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Abstract

Neuroimaging techniques such as MRI have been widely used to explore the associations
between brain areas. Structural connectivity (SC) captures the anatomical pathways across
the brain and functional connectivity (FC) measures the correlation between the activity of
brain regions. These connectivity measures have been much studied using network theory
in order to uncover the distributed organization of brain structures, in particular FC for
task-specific brain communication. However, the application of network theory to study FC
matrices is often “static” despite the dynamic nature of time series obtained from fMRI. The
present study aims to overcome this limitation by introducing a network-oriented analysis
applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics.
Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the
statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-
EC as well as input properties (similar to local excitabilities). The network analysis is then
based on the Green function (or network impulse response) that describes the interactions
between nodes across time for the estimated dynamics. This model-based approach provides
time-dependent graph-like descriptor, named communicability, that characterize the roles
that either nodes or connections play in the propagation of activity within the network. They
can be used at both global and local levels, and also enables the comparison of estimates
from real data with surrogates (e.g. random network or ring lattice). In contrast to classical
graph approaches to study SC or FC, our framework stresses the importance of taking the
temporal aspect of fMRI signals into account. Our results show a merging of functional
communities over time (in which input properties play a role), moving from segregated to
global integration of the network activity. Our formalism sets a solid ground for the analysis
and interpretation of fMRI data, including task-evoked activity.

1. Introduction

The study of the brain network has attracted much attention in recent years as a collective
attempt to understand how distributed and flexible cognitive functions operate. A large body
of data-driven studies has focused on the interpretation of brain connectivity measured by

s structural and functional magnetic resonance imaging (sMRI and fMRI, respectively); for a
review see [I]. A particular focus [2] has been on the relationship between the structural con-
nectivity (SC), which is the architecture of connections between brain regions, and functional
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connectivity (FC), the correlation structure of the observed fMRI//BOLD activity. Initially,
SC and FC were investigated using statistical descriptors designed for graphs such as the

1 degree distribution and clustering coefficient [3, 4, [5]. Brain areas can then be characterized
such as highly connected hubs that are hypothesized to centralize information distributed
across the brain [6] [7]. Following, the concept of communicability was proposed as a model
of interactions in a graph to link the network structure to the pairwise functional associations
of nodes [§]. In essence, graph communicability takes into account indirect paths —not only

15 shortest paths— in the definition of interactions between pairs of nodes, which is important
to evaluate global effects in recurrently-connected networks [9]. It has then been used to
derive measures that describe the roles for nodes in networks [I0] and to define a version
for centrality in graphs [I1] [12]. In the context of neuroimaging, graph communicability has
been applied to evaluate the contribution of SC topology in generating FC [I3]. However,

2 graph theory is often applied in an off-the-shelf manner and this type of approach is limited
for explaining the time-series nature of the fMRI measurements.

In this context the present study aims to describe the fMRI-related functional associations
between the nodes in the brain network, also known as regions of interest (ROIs), while
properly taking time into account. We follow recent works that employed dynamic models of

2 the brain activity to link SC and FC [I4]. A great variety of network designs has been explored
to combine experimental data in various levels of detail [15, 16}, [17, 18, [19] 20]. These dynamic
models typically involve a connectivity matrix that describes how the activity propagates in
the network. This should be contrasted with another active line of research focusing on
the ‘dynamic FC’ that relies on sliding time windows to capture the statistical (functional)

» dependences between ROIs on the timescale of a minute [2I]. The statistical analysis of these
successive connectivity measures can lead to the definition of “states” for the whole network
or ROIs [22] 23] 24] 25]. Recently, the transitions between the obtained states defined as
correlated patterns have been studied using hidden Markov models (HMMs) to generate
BOLD activity [26]. A common aspect for the second type of studies is the representation of

s BOLD signals as independent “static” snapshots corrupted by noise, without considering the
transition between successive BOLD activities (akin to time-lagged correlations). Instead,
we aim to address this limitation by providing a network-oriented analysis that takes into
account the propagating nature of BOLD signals.

Definition of integration measures have been proposed to quantify how nodes in the

o network exchange information at the scale of the whole network, thus building a global
workspace [27, 28]. Previous definitions of integration have focused on the similarity as
measured using mutual information or the cross-correlation between the observed activity
of subgroups of nodes in the network [29, [30, B1I]. The resulting ‘network complexity’ of
the network activity reflects the superposed contribution of hubs and network motifs such as

s modules [32]. Moreover, when network analysis is used with generative models to interpret the
collective pattern of interactions between ROIs or quantify integration, it is most often applied
on the model activity, such as the model dynamic FC to take time into account [33] 34} [35].
Therefore, it can be argued that these previously-proposed measures for integration focus on
the observed or generated activity rather than their causes. To explore this point we will

so compare network analyses based on the ROI correlation pattern and based on measures of
the causal interactions between ROIs in a model.

We present a model-based approach that focuses on the effective connectivity (EC) instead
of the FC or SC as a basis for network analysis. The rationale is the following: The dynamic
model is an assumption (a prior) about the spatio-temporal structure of the empirical time

55 series and the estimation is a “projection” of the BOLD signals on the space of model
parameters. The tuned model can then be used to examine the interactions between the
brain regions, via its Green function that quantifies the network response to impulse in
given ROIs. Doing so, we incorporate the temporal dimension in the network analysis as
EC captures the BOLD dynamics. To illustrate our framework, we use the multivariate

oo Ornstein-Uhlenbeck (MOU) process. Its connectivity, which we term MOU-EC, measures
the directional interactions between ROIs in generating the model BOLD activity, while
assuming stationarity [I8], B6]. The mathematical tractability of the Green function for the
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MOU process allows for an intuitive interpretation of the MOU-EC in terms of interactions
across time between the brain regions [37]. This provides a consistent analysis based on the
es same network dynamics from the estimation to the interpretation, in contrast to previous
formalisms that applied “artificial” dynamics on static networks obtained from neuroimaging
data [38, 39 [0, 8, 10]. Although the present study uses MOU-EC, we stress that our
framework can be used with other models provided their Green function can be evaluated
(e.g. linearized dynamic causal model [41]) or any directed connectivity matrix that could be
70 calculated for brain networks as with Granger causality analysis [42] [43] 44]. The relationship
between MOU-EC and other approaches are presented in Methods and further discussed at
the end of this paper.
After recapitulating important points about the MOU-EC estimation from BOLD sig-
nals [I8], we present in Methods the formalism to analyze complex network dynamics with
75 linear coupling [37]. It is based on a core graph-like measure for the interactions between
brain regions across time, “dynamic” communicability, which serve as the basis for multivari-
ate descriptors. We illustrate the framework using resting-state fMRI and diffusion MRI of
the ARCHI database acquired by the European project Connect [45], 46] and available from
the Human Brain Project Neuroinformatics platform. In particular, we show how communi-
so cability provides a finer and more general description of the network dynamics —by capturing
the propagation of the BOLD signals throughout the whole network via EC— than classical
analysis based on FC or SC. At the end, we perform community analysis and show how the
network displays integration of information, first locally and then globally.

