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Abstract

There is much interest in translating neuroimadingdings into meaningful clinical diagnostics. Theal

of scientific discoveries differs from clinical diaostics. Scientific discoveries must replicate ama
specific set of conditions; to translate to thenicliwe must show that findings using purpose-built
scientific instruments will be observable in cliaigopulations and instruments. Here we descriloe an
evaluate data and computational methods designddanslate a scientific observation to a clinical
setting. Using diffusion weighted imaging (DWI), Weet al., (2010) observed that across subjects the
mean fractional anisotropy (FA) of homologous paifdracts is highly correlated. We hypothesizé tha
this is a fundamental biological trait that shoblel present in most healthy participants, and deviat
from this assessment may be a useful diagnosticiandtsing this metric as an illustration of our
methods, we analyzed six pairs of homologous whaéer tracts in nine different DWI datasets with 4
subjects each. Considering the original FA measer¢ras a baseline, we show that the new metric is
between 2 and 4 times more precise when used linieat context. Our framework to translate resbarc

findings into clinical practice can be appliedpninciple, to other neuroimaging results.

Keywords

Replication; Generalization; Generalizability; Camsgtional Reproducibility; Structural MRI; DWI,

White Matter Tracts; Biomarker



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1.- Introduction

We describe methods to translate magnetic resonamaging (MRI) scientific findings into clinical
practice. The goal of scientific discoveries diffédrom clinical diagnostics. Clinical applicatiossould

be based on quantitative measurements that replizatcontrolled laboratory conditions. These
applications must also be applicable to a clinealironment where data acquisition methods, subject

populations, and computational methods can vargtantally.

We base our methods on the ideas of replicationgaméralization. Because these terms, along with
reproducibility, re-execution, and robustness areduin various ways in the literature (Goodmanl.et a
2016; Kennedy et al., 2019; McNaught and Wilkinst@97; Patil et al., 2016; Plesser, 2017), we begin
by explaining our usage. Scientific experimentaligpically set out to make a measurement thatoean
replicated. For example, a team makes a measuramieg a specific rig and experimental conditions.
Other scientists check the work by following theblighed instructions that define how to constrinet t
rig and implement the experimental conditions. &tifie replication means repeating the experiment as
precisely as possible. This approach is appropriateinvestigations that test theories or quantify
important phenomena, but replication is not a séalipossibility for extending discoveries intonitial
applications. These applications do not have adeetfee carefully calibrated instruments that hbeen
purpose-built for scientific measurements (for eglanthe Human Connectome Project scanners). For a
scientific discovery to become clinically relevatiie finding mustgeneralize across variations in the

population and instruments.

Replication and generalization are contrasted qufeéi 1. Panel A emphasizes scientific discovery and
replication. An experimental design is chosen améhsarements are made with a selected population,
data acquisition instruments and methods, and auatational method. We measure the precision of the

measurement when the experiment is repeated @tesity. In this case three replication experimargs



illustrated using different data acquisition partene If the scientific measurements replicate with
sufficient precision, we might carry out generdiza measurements (Panel B), to test the extent of
applicability of said measurements. The paneltifites generalization experiments that share time sa
experimental design, but use different populati@g., geographic locales, age and gender), differe
data acquisition methods, (e.g., pulse sequenakserdors), and different computational methods. (e.
pre-processing software). Translating a scientifieasurement into a clinical application is a twepst

process: beginning with an experiment that reisatve test how well the experiment generalizes.

A Step 1: REPLICATION EXPERIMENTS B Step 2: GENERALIZATION EXPERIMENTS

Experimental Population Data  Computational Experimental  Population Data  Computational
Design Stats Acquisition  Methods > Design Stats Acquisition Methods
- TEST b=1000
0y 2
5 > g
a— N
=2 o
[} [}
Xy O
>
\/
RETEST
\/
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Figure 1. Summary of the individual experiments, organized asreplication or generalization experiments.

The columns correspond to the experimental pipetiteps; every row corresponds to an experimentiei@ifit colors
represent different steps in the experimental pipebdifferent shades represent implementatioredifices within the step. A)
Three replication experiments, based on the Hum@mectome Project (HCP) test-retest datasets. ifleeathce among the
experiments is the b-value used in the acquisitiva. replication experiment, the intention is ¢épeat the original methods as
far as possible, hence the same shades; the test-oase goes uses the same population and iestration at different
times. B) The generalization experiment reflectsttansition to the clinical environment. The gisalo evaluate whether the
measurements are robust to expected variationh@nmeasurement conditions. The generalization ersaken after
validating the results in the replication experimeérhe datasets afeom Wahl et al (2010) (WHL). Yeatman et al. (2014)

(YWM), and (Glasser et al., 2013) (HCP).

This paper applies replication and generalizatipa heuroimaging measurement that has the poteatial
become clinically relevant: identifying lateralizadhite matter disease in individual subjects. Wethl.
(2010) used diffusion-weighted imaging (DWI) to reeee white matter tracts in healthy adults; they
observed that across subjects the mean fractiomsbteopy (FA) of homologous pairs of tracts isHig
correlated. We hypothesized that this finding middet a fundamental biological trait in healthy
participants, that can be measured in researchadafisclinical settings. We investigated if the tiela
between homologous tract pairs is a more usefoicell measure than assessing the measurements from
each tract separately. We find that using the imlabetween homologous left and right tracts does

provide a potential clinical measure.
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2.- Materials and methods

To evaluate the replication and generalization lef DWI finding, we obtained data from multiple

sources. We use nine datasets that we group irge tategories.

e WHL: Original 44 subject dataset used in (Wahl et2811,0). The authors shared the original DICOM files
for this work, and we performed the analysis usingcomputational methods. We obtain 1 datasdedal
WHL1000.

e YWM: We selected a 44 subject subset of the data expdry (Yeatman et al., 2014). The subjects
matched the mean age (but not the age range) Mvite dataset. We obtained two datasets: YWM1000
and YWM2000 that differ in data acquisition paraenet(b-values, number of directions).

e HCP: We selected a 44 subjects whose test-retest datavailable from the 1200 Human Connectome
Project (HCP) release (Glasser et al., 2013). HOBLHCP2000 and HCP3000 differ only in data
acquisition parameters (b-values). HCP1000RETESTP2DOORETEST and HCP3000RETEST are the

corresponding retest data.

