy, the more prior knowledge the network will be able
to utilize, similar to QSM algorithms exploiting morphologi-
cal features (37).
We have demonstrated the potential of our newly presented
approach by using brain scans. However, our method is not
only applicable to solving the QSM inverse problem in the
brain but can be extended to other regions in the body, such
as the liver or the heart. For this, a basic network could be
trained on simple shapes, as we did in this work, and then use
this basic network in a second transfer learning phase, where
the anatomical priors are learned from the organ of interest.
It has been shown, that a fine-tuning of pre-trained convolu-
tional neuronal networks outperforms networks trained from
scratch (63). Fine-tuning a pre-trained network requires a
smaller amount of training data compared to training a net-
work from scratch (42). This is especially useful in the field
of QSM where high quality training data is costly and diffi-
cult to obtain.
Currently, we have used background field corrected data to
compute a QSM solution. However, it is also possible to
incorporate realistic simulations of background fields origi-
nating at tissue boundaries into the training step. This would
then allow the background field removal together with the
field-to-source inversion in a single step, similar to state-of-
the-art iterative QSM algorithms (39).
In our current implementation we utilized a simple dipole
model with the assumption that magnetic susceptibility is
a scalar quantity. An advantage of our proposed approach
is that it can potentially utilize any forward model and as
such could incorporate additional model terms accounting
for anisotropy of magnetic susceptibility and structural tis-
sue anisotropy. Currently the inverse problem posed by
these more sophisticated models, such as the Generalized
Lorentzian Tensor Approach (GLTA) (58), cannot be solved
with existing procedures. However, our deep learning ap-
proach could potentially incorporate additional measure-
ments to help condition these inverse problems.
This new class of QSM algorithms has a wide range of clini-
cal applications. DeepQSM could for example be combined
with a fast imaging sequence based on echo planar imaging,
such as the recently proposed planes-on-a-paddlewheel se-
quence (64). This would allow the routine acquisition and
reconstruction of QSM data in under 1 minute, compared
to current techniques requiring at least 5 minutes. This in-
creases patient comfort and helps with motion artifacts in
clinical populations. This could enable the standard clini-
cal use of QSM in assessing microbleeds (21, 65), the diag-
nosis of Alzheimer’s (18, 66, 67), Parkinson’s (20, 68–72),

Bøtker et al. | DeepQSM bioRχiv | 5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 7, 2018. ; https://doi.org/10.1101/278036doi: bioRxiv preprint 

https://doi.org/10.1101/278036


DRAFT
-0

.1
pp

m
0.2

5p
pm

-0
.1

pp
m

0.2
5p

pmTKD (thr=0.19) on Single Orientation Phase

|Ground Truth - TKD|

DeepQSM on Single Orientation Phase

|Ground Truth - DeepQSM|0p
pm

0.
2p

pm

0p
pm

0.
2p

pm

χ

χ

χ

χ

A B

Fig. 6. Comparison of A) thresholded k-space division (TKD) with a threshold value of 0.19. and B) DeepQSM. The first row shows an axial, sagittal and coronal slice of
the reconstructed 3D susceptibility maps. The reconstructions have been performed on single orientation background field-removed phase data. The second row shows the
absolute difference maps between the reconstructed image and the ground truth from the 2016 QSM reconstruction challenge.
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Fig. 7. A clinical example showing data from a patient with multiple sclerosis.
The image shows three modalities, MPRAGE (left), FLAIR (middle), and DeepQSM
(right). The red arrows highlight lesions (A, B, C) and it can also be observed that
DeepQSM allows distinguishing small blood vessels (D).

and Huntington Disease (8), Multiple Sclerosis (17, 73, 74),
Amyotrophic Lateral Sclerosis (75), Wilson Disease (13)
or more general in diseases with a dysregulation of iron
metabolism (12, 76, 77). QSM could also help in localiz-
ing targets, such as the Subthalamic Nucleus, for Deep Brain
Stimulation Surgery (78).

Conclusions
In summary, we have described the foundations for a new
class of QSM inversion algorithms that allow the solution of
the QSM inverse problem without requiring explicit regular-
ization parameters and manual parameter tweaking. This has
the potential to create algorithms that can reconstruct QSM
from clinical single-orientation phase data in a fraction of the
time that is currently required for standard iterative proce-
dures. Our approach delivers artifact-free susceptibility maps
and the presented algorithm can be extended to include more
realistic forward models that could allow the modeling of
anisotropic components in QSM.
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