2. Methods

ss  2.1. Acquisition of resting-state fMRI time series and structural connectomes

The analyses were applied to the ARCHI database [45, [46] composed of 77 subjects (32
females, mean age 23.65 years, with standard deviation 5.16) with high quality T1-weighted
images and diffusion data acquired on a Magnetom TimTrio 3T MRI System (Siemens Health-
care, Erlangen, Germany). The MRI protocol included:

% e a Tl-weighted MRI scan using a MPRAGE pulse sequence with the following settings:
field of view FOV = 256 mm, flip angle FA = 9°, inversion time TT = 900 ms, echo
time TE = 2.98 ms, repetition time TR = 2300 ms, 160 slices, slice thickness TH =
1.1 mm, in-plane matrix 256 x 256, read bandwidth RBW = 240 Hz/pixel;

e a calibration fieldmap scan using a double gradient echo 2D pulse sequence with the
% following parameters: FOV = 220 mm, FA = 60°, echo times TE1/TE2 = 4.92/7.38 ms,
TR = 500 ms, 35 slices, TH = 3.5 mm, in-plane matrix 64 x 64, RBW = 200 Hz/pixel;

e a resting-state fIMRI scan using a 2D gradient-echo echoplanar pulse (GRE EPI) se-

quence with the following parameters: FOV = 192 mm, FA = 81°, TE = 30 ms, TR =

2400 ms, 40 slices, TH = 3.0 mm, in-plane matrix 64 x 64, RBW = 2442 Hz/pixel, no

100 parallel imaging option, partial Fourier factor = 1.0; each session has 244 frames for a
total scan time of 9 min 46 s.

The T1-weighted structural MRI data was processed using Freesurfer 5.3 software [47],
which performed cortical tissue (gray and white matters) segmentation, and built surface
meshes for both pial interface and grey/white interface of each hemisphere. Surface alignment

s was performed to an inter-subject template, allowing the projection of the Desikan atlas on
these anatomical meshes [48]. The fMRI final activity was obtained by averaging the BOLD
signals projected on each mesh vertex over each ROI of the Desikan atlas, see Table [1| below.

Individual SC matrices were built using Diffusion weight imaging (DWI) following the
processing steps of the Connectomist-2.0 software [49]: artifact correction, geometrical dis-

1o tortion correction, analytical Q-ball model [50], streamline probabilistic fiber tracking inside
an improved T1-based brain mask [51] using 27 seeds per voxel at the T1 image resolution
and propagation step size of 0.4 mm. Unreliable short fibers under 30 mm were removed,
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then region-to-region SC matrices could be built by counting fibers connecting regions of a
given atlas [52]. From the individual SC matrices, we calculated a generic SC matrix by
us averaging over all subjects.

The Constellation parcellation is a refinement from the Freesurfer parcellation based on
the DTI data. It subdivides each Freesurfer ROI according to the structural connectivity
profile of each ROI point such as to obtain 3 to 5 Constellation ROIs with increased SC
homogeneity [52].

120 Pre-processing of the fMRI dataset included a first step to verify the absence of any
outlier (i.e. corrupted volume by spikes, etc.). Standard preprocessing was performed us-
ing Nipype [63], including slice timing and motion correction, as in previous studies using
the ARCHI dataset [54]. The TI1-weighted scan was used as a reference and both fMRI
and fieldmap datasets were matched to this reference using a mutual-information based

s registration algorithm providing the corresponding rigid transformations T(fMRI—T1) and
T(B0—T1). Unwrapping of the phase difference map included in the fieldmap scan was
performed using a weighted full multigrid phase unwrapper algorithm that did not require
the preliminary definition of a mask of the brain, and the unwrapped phase map was then
matched to the fMRI dataset by composition of the former transformations in order to cor-

1w rect for susceptibility artifacts. Finally, bandpass filtering with [0.01 — 0.1] Hz was applied
to the signal resulting from the averaging over each ROL.

2.2. MOU process fitted on whole-brain fMRI data

A motivation for using the MOU process is because its Green function has an analytical
formulation, related to the matrix exponential [37]. The MOU process is determined by
s (i) a local leakage related to the decay time constant 7, (ii) a directed weighted matrix A
associated with linear coupling that is the MOU-EC and (iii) fluctuating inputs with zero
mean and a given covariance matrix Y. Assuming stationarity over each resting-state session,
we estimate 7, A and ¥ using a form of gradient descent performed without simulating the
network activity, but using analytical consistency equations. This optimization procedure
o has a single solution in the absence of observation noise [I§].
The following mathematical details will be useful for the calculation of our graph-like
measures. Formally, the MOU process in matrix form is defined as

dx = Jx dt + d¢, (1)

where the Jacobian matrix J is determined by the decay time constant 7 (identical for

all ROIs) and A;; is the MOU-EC weight from ROI j to ROI ¢ (different from the usual

convention in graph theory):

Jij = *% + Aij; (2)
here 6;; is the Kronecker delta (equal to 1 when ¢ = j and 0 otherwise). Similar to a transition
matrix for a Markov chain, the matrix A determines the Jacobian of the dynamic system.
The time constant 7 is an abstraction of the hemodynamic response decay. The choice of
a single time constant 7 for all ROIs, but individual for each subject, comes from the data,

us  which exhibit a smaller variability across ROIs than across subjects (not shown here). Last,
the fluctuating input to ROI 4 is denoted by (; and represents spontaneous activity. It is
modeled as a Wiener process (temporally white noise) with covariance matrix ¥. Here ¥ is
kept diagonal, meaning that (; are independent white noise, but in general it may also involve
cross-covariances [36]. To ensure stable dynamics, the Jacobian J must have eigenvalues with

10 strictly negative real part. In particular, the dominating eigenvalue (or spectral diameter) of
the weight matrix A needs to satisfy Apnax < —1/7, meaning that the local leakage must be
sufficiently quick (or strong) compared to the global network feedback.

The MOU-EC weights A;; come from the tuning of the model to reproduce the spatio-
temporal structure of the BOLD signals, which is simply the pair of covariance matrices FC0

155, and FC1 in Fig. , without and with a time lag equal to 1 TR (temporal resolution of the
BOLD measurements). The Lyapunov optimization (akin to a gradient descent) iteratively
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Table 1: List of the 34 ROI labels for the Desikan parcellation [48]. The order of Fig. , from bottom to
top. The parcellation has 1 such ROI for each hemisphere.

Label | Description

CUN cuneus

PCAL | pericalcarine gyrus

LING | lingual gyrus

LOCC | lateral occipital cortex

FUS fusiform gyrus

BSTS | bank of superior temporal sulcus

1T inferior temporal cortex
MT middle temporal cortex
ST superior temporal cortex
TT transverse temporal cortex
TP temporal pole

PCUN | precuneus

SMAR | supramarginal cortex
1P inferior parietal cortex
SP superior parietal gyrus
PARC | paracentral gyrus
PREC | precentral gyrus

PSTC | postcentral gyrus

ENT entorhinal gyrus

PARH | parahippocampal cortex

INS insula

CAC caudal anterior cingulate cortex
RAC rostral anterior cingulate cortex
PC posterior cingulate cortex

ISTC isthmus of of cingulate cortex
SF superior frontal cortex

CMF caudal middle frontal cortex
RMF rostral middle frontal cortex
POPE | pars opercularis

