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Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
eCenter for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium

fNational MS Center Melsbroek, Melsbroek, Belgium
gRadiology, UZ Brussel, Laarbeeklaan 103, Brussels, Belgium

hOxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, UK

Abstract

The default-mode network (DMN) and its principal core hubs in the posterior midline cortices (PMC), i.e., the precuneus and
the posterior cingulate cortex, play a critical role in the human brain structural and functional architecture. Because of their
centrality, they are affected by a wide spectrum of brain disorders, e.g., Alzheimer’s disease. Non-invasive electrophysiological
techniques such as magnetoencephalography (MEG) are crucial to the investigation of the neurophysiology of the DMN and its
alteration by brain disorders. However, MEG studies relying on band-limited power envelope correlation diverge in their ability
to identify the PMC as a part of the DMN in healthy subjects at rest. Since these works were based on different MEG recording
systems and different source reconstruction pipelines, we compared DMN functional connectivity estimated with two distinct MEG
systems (Elekta, now MEGIN, and CTF) and two widely used reconstruction algorithms (Minimum Norm Estimation and linearly
constrained minimum variance Beamformer). Our results identified the reconstruction method as the critical factor influencing
PMC functional connectivity, which was significantly dampened by the Beamformer. On this basis, we recommend that future
electrophysiological studies on the DMN should rely on Minimum Norm Estimation (or close variants) rather than on the classical
Beamformer. Crucially, based on analytic knowledge about these two reconstruction algorithms, we demonstrated with simulations
that this empirical observation could be explained by the existence of a spontaneous linear, approximately zero-lag synchronization
structure between areas of the DMN or among multiple sources within the PMC. This finding highlights a novel property of the
neural dynamics and functional architecture of a core human brain network at rest.
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Highlights:
— We investigate sources of inconsistencies in MEG DMN functional connectivity.
— MNE captures functional connectivity at the posterior midline cortices.
— LCMV Beamformer suppresses functional connectivity at the posterior midline cortices.
— We recommend using MNE instead of LCMV Beamformer for MEG studies of the DMN.
— Simulations suggest a spontaneous linear correlation structure within the DMN.

1. Introduction

A major discovery of the last couple of decades in human
neuroscience has been that human brain activity appears intrin-
sically organized into large-scale functional networks known as
resting-state networks (RSNs), each consisting of a set of re-
mote brain areas preferentially coupled together (for a review,
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see Deco and Corbetta, 2011). While most RSNs bind segre-
gated regions involving neural activations during similar stim-
ulation or task performance, one of them, i.e., the default-mode
network (DMN), stands out. Indeed, its constituent regions—
i.e., the posterior midline cortices (PMC) and more particu-
larly the posterior cingulate cortex and the precuneus, the me-
dial prefrontal cortex (mPFC), and the temporo-parietal junc-
tions (TPJ)—were originally identified as those being metabol-
ically less active during goal-directed tasks than at rest (Gre-
icius et al., 2003; Raichle et al., 2001). This seminal discovery
paved the way for fruitful research on the structure, dynamics
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and functions of the DMN, with promising critical implications
for both fundamental neuroscience and clinical applications of
functional neuroimaging (Fox, 2010; Fox and Raichle, 2007;
Raichle, 2015). Structurally, the main regions of the DMN, es-
pecially those in the PMC, are among the most anatomically
connected hubs of the brain (Hagmann et al., 2008; Sporns et
al., 2007). Dynamically, the DMN is singled out as the most
temporally unstable RSN (Allen et al., 2014). Furthermore, the
PMC appears as one of the core hub systems enabling dynamic
functional integration among the different RSNs (de Pasquale
et al., 2012, 2016; for a review, see de Pasquale et al., 2018).
Functionally, the DMN is involved in major human brain func-
tions such as mind wandering and related spontaneous cogni-
tion (Buckner et al., 2008), sensory perception (Boly et al.,
2007), or conscious processes (Baars et al., 2003) as well as
in meditation (Marzetti et al., 2014, Xu et al., 2014 ). This
multifaceted centrality of the DMN and the PMC also explains
their implication in the pathophysiology of several major neuro-
logical and psychiatric disorders (Fox, 2010; Leech and Sharp,
2014).

The DMN and other RSNs have been uncovered from neu-
roimaging data mainly as spatial patterns of resting-state func-
tional connectivity (FC), most prominently using functional
magnetic resonance imaging (fMRI) (Fox and Raichle, 2007).
Non-invasive electrophysiological recordings combined with
source reconstruction and band-limited power envelope corre-
lation also allowed the detection of cortical RSNs similar to
the fMRI RSNs, both from magnetoencephalography (MEG)
(Brookes et al., 2011; de Pasquale et al., 2010; Hipp et al.,
2012) and electroencephalography (EEG) (Liu et al., 2017;
Siems et al., 2016). Despite its wide use, fMRI is inherently
limited in its ability to explore network dynamics (as it involves
multiple timescales and preferential brain rhythms (Siegel et al.,
2012)) and to make inferences about neural activity in patholog-
ical conditions or even physiological aging, as the neurovascu-
lar coupling may be altered (D’Esposito et al., 2003; Liu, 2013).
Therefore, proper investigation of RSNs, and particularly of the
DMN, using noninvasive electrophysiological techniques, ap-
pears of utmost importance. In this respect, investigating the
electrophysiological FC of the DMN is especially crucial for
clinical research on neurodegenerative disorders where results
might diverge substantially from structural and fMRI studies
(Coquelet et al., 2017).

Critically, although the DMN was recognizably identified
in several electrophysiological studies, the MEG RSN litera-
ture is fraught with one key inconsistency regarding the de-
tection of FC with the PMC: some studies identified all main
DMN nodes except the PMC (Brookes et al., 2011; Hipp et al.,
2012) or a moderate contribution of the PMC (Vidaurre et al.,
2018), whereas others reported substantial FC with the PMC
(de Pasquale et al., 2012; Wens et al., 2014). Clearly, this in-
consistency has a major potential impact on subsequent infer-
ences to be made about the neurophysiology of the DMN and
its alteration by brain disorders.