PORB | pars orbitalis

PTRI | pars triangularis

LOF lateral orbitrofrontal medial cortex
MOF medial orbitrofrontal medial cortex
FP frontal pole
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a) From empirical BOLD signals to spatio-temporal FC (covariances matrices)
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Figure 1: MOU-EC estimation. a) From the fMRI signals (left plot), the covariance matrices FCO
and FC1 are calculated, represented in blue and green respectively. FCO is the zero-lag covariance and FC1
corresponds to a time shift of 1 TR. b) Topological mask for existing connections in the model obtained from
thresholding the average SC over subjects. ¢) The network parameters comprise of the MOU-EC matrix A
(red arrows in the left diagram) and self-inhibition corresponding to the time constant 7 (blue arrows), see
Eq. . Note that A is not a full matrix, because its topology is determined by the mask obtained from SC
in panel b. In addition, the local excitabilities or inputs (purple arrows) are determined by their covariance
matrix X. Here only 4 ROIs are represented for readability. In this paper the focus in on the estimated
MOU-EC matrix, corresponding to matrix A in Methods, as well as the leakage time constant 7 involved in
Eq .. For each session, A is estimated from the covariance matrices FCO and FC1, capturing the average
BOLD transition statistics over the session (assuming stationarity). Further details about the dynamic model
and estimation procedure can be found in previous studies [I8] [36].
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adjusts the weights A;; for each existing connection, the variance 3;; for each ROI and a
common 7 for all ROIs to reproduce the covariances of fMRI signals involving time shifts
(empirical FC matrices). The optimization steps are repeated until reaching a minimum in

1o the model error, which is the matrix distance between corresponding model and empirical
FCO/FC1. Details can be found in previous papers [I8, B6]. Note that we use simplified
notation for compactness here, as compared to those previous publications.

The estimated MOU-EC is in general a directed and weighted matrix [I8]. EC is also
“sparse” with density 34%, corresponding to 1562 non-zero elements among the N(N —1) =

165 4556 off-diagonal matrix elements. Its topology —which interregional connections exist in
the model— is determined by thresholding the average SC matrix for all subjects described
in the previous section. This reduces the number of parameters (including 68 for ) and
improves the robustness of the estimation as each session has 244 x 68 = 16592 time points
over all ROIs. Importantly, the individual values of the estimated MOU-EC weights do not

o depend on SC values, but are determined by the optimization procedure for the model FC
that best reproduces the empirical FC.

The model optimization approach contrasts to previous studies that used SC values for the
connectivity weights in their model, while tuning local dynamics such as Kuramoto oscillators
or mean-field approximation of spiking neurons [55], 56, [I7]. Our estimation procedure can

s be seen as a “projection” of the empirical spatio-temporal BOLD structure on the space of
model parameters, where MOU-EC captures the propagating nature of the BOLD signals.

We use the EC terminology that originates from electrophysiology and was developed by
the literature of dynamic causal model. In our case MOU-EC is the underlying connectivity
in a generative dynamic model of BOLD activity, which corresponds to a historical key

1o aspect of the EC concept. However, our model does not involve the hemodynamic response
and differs from state-space models such as the dynamic causal model that separates the
neural network and the generation of BOLD activity [15], [57]. The limitations of MOU-EC
estimation compared to other methods will be reviewed in the end of the Discussion.

2.8. Dynamic communicability to measure interactions between ROIs across time

185 Following our previous paper [37], we define dynamic communicability to characterize the
network interactions induced by its weighted and directed connectivity A, ignoring the input
properties 3. Our definition is adapted to study complex networks associated with realis-
tic (stable) dynamics where time has a natural and concrete meaning, with the Jacobian J
combining A and the leakage time constant 7. In comparison, a previous version of commu-

w0 nicability for graphs [8] relied on abstract dynamics. From the graph communicability e
based on the matrix exponential, the strengths Y, (e?);; and 3° ; (e?);; were used to evaluate
the roles for nodes as broadcasters or listeners in the network [I0]. The diagonal elements
(e*)s quantify the feedback received by a node from its own abstract “activity” and was
used to define centrality [11]. Getting inspiration from those studies, we base our framework

s of dynamic communicability on the Green function (or network impulse response) to per-
turbation for the MOU process, focusing on the temporal evolution of such interactions (see
dashed arrow in Fig. ) The present study uses the MOU process because of its analytical
tractability, but our framework can be applied to any local dynamics for which the Green
function is known.

Dynamic communicability measures the network response when applying a perturbation
to a given node (node 1 in Fig. 2h). Importantly, communicability excludes the “intrinsic”
relaxing response due to the local leakage to focus on the contribution of the connectivity
A to the network response, see the zero communicability for node 1. Note that the strong
weight from node Ass from node 2 to node 3 gives to a strong communicability between 1
and 3, even though As; is small. For recurrent networks, the existence of feedback loops
gives a positive communicability for a node onto itself; see the green and blue curves in the
top and middle configurations in Fig. @b. For the MOU process, communicability is the
“deformation” of its Green function e’* due to the presence of the matrix A (dashed curves),

JOt

as compared to the Green function e” * corresponding to the Jacobian with leakage only and
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a) Concept of dynamic communicability
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Figure 2: Concept of dynamic communicability. a) Communicability for three nodes relies on the
response of the network to a unit perturbation at a given node (here node 1). The dynamics are determined
by local leakage related to the time constant T and the connectivity weights A (left diagram). In the right plot
the total response of the is represented in dashed line and the “intrinsic” response due to leakage only in dotted
line, corresponding to J° in Eq. . The communicability C(t) is the difference between these two curves. b)
The left diagram represents a network of two nodes with recurrent connections. The communicability C(t) is
a 2 X 2 matrix with 4 elements (see green, blue, purple and cyan arrows in the right diagram). The bottom
plots comparison the communicability for two network configurations. Note that the blue and green curves
are superposed. ¢) Total communicability S€(¢) in Eq. and diversity D€ (t) in Eq. for both networks.
The solid curves correspond to the balance network and the dashed curves to the unbalanced one.
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no connectivity, ij = —9;;/7 (dotted curves). It corresponds to the family of time-dependent
matrices (see also Fig. [3p in Results):

c(t) = ||l70l|(e”t — &) . (3)

20 Recall that ¢ > 0 here is the time for the propagation of activity in the network, referred
to as ‘integration time’, which is different from the time in Eq. . The scaling factor
1Y =1l [0 eJOtdtH where || - || is the L1-norm for matrices (i.e. sum of elements in
absolute value) is used for normalization purpose, e.g. when comparing networks of distinct
sizes [31].

From each matrix C(t), we define the total communicability that sums all interactions

SC(t) =Y Ci(t) . (4)
{i.5}

Total communicability measures the effect of a common perturbation at all nodes after the
integration time t, reflecting the global network feedback determined by the matrix A. It
relates to eigencentrality as the function S€(¢) is mostly determined by the largest eigenvalue
of A [37]. We also define the diversity (or heterogeneity) among the ROI interactions in the
time-dependent matrices C(t), which can be seen as a proxy for their homogenization over
time:

DE(L) = 0ij3(Cij (t)] , (5)

fiig3 Cij (1)]

s defined as a coefficient of variation where py; j1 and oy; ;3 are the mean and standard de-
viation over the matrix elements indexed by (7,7). In Fig. [2b the top configuration has the
same communicability from node 1 to node 2 (in purple) as from 2 to 1 (in cyan), because
the corresponding weights in A are identical. For the unbalanced connectivity in the bot-
tom configuration, the communicability from 1 to 2 is larger than the converse. Because

20 both network configurations have the same sums Ao + Aoy, they have very similar total
communicability S¢(t) in Fig. , but distinct diversity DC(¢).

2.4. Community detection

To detect communities based on communicability, we rely on Newman'’s greedy algorithm
for modularity [68] that was originally designed for weight-based communities in a graph.
Adapting it here to the matrix C(t) at a given time ¢, we seek for communities where ROIs
have strong bidirectional interactions. In the same manner as with weighted modularity, we
calculate a null model for EC:

ainaoutJF

Anull _ SA . (6)
Note that we preserve the empty diagonal. The resulting matrix contains from the expected
weight for each connection, given the observed input strengths a™ and output strengths
a°"; S4 is the total sum of the weights in A. Then we caclulate C*"!(¢) using Eq. with
A instead of A. Starting from a partition where each ROI is a singleton community, the
algorithm iteratively aggregates ROIs to form a partition of K communities denoted by Sy
that maximizes the following quality function:

o= 3 Y (-, + (e - ), (7)

1<k<K i,jESk

At each step of the greedy algorithm, the merging of two of the current communities that
maximizes the increase of ® is performed.
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a5 3. Results

This section uses our definitions of dynamic communicability to interpret resting-state
fMRI data (see Fig. [Bp). The data were recorded from 77 subjects during 244 frames each
separated by a TR = 2.4 s with eyes closed in a scanner. Our framework relies on a dynamic
system and, for illustration purpose, the present study uses our recent optimization to fit

20 the MOU model to BOLD signals [I8, [36]; the python code is available on |github.com/
MatthieuGilson/WBLEC_toolbox). This model optimization combines several key aspects
that are developed in Methods:

e A whole-brain approach [I6] is necessary to properly take into account the distributed
nature of information conveyed by BOLD signals, as was experimentally observed for
225 high-level cognition [59] or neuropathologies [60].

e The MOU process is optimized to reproduce the spatio-temporal structure of the BOLD
signals, which was shown to convey information about the behavioral condition of
subjects [61], [62] [63]. This contrasts to traditional analyses of the “spatial” FC, which
does not involve time lags.

230 e The optimization combines information from both FC and SC data in estimating the
MOU-EC [18], which is then subject/condition-dependent with a “sparse” topology
corresponding to the anatomy.

e In the model the directional connections between brain regions describe causal interac-
tions between ROIs. However, the hemodynamic response is not explicitly modeled in
235 our MOU process, which will be discussed later.

The use of whole-brain directional connectivity is the feature that makes the application of
dynamic communicability interesting. Another motivation fo use of MOU-EC is that the
leakage time constant 7 that is part of the Jacobian J in Eq. is jointly estimated during
the model optimization. In contrast, taking SC or another directed connectivity matrix (e.g.
20 obtained using Granger causality) as matrix A in J to use Eq. would require an arbitrary
choice for 7, because they are not estimated with the dynamic model. Note also that the
heterogeneity of the ¥ estimates (see purple arrows with various thicknesses in Fig. ) is
ignored in the present analysis and left for future work.
We firstly show how communicability provides information about the topology of the
25 estimated MOU-EC (leaving out the estimated input variances X), from the global level of
the whole network to the local level of individual connections or ROIs, including the detection
of communities of ROIs.

3.1. Communicability provides both global and local information about the brain network

In the present formalism, communicability is the family of matrices C(¢) in Fig. |3p that
250 describe the interactions between pairs of ROIs across time. In each matrix C(t), a column
measures how a unit perturbation applied at ¢ = 0 to the corresponding source ROI propa-
gates throughout the network via the recurrent MOU-EC and impacts the other target ROIs
after a delay ¢ (termed ‘integration time’) during which the network effect builds up. The
theory is based on the Green function or impulse response of the network, see Eq. in
5 Methods. This directed measure thus integrates all possible pathways between the source
and target ROIs, while taking the nodal dynamics of the model into account (here a expo-
nential decay related to a time constant 7, see Fig. ) For the resting-state, perturbations

are the fluctuations at each ROI, whose effects sums over time.
Initially aligned with MOU-EC (i.e. interactions through the strong direct connections
20 dominate), the pattern of communicability progressively reshapes and the superiority of
connections with strong weights dilutes, as illustrated in Fig.[Bp. In particular, unconnected
regions may have strong communicability due to network effects (see crosses for A;; = 0 on
the left of the plots). This homogenization results from the superposed loops in the MOU-EC
matrix that generate a strong overall feedback that distributes the effect of the fluctuations.

10
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Figure 3: Whole-brain communicability. a) Communicability for a single subject, corresponding to the
family of matrices C(t) in Eq. that involves the matrix exponential of the Jacobian multiplied by time
t > 0. Recall that ¢ corresponds to the integration time for fluctuating activity in the network. The range is
the same as the MOU-EC matrix in panel a. b) Match between MOU-EC and communicability for each pair
of ROIs (red crosses) at three times for the same subject as in panel b. ¢) Total communicability S¢ defined
as in Eq. reflects the global network feedback. The x-axis represents the integration time in units of the
scanner measurements (time resolution, or TR, equal to 2 s). The curves correspond to the average over the
77 subjects and the error bars the standard deviation. Diversity of communicability D¢ defined as in Eq.
that quantifies the homogenization of interactions across time.
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265 The strong network feedback is reflected in the total dynamic communicability S¢ in the
top panel of Fig. Bk, which rises to reach a maximum around 7 TR, before decaying very
slowly. The integration time of the peak corresponds to the lag after which a perturbation
in the network (here affecting all nodes) has the maximum influence (given by the size of
the peak), due to the building up of the network effect. The slow decay afterwards indicates

oo that the effect persists over time. The homogenization is reflected in the communicability
diversity D¢ (bottom panel) that quickly decays to stabilize after 15 TR. This defines the
temporal horizon after which the effect of perturbations are most broadly distributed across
the network. Note that, meanwhile, S€ is still high. These curves provide a signature for the
estimated MOU-EC, which can be analyzed to uncover its topological properties.

as - 3.2. Comparison with reference networks

Communicability enables the quantitative comparison of the estimate for brain dynamics
with other reference network models. Here we compare the global measures of total com-
municability S¢ and its diversity D€ in Fig. to their counterparts for surrogate networks
obtained by manipulating the MOU-EC estimates. The comparison between the timescales

280 associated with the corresponding curves provides insight about equivalent topologies to gen-
erate dynamics similar to the model estimates. Topological properties such as strong feedback
and short path length are reflected in S¢ and D¢ [37].

In Fig. , the evolution of S¢ and D€ for the original data (red curves) is compared with

four surrogate models:

285 e The random surrogate in Fig. reallocates the weights to a pair of ROIs. The exact
weight distribution is conserved in the network, but not for each ROIs.

e The null model in Fig. |4b was proposed for Newman modularity [58] to detect commu-
nities and corresponds to resulting a full matrix with for each pair of ROIs the expected
weight that preserves the distribution of input and output strengths over each ROI, see

200 Eq. @ for details.

e The ring surrogate in Fig. (left matrix) reorganizes the input connections for each
ROI to promote local connectivity with a ring topology determined by the index of the
ROIs. In this arbitrary topology, distant ROIs are not directly connected.

e The shortened ring in Fig. 4c (right matrix) is similar to the previous ring surrogate,
205 but with pooling every 3 input connections, resulting in lower density (by a factor 3).