To the best of our knowledge, this conundrum has not been
explored yet, and here we fill that gap by investigating the possi-
ble factors at the source of these discordant findings. The main

distinction between these previous works lies in the use of dif-
ferent types of MEG sensors and of different methods to recon-
struct the neural sources underlying the measurements. Indeed,
the studies reporting no contribution of the PMC in the DMN
employed MEG systems composed of axial gradiometers to-
gether with a linearly constrained minimum variance (LCMV)
Beamformer for source projection, whereas those reporting a
strong contribution of the PMC in the DMN used systems in-
volving magnetometers or planar gradiometers together with
Minimum Norm Estimation (MNE) or close variants. Given
the distinct sensitivity profiles of those sensors and the differ-
ent assumptions behind those source reconstruction algorithms,
we surmised that one, or a combination, of these two factors
might explain the discrepancy in MEG DMN topographies. We
investigated this empirically using human resting-state MEG
data acquired with two different MEG systems and using two
source reconstruction methods. We then considered network
simulations to bring novel insights into the neurophysiological
mechanisms at play in DMN functional dynamics.

2. Materials and methods

2.1. Data collection and preprocessing
We analyzed resting-state neuromagnetic recordings (5 min,

upright sitting, eyes open) obtained in two age- and sex-
matched groups of fifteen right-handed healthy adults. One
dataset (8 females; mean age: 24 years, age range: 19–30
years) was previously described and used (Wens et al., 2014).
This data was acquired with an Elekta Neuromag system com-
prising 102 magnetometers and 102 pairs of orthogonal planar
gradiometers, placed in a light-weight magnetically shielded
room (Vectorview & Maxshieldtm, Elekta Oy (now MEGIN,
Croton Healthcare), Helsinki, Finland). Signal space separa-
tion (Taulu et al., 2005) was applied to suppress remnant envi-
ronmental noise and correct for head movements, which were
tracked using four head position indicator coils. The other
dataset (8 females; mean age: 24 years, age range: 18–31 years)
was downloaded from the Open MEG Archive (Niso et al.,
2016). This data was acquired on a CTF system comprising 275
first-order axial gradiometers with third-order synthetic gradi-
ent compensation and passive magnetic shielding for the sup-
pression of environmental noise (VSM MedTech Inc., Coquit-
lam, BC, Canada). No head movement correction was applied
to these CTF data but all subjects disclosed head displacement
from the starting position to the end of the acquisition below
0.5 cm.

Beyond the use of signal space separation with continuous
movement correction for the Elekta MEG data, we applied
the same preprocessing and analysis steps to the two datasets.
Physiological noise was removed using independent compo-
nent analysis (FastICA algorithm with dimension reduction to
30 and nonlinearity tanh (Hyvarinen and Oja, 2000)) of the
band-pass filtered (0.1–45 Hz) data, visual detection and re-
gression of the components corresponding to ocular and cardiac
artifacts (Vigario et al., 2000). Cleaned data were then filtered
in the alpha band (8–12 Hz), wherein the DMN was best iden-
tified in previous literature (Brookes et al., 2011; Wens et al.,
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2014). Of notice, the Elekta data were further restricted to the
204 gradiometers for better comparability between the two sys-
tems. Each individual MEG recording was also accompanied
with a high-resolution 3D T1-weighted cerebral magnetic res-
onance image (MRI) and a digitalization of fiducials, position
indicator coils, and headshape points for manual coregistration
of MEG and MRI coordinate frames.

2.2. Source reconstruction algorithms

A common source space was defined as a regular grid within
the Montreal Neurological Institute (MNI) template brain vol-
ume and deformed onto each subject’s MRI via a non-linear
spatial normalisation (Ashburner and Friston, 1999) imple-
mented in the SPM8 toolbox (Friston et al., 2007). The edge
length of the MNI grid was set to 5 mm, but given the poten-
tial impact of too coarse source sampling on the LCMV Beam-
former (Van Veen, 1997) we also considered a finer grid with
2-mm long edges. Individual MEG forward models were com-
puted using the single-layer boundary element method of MNE-
C (Gramfort et al., 2014), which is itself based on the MRI tis-
sue segmentation performed with FreeSurfer (Fischl, 2012).

Two different source reconstruction algorithms were then
applied on the rest data: (i) MNE (Dale and Sereno, 1993)
with noise covariance estimated from 5 min of empty-room
recordings (with environmental noise cancellation) filtered in
the alpha band and regularization parameter set through a prior
consistency condition (Wens et al., 2015), and (ii) a unit-gain
LCMV Beamformer (Hillebrand et al., 2005; Van Veen, 1997)
with covariance estimated from the alpha-band resting-state
data. Of note, prior to Beamforming, each three-dimensional
forward model dipole was projected onto the plane orthogo-
nal to its direction of negligible magnetic response. Finally,
in both cases, reconstructed source time series were projected
onto their direction of maximum variance (Brookes et al., 2011;
Wens et al., 2014).

2.3. Electrophysiological functional connectivity

Power envelope FC between two source signals was esti-
mated as the Pearson correlation of their Hilbert envelopes low-
pass filtered at 1 Hz using sliding-window averaging (window
width: 1 s, sliding step: 0.5 s). Spatial leakage was corrected
beforehand using pairwise static orthogonalization (Brookes et
al., 2012) so as to eliminate completely any linear, zero-lag cou-
pling and also minimize correction errors due to source mislo-
calization (Wens et al., 2015).

We estimated the DMN topography using seed-based FC
mapping with a seed placed at the mPFC (MNI coordinates:
[−2, 51, 2] mm) as in a previous study (Wens et al., 2014) be-
cause this node is well isolated from the other DMN nodes,
so this choice minimizes interpretation ambiguities related to
local miscorrection of spatial leakage or ghost interactions po-
tentially surviving after orthogonalization (Palva et al., 2018;
Wens et al., 2015).

For a more quantitative, data-driven analysis, we then consid-
ered a functional connectome built by estimating FC among 38
non-overlapping regions of interest (ROIs) covering the whole

brain. These ROIs were based on a functional brain parcella-
tion derived from a high-dimensional group independent com-
ponent analysis of resting-state fMRI data (Colclough et al.,
2015). Each of the associated weighted ROI maps were bina-
rized to build a mask identifying the nonzero weights, and the
set of source signals within each ROI mask was reduced to one
representative signal that maximally accounted for the variance
within the ROI, i.e., its principal component. The resulting 38-
by-38 FC matrix was explicitly symmetrized to avoid potential
asymmetries induced by pairwise orthogonalization (Brookes et
al., 2012; Hipp et al., 2012). Global connectivity was assessed
by averaging over all connections, and a matrix of regional FC
was then obtained by subtracting this global value from each
entry. A two-way mixed ANOVA was used to examine the
possible effects of MEG system type (between-subject factor,
two levels) and source reconstruction type (within-subject fac-
tor, two levels) on both global and regional FC. In the latter
case, the family-wise error rate (FWER) was controlled by esti-
mating the number Ndof of degrees of freedom associated with
the 38 reconstructed signals, which may be less than 38 due to
spatial leakage effects among ROIs. To do so, we extracted the
inverse operators associated with these signals (i.e., their pro-
jection onto the corresponding principal component) and com-
puted their rank as described in Wens et al. (2015). These ranks
varied a little across reconstruction methods and system types
(Elekta-MNE: 22, Elekta-LCMV Beamformer: 25, CTF-MNE:
21, CTF-LCMV Beamformer: 23) so we used the maximum
value, Ndof = 25, leading to only slightly conservative testing.
The Bonferroni correction factor applied to the connectome-
level ANOVA was thus Nfwer = Ndof(Ndof − 1)/2 and the corre-
sponding significance level, p < 0.05/Nfwer = 1.7 × 10−4.

2.4. Simulations of the default-mode network
Given the known inability of the LCMV Beamformer to

reconstruct correlated sources (Hillebrand et al., 2005), we
reasoned that any systematic differences between MNE- and
LCMV Beamformer-based resting-state FC could be related
to a spontaneous linear correlation structure within the DMN.
Thus, we generated synthetic data simulating two different
models of the DMN (using the forward models and measure-
ment noise recordings from the two datasets) and then applied
the exact same FC analysis pipeline as for the human resting-
state data.

Each group-level simulation consisted in the generation of
fifteen synthetic MEG data (one for each subject of a resting-
state dataset) built from a simulated DMN configuration to-
gether with an additive brain noise background. The DMN
sources were either placed at isolated nodes (mPFC: [−2, 51, 2]
mm, PMC: [−3, 54, 31] mm, left TPJ: [−43,−76, 35] mm, right
TPJ: [43,−76, 35] mm; MNI coordinates (de Pasquale et al.,
2010)) or covered corresponding ROIs. Each dipole orienta-
tion was fixed along the direction of maximum MEG response
(as assessed by the individual forward model), and source
time courses were obtained from independent realizations of an
alpha-band filtered Gaussian white noise (sampling rate fs: 200
Hz, duration: 5 min) or from linear combinations thereof to in-
vestigate the effect of linear, zero-lag coupling on FC mapping.
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Specifically, a linear PMC-TPJ coupling was introduced by re-
placing the PMC node signal with an interpolation between
the original PMC signal (no linear correlation) and the sum of
the left and right TPJ signals (maximum PMC-TPJ correlation:
1/
√

2 ≈ .7). Within-PMC synchronization was generated by
interpolating between the case of linearly independent source
signals in the corresponding ROI (no linear correlation) and the
case of all identical signals in the ROI (maximum mean within-
PMC correlation: 1). Importantly, these linear couplings were
simulated as instantaneous interactions, but given our restric-
tion to the alpha band they can also be interpreted as reflecting
synchrony with small but non-zero time delays. To make this
point explicit, we will refer to these as being “zero-lag”. Non-
linear FC was then imposed among all the DMN sources by
weighting their signals at each time point using a common .1
Hz sinusoid, which allows co-modulating the Hilbert envelopes
while leaving the linear correlation structure relatively intact
(Brookes et al., 2012). Of note, the variance of the resulting
source time courses were normalized to one except in the case
of PMC simulated as an isolated node, for which the effective
decrease in gradiometer signal (which falls off according to the
inverse cubed distance between source and sensors) due to its
depth was counter-balanced by increasing its variance appro-
priately.

The background brain noise was generated for each source
location using independent realizations of an auto-regressive
model that roughly mimics the temporal autocorrelation struc-
ture of human MEG data, which is dominated by strong alpha
power around 10 Hz. Specifically, we chose a model order
of two and fixed the roots of the characteristic polynomial to
z = 0.8 exp(2iπ × 10 Hz/ fs) and its complex conjugate. Brain
noise variance was set to 10% of the DMN signal’s variance.
Finally, the synthetic MEG data were obtained by individual
forward projection of the resulting source configuration and
addition of measurement noise taken from empty-room MEG
recordings. The latter were rescaled beforehand so as to fix the
signal-to-noise ratio (SNR) of the synthetic MEG data to the
value estimated from the corresponding subject’s resting state.
Source reconstruction and FC analysis of all simulated MEG
data were performed as for the corresponding resting-state data.
A two-way ANOVA with FWER correction was applied on the
resulting regional FC estimates to assess the effects of source
reconstruction type and of the presence/ absence of linear syn-
chronization (within-subject factor, two levels).