In each case, the shuffling of the original estimate is performed for each subject and the

average over subjects is then calculated. Importantly, these surrogates all destroy parts of

the statistics of the original weight distribution in the estimated A in a specific manner while

preserving others. They all preserve the total weight in A, which is the lst-order moment

w0 of the weight distribution, and leave the diagonal empty. For example, the random and

ring surrogates both preserve the connectivity density (1st-order of the overall distribution

for the binarized weight matrix) as they topologically reallocate weights from connection to

connection in a one-by-one mapping, but only the ring surrogate preserves the original sum

of input weights for each ROI. This is summarized in Table [2] where the mean input and

ss  output weight per ROI, which is the first order of the weight distribution “projected” in one

dimension of the weight matrix. Note that each surrogate also destroys the second-order
statistics, corresponding to the joint distribution of weights for pairs of ROlIs.

The random surrogate (dark blue curve) exhibits a smaller values for S¢ and a homoge-

nization slightly after 20 TR, but at a lower asymptotic value for D€. The ring surrogate (dark

20 cyan curve) destroys the local loops and clusters, which decreases S¢ even more strongly than

for the random surrogate. In our previous theoretical study, we used ring lattice to study

how communicability captures the small-worldness in networks, which corresponds to a quick

stabilization of D¢ compared to the timescale of S¢ [37, Fig. 6]. Here the estimated MOU-EC

exhibits a profile for D¢ that is much closer to the random surrogate than the ring lattice,

as  indicating that the fluctuating activity quickly propagates throughout the whole network.

12


https://doi.org/10.1101/421883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/421883; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

a) Randomized shuffling b)  Newman null model

68 ; 68
Al aj"aj™
x Avdh — x e
3 st 8
£ £ i
g a(;"' al 2
= J i - fye—
[ [
= 2
: @P@, i
1 1
1 68
source ROl index source ROl index
¢) Ring surrogates .
Shortened ring
68 —a 68
X x
[ [
© el
£ £
o o)
=4 4
@ @
= =
8 8
o
1 1
1 68 1 68
source ROl index source ROI index

e

Comparison with surrogate models

—_— > [———e——
2 0.4 1 B3
= o
Q 2
S °
2 I random > 2
g ring =
g 0.2 1 short ring -g \
: null g 14
3 1S ~———
8 £
]
OO T T 1 0 T T
0 20 40 60 0 20 40 60
integration time (TR) integration time (TR)

Figure 4: Comparison of the estimated model with surrogates. a) Randomized version of the
estimated matrix A by globally shuffling the target ROIs. The range of the matrix (as well as others in this
figure) is the same as in Fig. . b) The null-model connectivity is calculated using Eq. @ redistributes the
weights while preserving the input and output strengths for each ROI. This results in a full matrix, apart
from the empty diagonal. c¢) The ring surrogates consider the initial ROI order and reallocate the non-zero
weights in the original A to the preceding ROIs. The ring preserves the number of connections (hence the
density), whereas the shortened ring corresponds to grouping connections three by three, resulting in fewer
connections. d) The total communicability SC and the corresponding diversity D€ in red are the same as
in Fig. , but the error bars indicate the standard error of the mean here (much smaller than the standard
deviation). The colored areas correspond to the surrogate networks in panels a to ¢, which preserve part of the
connectivity statistics of the original A (see Table. The transformations being applied individually for each
subject. The variability of the curves (represented by the thickness of the plotted area) corresponds to the
standard error of the means over subjects, as error bars for the red curve. The dark red bars over the curves
indicate the integration times where the model is significantly different from all surrogates, as measured by
the Mann-Whitney test for which the p-value is smaller than 0.001 for all 4 comparisons (uncorrected).

Table 2: This table shows which properties of the original network are preserved (v') or randomized (X) by
the surrogates.

‘ Property ‘ random ‘ null ‘ ring ‘ short ring ‘
Mean weight v v v v
In weight for each ROI X v v v
Out weight for each ROI X v X X
Density v X v X
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Because both surrogates have the same density and individual weights, this suggests a spe-
cific internal organization for the estimated EC, related to the multiple loops and resulting
in a strong network effect.
For the short ring surrogate (light cyan curve), the main difference concerns the much
20 slower homogenization for DC. This arises because shortest paths between ROIs are much
longer for the short ring (light cyan curve) than the ring surrogate (dark cyan curve). This
shows that the mean weight per ROI is not the relevant feature to understand the propagation
of activity in the network.
Last, the null model (gray curve) also has a weaker S¢, but more interesting is the
»s flat curve for D¢. This illustrates the already-homogenized (fully-connected) network for
the surrogate obtained by randomizing the second order statistics of the connectivity. This
property is the reason for its use as a baseline when performing community detection based
on communicability.
To recapitulate, the comparison of those descriptors for the estimated MOU-EC with
10 the surrogates —each specifically destroying part of the weight structure— gives insight
about how close or distant the brain network dynamics are with respect to the corresponding
stereotypical models. The dark red bars in Fig. [dd indicate statistical difference between
the model (in red) and the 4 surrogates with p-value < 0.001 (uncorrected). For S€, it
concerns late integration times when the global network feedback builds up. For D€, the
15 homogenization saturates at a high value during early integration times (and faster than the
short ring surrogate), suggesting a distinct detailed structure of the estimated MOU-EC as
compared to the surrogates. A possible explanation is the existence of modules [37, Fig. 7],
which will be further studied later using community detection.

3.8. ROI-specific analysis and comparison with SC and FC

340 The brain network structure determines a hierarchy among ROIs. For binary graphs,
the notions of degree and centrality have been used to detect highly connected ROIs, or
hubs. This type of approach has been used to explore the importance of ROIs in the brain
based on SC or FC data [6, [7, [I]. A limitation is that SC and FC do not have directional
information (i.e. they are symmetric matrices). Graph communicability [I0] can be used

us  to describe differentiated input and output properties for the ROIs. We now show how our
dynamic communicability can be used to characterize ROIs in the network and incorporating
the temporal dimension.

The overall picture obtained from MOU-EC is differentiated roles across ROIs, each
with its own amplitude (in red in Fig. [Fh) and timescale (Fig. fb). In general, ROIs have

30 distinet input and output communicability (Fig. ), thus defining listeners and broadcasters.
This relates to the propagating nature of fMRI signals, which is related to the asymmetry
of estimated MOU-EC matrices [I§] and is in line with previous results of the fMRI lag
structure [63]. Compared to our previous analyses that focused on individual MOU-EC
connections [36, 64], communicability provides a description of the ROI role over time. ROIs

s usually classified as hubs according to their high degree in SC (in black in Fig. [Fh) are
indicated by the black crosses: the precuneus (PCUN), superior frontal cortex (SF) and
superior parietal cortex (SP). PCUN and SP exhibit strong input communicability, which
classifies them as listening ROIs, integrating the activity from the rest of the brain. This is
in line with previous results that suggested an global integration role for PCUN as part of

30 the default mode network [65]. In comparison, SF has more balanced (and weaker) input
and output communicabilities. The visual ROIs (CUN, PCAL, LING and LOCC) are both
listeners and broadcasters. Other noteworthy ROIs with strong output communicability are
the pre- and postcentral ROIs (PREC and PSTC), as well as the superior temporal ROIs
(ST).