2.5. Data and code availability

CTF data is available from the Open MEG Archive (Niso et
al., 2016). Elekta data and code is available upon reasonable
request to the authors.

3. Results

3.1. Empirical analysis of DMN connectivity at rest

We show in Figs. 1 and 2 the results from four group-level
analyses of the DMN (15 subjects in each group), using alpha-
band power envelope FC with leakage correction estimated on

Figure 1: Empirical DMN connectivity at rest. Seed-based FC maps with a seed
at the mPFC (white disc) for both reconstruction methods (MNE and LCMV
Beam- former) and both system types (Elekta and CTF). For visualization pur-
poses, topographical maps were thresholded so as to disclose the 20% strongest
connections.

a 5-mm source grid. We considered two source reconstruc-
tions (MNE and LCMV Beamformer) applied to two resting-
state datasets acquired with different MEG systems (Elekta and
CTF). As seen in Fig. 1, the classical DMN couplings between
the mPFC seed and the PMC and TPJs emerged using MNE,
hence disclosing a full DMN topography as found in fMRI
(Smith et al., 2009). By contrast, the mPFC-PMC coupling was
notably absent in the LCMV Beamformer-based maps. This
was true for both MEG systems, suggesting a difference dom-
inated by the reconstruction algorithm. Frontal FC was better
seen when using the LCMV Beamformer, especially in the CTF
data; however this is difficult to interpret due to potential local
miscorrection of spatial leakage (Wens et al., 2015).

To quantify these observations statistically and without pri-
ors about the DMN, we considered a functional connectome
encompassing FC between 38 ROIs covering the whole brain
(Fig. 2). Given the large differences in the scales of MNE-
and LCMV Beamformer-based FC matrices, we first applied
an ANOVA on the global FC and identified a significant main
effect of reconstruction (F1,56 = 37.2, p = 1.1 × 10−7) but not
of system type or any interaction effect (F1,56 ≤ .6, p ≥ .44).
Because this global effect does not affect the relative FC val-
ues among the connections, we then performed an ANOVA on
the regional FC estimates, and the results disclosed a substan-
tially significant main effect of reconstruction on the coupling
between ROIs 21 and 22 (F1,56 = 27.4, p = 2.6 × 10−6), which
correspond respectively to the mPFC and PMC nodes (Fig. 2,
bottom). Reconstruction effects did not reach significance for
any other connection (F1,56 ≤ 7.9, p ≥ 6.7 × 10−3). Impor-
tantly, we observed no main effect of system type (F1,56 ≤ 1.8,
p ≥ .19) nor any interaction (F1,56 ≤ 2.4, p ≥ .13).

These empirical results are robust in that they did not de-
pend on the precise choice of the seed location (Supplementary
Material S1, Fig. S1) or the shape of the ROIs (Supplementary
Material S2). Importantly, FC analysis based on a finer 2-mm
source space also showed that the LCMV Beamformer-specific
absence of FC between the mPFC and the PMC was not merely
related to our choice of the source grid (Supplementary Mate-
rial S3, Fig. S2). The impact of the precise method to estimate
envelope FC was also fairly limited (see Supplementary Mate-
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Figure 2: Empirical functional connectome at rest. The FC matrices are shown for the four combinations of MEG system (Elekta and CTF) and source recon-
struction algorithm (LCMV Beamformer and MNE). The center of mass of the corresponding ROIs (blue nodes) as well as connections with a significant effect
of reconstruction, system type, or their interaction (ANOVA, p < 0.05 FWER corrected; red edges) are located on the MNI glass brain on the bottom. The FC
matrices’ rows and columns corresponding to the significant connections are also emphasized in bold.
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rial S4).

3.2. Hypothesis-driven simulations of the DMN

We further explored why the strong reconstruction effect
takes place for the mPFC-PMC resting-state FC using two sim-
ulated models of the DMN (Figs. 3 and 4). Given the lack of
system effect, we focused for definiteness on synthetic data gen-
erated from the Elekta dataset.

3.2.1. Point-like PMC source with linear PMC-TPJ coupling
In a first scenario we simulated the DMN as four well-

separated pointlike sources (mPFC, PMC, TPJs) that were en-
velope correlated but with no linear “zero-lag” connectivity,
and analyzed the effect of introducing bilateral “zero-lag” cor-
relations between the PMC node and the TPJ nodes (Fig. 3).
The introduction of these correlations between the PMC and the
TPJs reproduced quite clearly our observation that the mPFC-
PMC coupling could be detected using MNE but not LCMV
Beamformer, while the mPFC-TPJ couplings were detectable
with or without them (Fig. 3A, bottom row). This contrasts
with a control simulation without any linear coupling between
the PMC and the TPJs, where both reconstruction methods de-
tected a full DMN (Fig. 3A, top row). These observations were
confirmed by a quantitative ANOVA of the functional connec-
tome (regional FC matrix) with reconstruction and linear de-
pendence (i.e., zero or maximum PMC-TPJ correlation) as fac-
tors (Fig. 3B). The mPFC-PMC connection was singled out by a
main effect of both reconstruction (F1,56 = 17.4, p = 1.1×10−4)
and linear dependence (F1,56 = 28.9, p = 1.5 × 10−6) as well
as their interaction (F1,56 = 43.2, p = 1.8 × 10−8). No other
significant effect was identified (F1,56 ≤ 7.5, p ≥ 8.5 × 10−3).

We assessed the PMC-TPJ correlation strength needed to re-
produce this LCMV Beamformer-specific loss of mPFC-PMC
connectivity. Examples of LCMV Beamformer-based FC maps
for high PMC-TPJ correlations illustrate a rapid disappearance
of the PMC as this correlation approached its maximum value
(Fig. 3C). To confirm this, we show in Fig. 3D the mPFC-PMC
coupling estimate as a function of the PMC-TPJ correlation.
The plot for MNE appeared constant, consistent with the ab-
sence of impact of linear PMC-TPJ connectivity. The plot for
the LCMV Beamformer was more variant but still remained
around a definite value over a quite large range of linear cor-
relations (from 0 to about .6) and then dropped sharply and
vanished at the maximum possible value (about .7).