365 At the global level, previous work [66] showed asymmetries in the left and right within-
hemisphere FC patterns. In contrasts, we observe for our data a symmetric communicability
for the two hemispheres in Fig. Bld. Moreover, the communicability is initially higher within
each hemisphere (solid curves) than between hemispheres (dashed curves), but rapidly reaches
similar values around 20 TR. This points to slightly weaker inter-hemispheric communication
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Figure 5: Characterization of ROI roles. a) Temporal evolution of input and output communicability
for all ROIs (in red). The values are averages over the two hemispheres and all subjects. The ROIs are
grouped by anatomical areas and black crosses indicate the three pairs of rich-club ROIs. The dotted vertical
lines indicate the maximum for the average S over subjects in Fig. . The right plots indicates the FC
strengths (in blue) and SC degrees (in black). Here recall that FC is the classical Pearson correlation between
the BOLD signals (not covariances as in Fig. . b) The normalized time courses for input communicability
reveal a variety of timescales across the ROIs. ¢) Comparison of input and output communicability for each
ROI (red cross). The plotted value is taken at the maximum ¢ = 7 TR, indicated by the dashed vertical lines
in panel a. d) Evolution of the total communicability within and between the two hemispheres (L for left
and R for right).
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Figure 6: Comparison with information obtained from SC and FC. a) Comparison of the input

and output communicability (left and right panels in each row with dots and triangles, resp.) with the SC
degree. Each symbol represents the value for a ROI, averaged over all subjects; for communicability, it is
taken at integration time 7 TR corresponding to the dashed vertical lines in Fig. [5h. The Pearson correlation
coefficient above each plot corresponds to the average over all subjects. b) Same as panel a for empirical
FC strengths. ¢) Comparison between SC degrees and strengths with empirical FC strengths. The value
above the plot is the average over subjects of the Pearson correlation between individual input and output
communicability. d) Evolution of the Pearson statistics when varying the integration time (x-axis).

compared to within-hemispheric communication at rest. It can be explained by the differ-
ence in connectivity degree of the between/within hemispheric MOU-EC weights, as similar
curves can be obtained using the binarized MOU-EC estimate with ad-hoc rescaling (giving
the matrix in Fig. ) Our previous results based on MOU-EC indicated stronger inter-
hemispheric communication when analyzing changes of individual MOU-EC weights when
engaging a passive-visual task [36], which would be interesting to quantify at the network
level using the present formalism.

Comparing FC strengths and SC degrees with communicability in Fig. B, we observe that
the correspondence between strong values is not trivial. To further quantify this relationship,
we display these ROI-specific measures as scatter plots in Fig. [Bp-b, where communicability is
taken at the peak at t = 7 TR (dotted line in Fig. @a—b). We find that input communicability
correlates with the SC degree (dark red dots), as measured by a Pearson correlation of
0.58 (evaluated for each subject, then averaged over them). This suggests that regions
with strong input communicability have sufficiently many connections to support it. More
moderately, output communicability correlates with FC strengths (purple triangles) with a
Pearson correlation of 0.51. It is smaller than 0.35 otherwise. In comparison, the relationship
between SC and FC in Fig. [6f shows a stronger correlation (Pearson correlation of 0.66).
Even though the general relationship is positive correlations between these descriptors, our
model-based approach provides distinct information from the classical analyses based on
SC/FC alone. When varying the integration time for input/output communicability, we
see that the Pearson correlation is stable in Fig. [6{l, except for a transient peak for input
communicability and SC degree. This can be explained because of the equal sparsity between
these two matrices for early integration times.

Previous studies showed how MOU-EC weights are modulated in a task-dependent man-
ner [36, [64]. In particular, the output MOU-EC weights of hubs are down-regulated at rest

16


https://doi.org/10.1101/421883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/421883; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

w5 as compared to visual tasks [64]. This suggests that not all existing MOU-EC pathways are
used at rest, which may explain the very weak correlation of output communicability with
SC in Fig. [0

3.4. Functional communities in brain network and information integration

The high saturating value of D¢ in Fig. is also reminiscent of hierarchical networks
a0 consisting of several modules that have rather strong coupling between them, for which
the diversity stabilizes early when the total communicability is still large and close to its
peak [37, see Fig. 7 there]. To further examine this aspect, we perform a community analysis
to reveal the communication between ROI groups over time. In essence, communicability is
compared to that obtained with the null connectivity model in gray in Fig. [d ROIs with
w5 greater reciprocal communicability compared to the null model are grouped into communities,
yielding the coparticipation matrices in Fig. [Th. These matrices measure the robustness of
the communities across subjects: Well-defined correspond to dark squares on the diagonal
(after reordering the ROIs), whereas weak associations of ROIs appear in lighter gray. The

4 communities correspond to observed of resting-state networks [67), 68]:

410 e insularo-temporal and lateral frontal ROIs: CMF, RMF, POPE, PTRI, SMAR, IP,
BSTS, ST, MT, TT, INS;

e visual ROIs, precuneus and medial ROIs close to the hippocampus: CUN, PCAL,
LING, LOCC, FUS, PARH, ENT, ISTC, PCUN;

e lower frontal and temporal ROIs plus a cingulate ROI: LOF, MOF, PORB, RAC, FP,
415 IT, TP;

e sensorimotor ROIs and ROIs from the default-mode network: PREC, PARC, PSTC,
CAC, PC, SF, SP;

in the order of the diagonal blocks from the bottom left to the top right in Fig. [Th with
t =1 TR. All communities are symmetric with the two homotopic ROIs in both hemispheres.
20 The full name regions can be found in Table ]
We firstly compare the flow-based community matrices with the same algorithm applied
on FC and SC, as classically performed. The resulting community matrices in Fig. and
d (left panel) are distinct from those obtained from communicability in several aspects. FC-
based communities are less evident (with darker pixels on average), suggesting that even the
s strong overall correlations between ROIs do not adequately determine the functional com-
munities. This comes for a large part because FC is a full matrix. We quantify the similarity
between the community structures using the Pearson correlation on the vectorized copar-
ticipation matrices in Fig. [fh-c-d. For communicability at ¢ = 1 TR, this gives a Pearson
correlation of 0.09 with the FC-based communities. In comparison we obtain 0.12 between
a0 SC- and FC-based communities. SC-based communities are more similar to the flow-based
communities, with a Pearson 0f 0.54 between the coparticipation matrices. However, in each
of the 4 groups, ROIs from distinct hemisphere are separated. This underlines the importance
of the estimated MOU-EC weights, which give a different community structure compared to
SC in spite of the same topology. The right matrix in Fig. [7p displays the pairwise matching
w5 indices calculated for the (binarized) SC. The matching index [69] quantifies the fraction of
common neighbors two ROIs share and is thus often considered as a measure of “functional
similarity”. Although the matching index is based on first-neighbor interactions, it leave
the two hemispheres rather disconnectedwe find that this simplified estimate based on the
topology alone satisfactorily predicts diffusion the propagation at early times described by
wo  communicability. Our results confirm that the correlation observed between input communi-
cability and SC at the ROI level in Fig. [f] also applies to communities at the level of groups
of ROIs. In contrast, the correlation between output communicability and FC does not yield
a similar organization, with a similar low value to the comparison between SC and FC.
Another advantage of our approach is the quantitative description of the community
ws merging over time, as illustrated by the distributions of coparticipation indices in Fig. [7d.
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a) Communicability-based communities and progressive merging
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Figure 7: Communicability-based communities and homogenization of cortical activity. a)
Each matrix represents the communities of cortical regions with strong communicability for four values of
integration time ¢t. Regions are paired when they have strong bidirectional communicability between them, see
Eq. @ for details. They correspond to averages over the 77 subjects and darker pixels indicate that the two
regions (on the x- and y-axis) belong to the same community over all subjects. The region ordering is the same
for all plots and is chosen to highlight the 4 communities (dark blocks on the diagonal). The x-axis indicate
source ROIs and the y-axis target ROIs. b) Cumulative distribution of the community coparticipation values
in panel a for the 4 matrices in panel a, illustrating the merging of communities. ¢) Similar plots to panel a
with the FC-based communities. d) Similar plot (left panel) to panel a for SC-based communities obtained
with the individual matrix with DWI values, see Methods. The right panel display the matrix of matching
indices for SC, which measures the overlap between connected targets for each pair of ROIs. e) The matrices
indicate the average communicability between the 4 communities obtained at ¢ = 1 TR in panel a. f)
Robustness of community detection. The plot represents the alignment of the communities for two subsets
of 25% of the 77 subjects. Each plotted dot represents the coparticipation index that is a matrix element in
Fig.lﬂa for t = 1 TR. g) Pearson correlation coefficient between the MOU-EC of the 77 subjects, between the
mean MOU-EC over each subject subset and of the community coparticipation values (100 repetitions using
randomly 25% of the 77 subjects as in panel a, possibly with overlap).
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Figure 8: Comparison of communicability for two parcellations, Desikan and Constellation. In
these plots the matrix values for Constellation with 237 ROIs are summed to reduce the matrix to the 68
ROIs of Desikan. a) Comparison of average SC degrees, SC values and FC values over subjects between
the two parcellations. In the left plot, each black dot represents a ROIL. In the middle and right plots each
black/blue dot represents a link (pair of ROIs). b) Comparison of the model error for each subject (blue
distribution) with the model error for the subject-average Desikan and Constellation models. ¢) Same as
panel a for MOU-EC. d) Total communicability for the two parcellations.

The communities are still differentiated at ¢ < 10 TR in Fig. [Th, but all of them except for the
third one unite at ¢ = 20 TR and they become a single community at ¢ = 40 TR. The average
communicability between the communities in Fig. |7k confirms this global pattern: It suggests
that information is first integrated somehow independently within distinct communities, then

w0 is broadcasted to the whole network during the homogenization phase. These two modes of
information integration are reminiscent of synchronization in networks for distinct values of
the global coupling 70, [7T], but it is important to note that they are supported by the same
dynamical regime in our case; they simply occur at different timescales within the network
response.

455 We verify the robustness of the community detection by performing the same community
detection with two subsets of 25% of the 77 subjects. The left plot of Fig. |7f shows the
correspondence between the coparticipation indices (matrix elements in Fig. mf) for two
subsets. From this we calculate the Pearson correlation coefficient to evaluate the alignment
of the communities, which corresponds to 0.9 (green distribution in the right of Fig. |7l for 100

w0 repetitions). This can be explained because the mean MOU-EC matrices over the subjects
in each subset have a very similar structure (orange distribution), even though individual
MOU-EC are more moderately aligned (blue distribution). Therefore, averaging over about
20 subjects reduces the subject variability, as well as noise related to the fMRI measurements.

8.5. Comparison of BOLD dynamics at different scales

465 Finally, we compare communicability between two parcellations to verify whether com-
municability corresponds to similar dynamics when changing scale. The Constellation par-
cellation is a refinement of the Desikan parcellation based on the anatomical fibers, dividing
each of the original 68 ROIs into 3 to 5 new ROIs to obtain 237 ROIs with increased ho-
mogeneous SC within each ROI [52]. Although not identical, the reduced SC is thus very
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w0 similar across the parcellations in Fig.[8h. The two FC matrices show perfect correspondence.
Here we focus on an average model over subjects for MOU-EC, unlike the individual models
used until now. The model can be satisfactorily fitted to the average FCO and FC1 matrices
(see the model error in Fig. ) As a sanity check, we verify that the average of individual
MOU-EC matrices correlates with the MOU-EC of the average model with a Pearson of 0.56

w5 (not shown), which is similar to the mean Pearson correlation between individual MOU-EC
(blue distribution in Fig. [8p). The comparison between the average models of the two par-
cellations in Fig. [Sc gives a Pearson correlation of 0.88, with p-value < 1071%. The time
constants 7 are very close, 2.52 for Desikan and 2.53 for Constellation. With this we evaluate
the total communicability as a proxy for the global network dynamics and find similar curves

w (Fig. ) These results indicate that consistent information can be obtained across scales,
but we leave a deeper study for future work.

4. Discussion

The present paper has introduced a network-oriented analysis of effective connectivity
(MOU-EC) obtained from fMRI data, applying our recently-proposed formalism [37]. Tt
w5 demonstrates the flexibility of the framework that provides information at both local (single
connections or ROIs) and global levels, allowing for a comprehensive description of the net-
work going beyond a link-specific analysis. The pairwise interactions across time determined
by the network dynamics are described by a family of matrices that incorporate network
effects. Our results stress the importance of taking time into account to describe the brain
w0 communication in order to describe how “information” —here measured via the propagation
of BOLD signals— is integrated in the network. Variability across subjects has not been
explored here, but is of interest and will be studied in future work.
The results are summarized as plots on the cortical surface in Fig.[9] At the local scale, we
have explored the functional roles of ROIs over time, e.g. broadcasters or listeners (Fig. ),
w5 which provides complementary information to FC and SC (Fig. @ For instance, we have
found that anatomical hub ROIs —precuneus, superior parietal and superior frontal cortex [7}
I]— are listeners that globally integrate information from other ROIs in the resting state,
but without broadcasting much. During visual and memory tasks, they can become selective
broadcasters to specific target ROIs [64]. Previous studies have shown that the precuneus also
s0  acts as a selective integrator during memory and cognitive flexibility tasks [65],[72]. It remains
to be explored with diverse tasks how this gating of input/output information is implemented
by high-levels ROIs, which can be related to the theory of the global workspace [28].
At the global scale, the estimated BOLD dynamics exhibit a peak in the network response
between 5 and 12 TR (Fig. ), while the maximum homogenization of dynamic communi-
sos cability is achieved around 15 TR. This corresponds to community merging between 10 and
20 TR (Fig. [Th-b). These results speak to a multistage integration of information imple-
mented by the cortical network —first locally within the communities, then globally. Here
these two modes emerge as a natural consequence of the timescale separation due to infor-
mation propagation within the network. In contrast, previous studies could only identify
s such modes by “artificially” setting the network into two very different dynamical states: ei-
ther weakly or strongly synchronized [70] [7I]. This flexibility may be interesting to quantify
the notion of integration in networks that has attracted a lot of attention, in particular in
neuroscience [29] [73] 28], 34] [32].