Of note, in these point-source simulations, the signal vari-
ance at the PMC node needed to be increased by a factor re-
lated to the subject-specific ratios of PMC to TPJ distance to the
MEG sensors, in order to compensate for its lower SNR due to
its cortical depth. Indeed, similar simulations failed to disclose
any PMC connectivity when the simulated PMC power was too
low (Supplementary Material S5, Fig. S3). Similarly, other con-
trol simulations were performed to inspect the network inde-
pendence of global FC decreases induced by the LCMV Beam-
former (Supplementary Material S6, Fig. S4) and check the ne-
cessity of bi-laterality in the linear PMC-TPJ coupling model
(Supplementary Materials S7, Fig. S5).

Figure 3: Effect of bilateral linear PMC-TPJ coupling on simulated DMN. (A)
Resulting mPFC-based FC maps for both reconstruction methods (MNE and
LCMV Beamformer) and both the presence (bottom row) or absence (top row)
of linear correlations. (B) Connections disclosing a significant effect of re-
construction, linear dependence, or their interaction (ANOVA, p < 0.05 FWER
corrected). (C) Evolution of the mPFC-based FC using LCMV Beamformer for
selected linear correlation values (emphasized by dotted lines in panel D). (D)
Mean (black lines) and SEM (colored margins) of mPFC-based FC values av-
eraged within the PMC parcel as a function of the linear PMC-TPJ correlation,
using MNE (light red) and LCMV Beamformer (light grey). For comparison,
mPFC-based DMN FC (i.e., averaged across the PMC and the left and right
TPJ parcels) is also shown (MNE: dark red, LCMV Beamformer: dark grey).
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3.2.2. Spatially extended linear synchronization within the
PMC

In a second scenario, we instead considered the effect of local
synchronization within an extended PMC modeled by placing
multiple point sources within the PMC region (Fig. 4). Com-
paring the situation where all within-PMC sources were iden-
tical (fully synchronized PMC) to the situation where all were
linearly independent (asynchronous PMC) reproduced results
similar to those of the point-like PMC simulation (Fig. 4A and
B). The mPFC-PMC coupling was once again singled out by
a main effect of reconstruction (F1,56 = 14.5, p = 3.5 × 10−4)
but not of PMC synchronization (i.e., mean within-PMC cor-
relation: 0 or 1; F1,56 = .92, p = .34) and, more importantly,
there was a strong interaction (F1,56 = 36.1, p = 1.5 × 10−7).
No other effect was identified (F1,56 ≤ 9.0, p ≥ 4.0 × 10−3).
The behavior of the mPFC-PMC coupling estimate as we var-
ied the strength of within-PMC synchronization is shown in
Fig. 4C and D. Fig. 4D appeared qualitatively different from
the analogous Fig. 3D in the first model. Indeed, the LCMV
Beamformer-based FC decreased with a linear trend as PMC
synchronization increased and crossed below the global within-
DMN FC (which remained stable) at a mean within-PMC cor-
relation of about .3. For MNE, both the mPFC-PMC and the
global within-DMN FC increased but their difference was sta-
ble, so PMC synchronization had no effect on regional FC.

4. Discussion

This study demonstrated that electrophysiological mapping
of the DMN via power envelope correlations based on the
LCMV Beamformer is relatively blind to PMC connectivity—
more precisely, to the antero-posterior coupling between the
mPFC and the PMC—whereas those based on MNE disclose
a prominent contribution. These observations were robustly re-
producible across two different MEG systems, i.e., Elekta and
CTF neuromagnetometers, which is in line with the MEG lit-
erature (Brookes et al., 2011; de Pasquale et al., 2010; Wens
et al., 2014). They also did not depend on technical details
such as, e.g., source space sampling. Crucially, network sim-
ulations showed that this discrepancy could originate from the
existence of a spontaneous linear, “zero-lag” synchronization
structure between areas of the DMN or among multiple sources
within the PMC.

4.1. The PMC is a part of the electrophysiological DMN

The first question prompted by these data is whether the PMC
belongs to the electrophysiological DMN. This hypothesis is
strongly supported by our results and the existing literature, as
the dominating PMC connectivity identified with MNE is sim-
ilar to that observed in fMRI (Smith et al., 2009) and positron
emission tomography (Savio et al., 2017; Trotta et al., 2018).
Actually, assuming that the LCMV Beamformer provides an ac-
curate picture of the DMN (i.e., without PMC) leads to the im-
plausible conclusion that PMC connectivity is a purely vasculo-
metabolic phenomenon that is nevertheless spuriously recon-
structed by MNE. Furthermore, we provided simulation-based

Figure 4: Effect of linear within-PMC synchronization on simulated DMN. All
is as in Fig. 3.
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evidence that MNE does not project sensor signal at the PMC
area in the absence of true PMC activity (Supplementary Mate-
rial S5, Fig. S3).

Conversely, accepting the neural nature of the PMC connec-
tivity implies that the LCMV Beamformer substantially under-
estimates some PMC-based interactions within the DMN. Ac-
tually, we identified both a global connectivity decrease and a
local decrease of the mPFC-PMC coupling with this reconstruc-
tion method. The former corresponds to a general dampening
of connectivity by the LCMV Beamformer that is irrespective
of the underlying brain activity, as it was also observed in pure
noise simulations (see Supplementary Material S6, Fig. S4).
This is due to the cross-sensor correlations induced by the mag-
netic field spread, which dominate over the correlations gen-
erated by neural activity. This intrinsic covariance structure
necessarily leads to global source dampening by the LCMV
Beamformer. On the other hand, the localized effect could not
be accounted for by this global decrease alone. Specifically,
the mPFC-PMC coupling was reduced to the point of not be-
ing distinguishable from background connectivity, whereas the
other mPFC-TPJ connections of the DMN did still emerge from
the background. This suggests a reconstruction bias of resting-
state activity related to the PMC when using the LCMV Beam-
former methodology. This has both major conceptual and prac-
tical consequences.