4.1. Model-based network descriptors for whole-brain dynamics

515 Our formalism opens a new dynamical perspective to interpret fMRI data, as compared
to more “static” approaches using network theory that focused on FC or SC [7, [I]. The
BOLD signals obtained from fMRI are “projected” on the model parameters. MOU-EC acts
as a transition matrix, measuring the propagation of fMRI (fluctuating) activity across brain
areas. In addition, the input properties are described via their (co)variance matrix ¥. In our

s model-based approach, the network analysis thus characterizes the brain dynamics, whose
consistency from estimation to interpretation is a strength compared to previous studies
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a) Input communicability

c) Communities

Figure 9: Summary of results. a: Mapping of the input communicability on the cortical surface (lateral
and medial views of the right hemisphere). Darker red corresponds to higher value. b: Same as panel a for
the output communicability. ¢: Mapping of the 4 communicability-based communities at ¢ = 1 TR in Fig. Eh
on the cortical surface. Each color represents a community.
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in our opinion. As an example, FC-based analysis can be considered as a “projection” of
BOLD signals on a graphical model, where the successive levels of BOLD activation (for all
ROIs) are considered as i.i.d. variables over time. Likewise, sliding-window FC measures are

ss  typically considered as a pool of measures with no intrinsic temporal structure [22, 23] 24],
which has also been used in other fields such as epidemic spreading [74]. Other alterna-
tives to define states and transitions between them has used clustering techniques on the
instantaneous phases obtained from the Hilbert transform [75] or HMMs to generate BOLD
activation levels [26]. Although these approaches may be used to describe time-dependent

s interactions between ROls, they do not capture the propagating nature of the BOLD signals,
nor the network effect induced by these interactions. In addition, our approach conceptually
differs from previous network studies that applied various types of nodal dynamics —such as
Kuramoto oscillators and random walks— to static networks in order to reveal the properties
of their complex topologies [38] [39, [40].

535 Importantly, the general concept of our dynamics-oriented network analysis is not tied
to a specific model for whole-brain activity. The multivariate measure of communicability
can be derived for other dynamic models provided their Green function is known or can be
numerically evaluated, like the linearized dynamic causal model (DCM) used for resting-state
fMRI data [41] 20} [76] or the multivariate autoregressive process [I7]. This may lead to a

s revised formulation for Eq. . Nonetheless, a network analysis of the underlying connectivity
—EC as discussed in a recent publication [(7] or equivalent— only provides a snapshot view
on the dynamics. Our results show that it corresponds to the initial integration time and
that a more complete viewpoint is obtained when taking time into account (e.g. community
merging). Other measures of directed connectivity can be used as matrix A to calculate

ss  communicability, such as Granger causality analysis [42] 43| [44]. However, this requires the
choice of a leakage time constant 7 in Eq. . In our case the knowledge about 7 comes for
MOU-EC estimation procedure, which gives the full Jacobian J. Ensuring consistency from
model estimation to interpretation is an important point in our opinion.

The presented framework allows for the analysis of connectivity at various scales. At

s the global level, the total communicability S¢ measures how the inputs circulate over the
integration time via MOU-EC. The stabilization of D¢ indicates the temporal horizon when
the network interactions become most homogeneous. At the local scale, we have explored
the functional roles of ROIs over time, e.g. broadcasters or listeners (Fig. )7 which provides
complementary information to FC and SC (Fig. @ At an intermediate level Community

s detection uncovers the functional organization of ROIs (Fig. [Th). For the studied dataset,
MOU-EC determines functional communities in a much more accurate manner than FC
(Fig. ) This is an important point to analyze task-dependent communities, which is not
possible using SC.

Another interesting aspect of our formalism is the quantitative comparison between net-

sso  work dynamics. With surrogate networks such as ring lattices or random networks, it reveals
the properties of the estimated MOU-EC (Fig. |4)). Here we have compared global measures:
the total communicability S€ is the sum of all interactions at a given time and the diversity
DC reflects their heterogeneity within the network. These time-dependent measures corre-
spond to curves that are more or less distant, providing a metric to compare the data with

sss  specific topologies. Likewise, the comparison of the MOU-EC for two parcellations using
communicability demonstrates a consistency across scales (Fig. .

In addition to the MOU-EC matrix A and the leakage related to 7, the MOU dynamics
is determined by the properties of its fluctuating inputs (in purple in Fig. )7 related to
their (co)variance matrix . The ¥ estimated from data is task-dependent and off-diagonal

so  elements may be tuned to model ROIs that experience cross-correlated noise [36]. To incor-
porate the effect of ¥ in the network dynamics, another family of time-dependent matrices
can be defined, which was name the flow [37]. In fact, dynamic communicability is a par-
ticular case of the flow for homogeneous input statistics (X;; = 1 for all ROIs). Practically,
the difference between the two measure is the following: Dynamic communicability describes

sis how standard input fluctuations propagate throughout the estimated MOU-EC, whereas the
flow quantifies the propagation of fluctuating activity for the brain dynamical “state” esti-
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mated over the whole session. Communicability is thus appropriate to study the propagation
of perturbations in the network, whereas the flow is better suited when ¥ depends on the
subject’s condition as was shown for movie viewing versus rest [36].

seo  4.2. Advantages and limitations of MOU-EC

The present application of dynamic communicability relies on the MOU process for the
connectivity estimation. The MOU network corresponds to a non-conservative and stationary
propagation of fluctuating activity, which was used to study network complexity [29] [30, B1L
32]. The MOU process has also been used in many other scientific disciplines [78] [79] [80],

s in particular for time-series analysis [8I]. The viewpoint taken on the MOU process is a
“noise” -diffusion network where fluctuating activity propagates, EC defining the input-output
mapping [82]. Moreover, MOU-EC has been demonstrated to provide robust biomarkers for
subject or task identification from BOLD signals [83].

When the MOU-EC estimation was developed, it aimed to solve the trade-off between

s0 robust estimation and application to large brain network (704+ ROIs) by using linear dynam-
ics [18]. As mentioned earlier, the EC terminology was borrowed from the DCM literature
because of the model-based aspect [15]. Several points were identified a few years ago when
discussing the concepts behind effective connectivity and Granger causality analysis [57], in
particular subsampling related to the low time resolution of BOLD signals and the hemo-

ss dynamic response function. Because the MOU works in continuous time, it deals with the
subsampling associated with the low temporal resolution of the BOLD signals [I8]. This
contrasts with estimation methods relying on the discrete-time multivariate autoregressive
process that may be sensitive to subsampling for BOLD signals [43]. The absence of hemody-
namics in MOU-EC is a crucial difference with DCM. An in-depth comparison between the
s0o two methods is left to future work and readers interested in whole-brain analysis involving
hemodynamics are referred to recent extensions of the DCM [20,[76]. A related point concerns
the single time constant 7 for all ROIs chosen for each subject, which was motivated from
the analyzed data. Further study —possibly with more datasets— is necessary to explore
the possibility of finessing the model with ROI-specific 7. Recall also that any interpretation

s of BOLD in term of brain communication relies on the assumption that changes in neural
activity are reliably reflected in the BOLD signals, which is under debate [84], [85] [86].

The model optimization enforces a diagonal X, which has consequences on the estimated
MOU-EC. This observed in a previous study for task-evoked activity [36], but not consis-
tently explored so far. In the present version the MOU-EC does not incorporate common

s inputs, which means that the A estimates may compensate with stronger weights to explain
the observed correlations in FC. However, there is no whole-brain dynamic model that has
quantitatively addressed this difficult issue in depth so far in our knowledge.
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