4.2. Linear synchronization structure at rest

We sought to explain the PMC-specific differences between
MNE- and LCMV Beamformer-based functional connectomes
by assuming the existence of genuine linear correlations asso-
ciated with PMC neural dynamics. Indeed, the LCMV Beam-
former is known to suppress linearly correlated sources (Hille-
brand et al., 2005). An alternative, more technical possibility
would have been a sampling bias due to a too coarse source
grid. Indeed, the LCMV Beamformer is unable to reconstruct
a focal source located outside the grid in situations of too large
SNR where the typical width of its point-spread functions is
below the grid size (Van Veen, 1997). That said, resting-state
activity presumably does not exhibit such SNR levels. Accord-
ingly, using a finer grid did not allow recovery of the mPFC-
PMC coupling with the LCMV Beamformer (Supplementary
Material S3, Fig. S2). On this basis, we thus examined two pos-
sible neurophysiological scenarios, based on either (i) a linear,
“zero-lag” coupling between the PMC and other areas of the
DMN, or (ii) a local linear, “zero-lag” synchronization struc-
ture within the PMC.

In the first scenario, we could exclude from scratch the pos-
sibility of linear, “zero-lag” coupling with the mPFC node be-
cause our seed-based maps were obtained after signal orthogo-
nalization with that node, which by design eliminated not only
spatial leakage effects but also any possible physiological lin-
ear, “zero-lag” correlations with the mPFC (Wens et al., 2015).
The only remaining possibility was thus the existence of lateral
linear correlations between the PMC and the TPJs, and because
of the bi-laterality of the DMN a similar amount of linear mix-
ing between the PMC and the left and right TPJs was expected

(as checked in Supplementary Material S7, Fig. S5). Simulat-
ing such configuration indeed reproduced clearly the LCMV
Beamformer-specific disappearance of the mPFC-PMC cou-
pling and its successful identification with MNE, as well as the
relative preservation of connectivity with the TPJs. The preser-
vation of the TPJs is explained by the fact that a certain degree
of independence between the two TPJ signals was allowed. By
contrast, the PMC source was built deterministically from the
two TPJ signals (at least for maximal PMC-TPJ correlation),
which led to its cancellation by the LCMV Beamformer.

Importantly, this scenario focused on the coupling dynam-
ics between nodes of the DMN, which were merely simulated
as point sources, and thus mostly neglected possible effects of
the internal structure within each constituent area of the DMN
(except for the amplitude boost needed for the PMC node, see
below). Alternatively, in the second scenario, we examined the
effect of linear correlation within the PMC independent of any
linear, “zero-lag” connectivity between DMN areas. Simulat-
ing PMC configurations using a spatially-extended distribution
of synchronized sources also replicated clearly our empirical
observations about the mPFC-PMC coupling. Here, the preser-
vation of TPJ connectivity was built in, since the TPJ signals
were simulated as independent sources.

These two scenarios provide distinct neurophysiologi-
cal mechanisms that reproduced equally well the LCMV
Beamformer-specific disappearance of the mPFC-PMC cou-
pling, and this prompts the question of whether one is more
likely than the other. Notwithstanding the fact that they are not
exclusive, we argue here that the extended PMC synchroniza-
tion model is more plausible than the linear PMC-TPJ coupling
model. One key element that allows them to be distinguished
comes from our simulations where the degree of synchrony was
varied. As expected, both the LCMV Beamformer and MNE
were able to disclose the PMC connectivity correctly in the
absence of any linear correlation, and increasing linear corre-
lations had little effect when using MNE. On the other hand,
the LCMV Beamformer-based FC between the mPFC and the
PMC decreased in different ways according to the scenario
considered, and disappeared below the global within-DMN FC
above a critical correlation value of about .3 for the PMC syn-
chronization model and about .6 for the linear PMC-TPJ cou-
pling model. In the latter case, the level of linear correlation
needed to reproduce the empirical resting-state data was thus
substantial and presumably beyond a reasonable physiological
range. Actually, this large critical value corresponds to a situa-
tion where the PMC signal is an almost perfect mix of the two
TPJ signals, which conflicts with the idea that the PMC encom-
passes a major integrative hub of the human brain (de Pasquale
et al., 2012; Leech and Sharp, 2014). Another argument favor-
ing the extended PMC synchronization model is the observation
that the linear PMC-TPJ coupling model actually implicitly in-
volved an extended PMC, despite the point-like nature of the
simulations, as we had to boost the PMC node amplitude in
order to adjust for its depth and reproduce the empirical data.
From a neurophysiological perspective, increased local power
amplitude is often assumed to reflect a larger synchronization
area for post-synaptic potentials (Buzsaki et al., 2012). Ad-
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ditionally, the extended PMC scenario is compatible with the
well-described structural and functional heterogeneity of the
precuneus and the posterior cingulate cortex, which splits the
PMC into at least two sub-areas (Cavanna and Trimble, 2006;
Leech and Sharp, 2014; Margulies et al., 2009; Utevsky et al.,
2014; Vogt et al., 2006). Taken together, these arguments thus
favor the idea of a linear synchronization within the PMC. That
said, no definite hard conclusion can be drawn since testing
these linear synchronization models directly in MEG data is in-
trinsically limited by spatial leakage among close areas such as
the PMC and the TPJs.

Whatever the precise scenario involved, our empirical and
simulated data suggest the existence of genuine linear, “zero-
lag” couplings besides the nonlinear power correlations that
are the electrophysiological signatures of RSNs. Interestingly,
the opposite hypothesis—i.e., the absence of linear, zero-lag
correlations—was explicitly used as a basic assumption for
the development of RSN mapping based on the LCMV Beam-
former (Brookes et al., 2011) and signal orthogonalization for
spatial leakage correction (Brookes et al., 2012; Colclough et
al., 2015). This led to a nicely internally consistent method-
ological approach that was also partly justified by O’Neill et al.
(2015), who examined the similarity of LCMV Beamformer-
and MNE-based RSN maps, although, critically, the DMN
was not included there. Our analysis of a functional connec-
tome confirmed and extended this observation, i.e., both LCMV
Beamformer- and MNE-based FC estimation within and across
RSNs are similar except for within-DMN couplings. Crucially,
this exception indicates that this working hypothesis about the
resting state may not be generally valid, at least when it comes
to the DMN. However, our data provide no indication as to why
the putative spontaneous linear, “zero-lag” interactions are re-
stricted to the DMN and what their function might be. One
clue may be the observation, using intracerebral stereotactic
EEG recordings, of event-related gamma-band desynchroniza-
tion occurring within DMN areas (Jerbi et al., 2010). In view of
its non-specificity to the precise goal-directed task considered
and of the high frequencies involved (i.e., 50–150 Hz), this re-
sult suggests that the DMN exhibits at rest a lagged correlation
structure associated with time delays on the order of 5–20 ms.
As already noted in the Methods section, since we analyzed the
DMN using FC in the alpha band wherein such fast temporal
fluctuations are inaccessible, this is compatible with our simu-
lated zero time lags. On this basis, we can thus speculate that
the putative spontaneous linear and “zero-lag” correlations of
the DMN essentially reflect its inner-directed nature, and their
absence in other RSNs, their outer goal-directed nature. This
insight highlights a novel aspect of the functional dynamics of
the electrophysiological DMN in the resting state.

4.3. A practical guideline for DMN resting-state studies
The successful identification of PMC connectivity by MNE

and its loss with the LCMV Beamformer have a very practical
implication for the methodological choices to make in studies
dedicated to the electrophysiology of the DMN (and more par-
ticularly of the PMC). Namely, we recommend that such en-
deavors reconstruct brain FC based on MNE or close variants

rather than on LCMV Beamformer. This is analogous to the
guidance offered by Hincapié et al. on coherence-based FC
analysis (Hincapié et al., 2017), which our present work ex-
tends to the orthogonalized power envelope correlation tech-
nique. Consistent with our guideline, the MEG studies that
identified the PMC as a core hub for dynamic brain integration
did rely on a version of MNE (de Pasquale et al., 2012, 2016).

This simple message may have a profound impact on the field
because of the critical role of the DMN in the human brain.
This holds especially true for the PMC itself, which is singled
out as a major cortical area for both structural and functional
connectivity (Leech and Sharp, 2014) and as one core dynamic
integrator of other RSNs (de Pasquale et al., 2012, 2016), and
thus plays a pivotal role in healthy brain functioning. This
multifaceted centrality of the PMC explains its prominent in-
volvement in a wide spectrum of major neurological and psy-
chiatric disorders (Leech and Sharp, 2014). Abnormalities in
PMC activity and its interactions within the DMN have indeed
been consistently reported in relation with traumatic brain in-
juries, epilepsy, multiple sclerosis, and neuropsychiatric disor-
ders such as schizophrenia, autism, attention deficit hyperac-
tivity disorders, or depression (Fox, 2010; Leech and Sharp,
2014). The reason is presumably that those PMC/DMN ab-
normalities are merely epiphenomena induced by connectional
diaschisis (i.e., a loss or change of FC between brain areas con-
nected to a distant, but lesioned, brain area), since brain hubs
are more likely to be affected in any network-level disorder
(Buckner, 2005). However, this consistent involvement of the
PMC might bring novel insights into the pathophysiology of
fundamentally distinct brain disorders and to novel diagnostic
or prognostic procedures in the future. The PMC and the DMN
are also directly impaired in neurodegenerative disorders such
as Alzheimer’s disease, which have been related to prominent
amyloid and tau protein depositions in the PMC and the other
areas of the DMN (Buckner, 2005; Park et al., 2014). Impor-
tantly, in this pathological situation both neurometabolism and
neurovascularisation are affected (Hampel et al., 2011), hence
making it more crucial to estimate DMN functional interactions
by proper electrophysiological methods. Considering the in-
creasingly aging population worldwide, Alzheimer’s disease is
bound to become the major health challenge of the 21st cen-
tury, with weighty social and economic impacts (Hampel et al.,
2011). In this context, the ability to investigate non-invasively
the electrophysiology of PMC connectivity within the DMN as
well as its dynamic cross-network FC appears essential. There-
fore, our study should prompt future studies along these lines
of research to consider MNE rather than LCMV Beamformer
for the reconstruction and analysis of DMN functional connec-
tivity.

Still, a systematic usage of both reconstruction methods may
also prove worthwhile to investigate possible modulations of
within-DMN linear synchrony in brain disorders. Actually, to
the best of our knowledge, our study is the first to provide sci-
entific conclusions about neurophysiology based on a compari-
son of distinct source reconstruction methods and usage of their
analytical properties. As such, it demonstrates the general po-
tential of this approach to generate novel insights about human
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brain functional dynamics.
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Supplementary material

S1. Robustness of empirical results against precise seed posi-
tioning

To confirm that our results depicted in Fig. 1 are not specific
to our particular choice of seed location within the mPFC, we
generated similar seed-based FC maps with the original seed
moved 1 cm forward and backward along the three MNI co-
ordinate axes. The six resulting sets of maps are depicted in
Fig. S1. The topographies appeared essentially unaffected by
seed translations, so that our qualitative results described in the
main text stand.

S2. Robustness of empirical results against precise choice of
DMN regions of interest

Similarly, we checked that the particular size and location
of the ROI masks used in Fig. 2 were not determining factors
for our statistical analyses of the reconstruction- and system-
type effects. We thus repeated our analysis by replacing the
full-sized parcels by half-sized parcels (i.e., by modulating the
threshold applied to the weighted ROI maps), or by translating
the parcels by 1 cm both forward and backward along the MNI
coordinate axes. We then repeated the two-way ANOVA on
each of the eight resulting FC matrices. The significant main
effect of reconstruction on the mPFC-PMC coupling estimate
subsisted in all cases (F1,56 ≥ 33.4, p ≤ 3.5 × 10−7, uncor-
rected), as well as the absence of significant system type or
interaction effect on this coupling (F1,56 ≤ 1.1, p ≥ .3). No
other connection disclosed any significant effect (F1,56 ≤ 4.95,
p ≥ .03). Therefore, our results reported in the main text are
unaffected by the precise size and location of the ROIs used.

S3. Impact of source-space grid resolution on the mPFC-PMC
coupling estimate

To exclude the possibility that the LCMV Beamformer-
specific absence of FC between mPFC and PMC was not due
to a source sampling bias, we used a 2-mm regular grid to
estimate the FC of the DMN. The resulting mPFC-based FC

maps were essentially unaffected, even those obtained with the
LCMV Beamformer (Fig. S2, top). Comparing the LCMV
Beamformer-based mPFC-PMC coupling estimates with the
coarse and fine grids (Fig. S2, bottom) did not reveal any dif-
ference in either of the system types (t14 < .3, p > .75).

S4. Impact of one-dimensional source projection on connectiv-
ity estimation

The FC pipeline used here relied on point source estimates
projected onto their direction of maximum variance (as in, e.g.,
Brookes et al. 2011 and Wens et al., 2014), so as to estimate
their Hilbert envelope and correlate them. However, this ap-
proach discards a substantial part of the source variance. In
our data, the mean fraction of variance (across sources, sub-
jects, and MEG systems) retained by the principal component
was 67% for MNE and 70% for the LCMV Beamformer. Other
pipelines consider the correlation between band-limited power
estimated as the squared Euclidean norm of three-dimensional
sources (as in, e.g., de Pasquale et al., 2010; 2012). However
these two approaches lead to very similar results, at least for
resting-state FC. For example, we re-estimated using the lat-
ter method the FC between mPFC and PMC, which is key to
our results, and found remarkably similar values with our one-
dimensional source estimates in any of the four combination of
reconstruction and system (t14 < .5, p > .62).

S5. Necessity of increased PMC variance in point-like PMC
simulations

In the point-like simulations of the DMN discussed in the
main text, we boosted the variance of the PMC signal by a
subject-specific factor related to its cortical depth relative to
that of the TPJs. The rationale for this is that activity from
deep sources contributes less to the sensor signals due to their
larger distance to the sensors array. We illustrate the neces-
sity of this PMC boost by repeating the simulation shown in
Fig. 3A, except that the PMC was either absent (Fig. S3, left) or
of variance equal to that of the TPJs (Fig. S3, middle). In both
cases, the PMC was completely absent from the seed-based FC
maps. Boosting the PMC signal is thus necessary to make it
contribute (Fig. S3, right). Because the simulation considered
here did not include any linear, “zero-lag” correlation, this ob-
servation holds equally well for both MNE (Fig. S3, top) and
the LCMV Beamformer (Fig. S3, bottom).

S6. Establishing network-independent FC reduction with the
LCMV Beamformer

To illustrate the observation that the global FC reduction due
to the LCMV Beamformer is independent of brain network ac-
tivity, we considered a pure noise simulation wherein no DMN
node was active. The results are illustrated in Fig. S4. To-
pographical maps for both MNE and LCMV Beamformer ap-
peared random, as expected. However, the average FC value
was twice as large when using MNE than LCMV Beamformer.
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Figure S1: Stability of seed-based DMN topography under seed translation. The mPFC-based FC maps derived with two reconstruction algorithms (MNE and
LCMV Beamformer) and two MEG system types (Elekta and CTF) are shown for the original seed location (top row, see also Fig. 1) and for an mPFC seed
translated 1 cm forward (+) and backward (−) along the X, Y , and Z axes of the MNI coordinate frame. For example, the row denoted X+ corresponds to the original
seed translated by 1 cm to the right.

11



M. Sjøgård et al. NeuroImage 200 (2019) 221–230

Figure S2: Effect of precise resolution of source space grid on LCMV
Beamformer-based connectivity. A: mPFC-based envelope FC topographies
for both MEG system (Elekta and CTF) and grid spacing (2 mm vs 5 mm). B:
Boxplots showing the corresponding mPFC-PMC coupling estimates.

S7. Necessity of bi-laterality for the linear PMC-TPJ coupling
in point-like PMC simulations

We argued in the main text that the point-like PMC sce-
nario required a bilateral PMC-TPJ correlation in order to re-
produce the LCMV Beamformer-specific reduction of FC with
the PMC, while preserving FC with both left and right TPJs. To
illustrate this, we consider here a similar simulation based on a
unilateral correlation between the PMC and the left TPJ. Specif-
ically, the PMC and left TPJ signals were identical and linearly
independent from the right TPJ signal. The resulting seed-based
FC map clearly shows a LCMV Beamformer-specific disap-
pearance of both the PMC and the left TPJ, and preservation
of the right TPJ (Fig. S5).
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Figure S4: Establishing network-independent reduction of FC with the LCMV
Beamformer. The mPFC-based FC maps built with two reconstruction algo-
rithms (MNE and LCMV Beamformer) were generated using a pure noise sim-
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like PMC simulations. The mPFC-based FC maps built with two reconstruction
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