Figure 1 represents three replication experimegpasdl A) and a generalization experiment (panel B).
The replication experiments compare test-retestegabf the mean tract FA at three different b-vslue

the were collected using the same subjects, ingtintsnand computational methods at the HCP. This
replication analysis bounds the precision of thémeged mean tract FA: the generalization precision

shouldn't be better than the replication precision

The generalization experiment compares the mean & across different subjects, instruments and
computational methods_ (Figure 1B). The precisiomiveéd from these six experiments assesses
generalization. The HCP RETEST experiments aretechftom the generalization experiment to avoid a

HCP bias. In addition to subject and instrumerfedi#nces, the WHL and YWM differ in computational
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processing. Some unmeasured variability is intredudy non-deterministic aspects of these

computations.

In the following sections, we describe three défdraspects of the experimental pipeline. The Raoioul
statistics section shows that cohorts are similat,not identical. The Data acquisition sectionudes
MRI pulse sequences and parameter choices thaliffeeent between sites and vendors, as is often th
case in clinical settings. The Computational methedction describes the infrastructure we used to
implement computational reproducibility, as well aasletailed description of the data analysis pigeli

and numerical calculations.

2.1.- Population statistics

The population statistics for the three datasedssamilar, but not exactly the same (see TableAll)the

groups include 44 subjects of a similar mean aagging from 30.7 to 31.8. The age range of the YWM
dataset is the largest, with a standard deviatfabdal. The HCP dataset age standard deviatioBjs
which is an approximation: the HCP ages are biriogatotect participant privacy. The YMW and WHL
datasets are matched in male-female ratio, but@ie dataset has more females than males. The alrigin
publications include more information about the ydafions (Glasser et al., 2013; Wahl et al., 2010;

Yeatman et al., 2014).

Dataset Count Age Gender Age
20 female 29.5£7.5
WHL 44 30.8+7.8
24 male 31.9£7.9
24 female 29.5+2.1
YWM 44 31.8+14.4
20 male 34.7+3.6
31 female 31.943.2
HCP 44 30.7+3.2
13 male 27.8£3.2
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Table 1. Descriptive statistics of thethreedifferent populations used across the datasets.

2.2.- Data acquisition

Table 2 shows the main characteristics of the D¥fadcquisition, emphasizing the differences batwee
sites and experiments. As a practical matter, measents made across multiple sites are very liteely
have different MRI scanner models that are caldutatsing different tools. The MRI vendors compete 0
intellectual property concerning the pulse sequgnceaking a perfect replication either extremely
inconvenient or impossible. For example, the scansed by the HCP site was specially designed and
this type of instrument is unlikely to become aablé to the thousands of clinical sites aroundvwbdd
(Glasser et al., 2016, 2013). The datasets difféhn respect to the number of acquisition channels,
gradient strength, diffusion directions, b-valuel axel size. Such differences are unavoidable usera
not all sites can implement the same acquisitiaiampaters. In addition to vendor differences, data a

acquired over time, technology evolves, and pepyke choices.

Scanner Vendor; Model; | Magnetic Field; Head Coil Receivers; Main Sequence Experiment
Dataset
L ocation Max. Gradient Strength Characteristics Codename
GE 3T
55 dirs., 1.8 mrhvoxels

Signa EXCITE 8 channels WHL 1000

WHL b = 1000 s/mr

UCSF 40 mT/m

30 dirs., 2 mmvoxels

GE 3T YMN1000
b = 1000 s/mm
Discovery 750 32 channels
YWM 96 dirs., 2 mrivoxels
Stanford CNI 40 mT/m Y MN2000
b = 2000 s/mrh
Siemens 3T 90 dirs., 1.25 mrhvox HCP1000 &
HCP [Connectom CMRR/WASH 32 channels b = 1000 s/mrh HCP1000RETEST
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b = 2000 s/mr HCP2000RETEST

90 dirs, 1.25 mrhvox HCP3000 &

b =3000s/mh |HCP3000RETEST

Table2. Main characteristics of the data acquisition parameter s acr oss datasets.

2.3.- Computational methods

The computational methods are divided into two art(1) the infrastructure: required for a
computationally reproducible system, sometimesedathe neuroinformatics platform (Marcus et al.,
2011); and, (2the data analysis pipeline: comprises all the steps starting with the DICONikges

generated in the MRI scanner (the acquisition dgwiz the final published results.

2.3.1.- Infrastructure for computational reprodilitijo

The data management and computational infrastrictise a technology (Flywheel.io) that (a)
implements reproducible computational methods,ti@gks provenance of the data, and (c) facilitates
data sharing. For reproducibility, all computatibmaethods were performed using containerized
methods. These are small virtual machines thatidleckll dependencies and runs the same computation
across platforms. The analytical methods implentkitteéhe containers are open-source, and we provide
links to the containers in the following sectiof® track the provenance, the computational system
stores: (a) the input data, (b) the container versihat was executed, (c) the container input parars,

and (c) the output files. The analyses are fulyreducible by anyone with IRB authorization to axe
the system. More details about the infrastructume implementation can be found at Lerma-Usabiaga et

al. (2019).
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2.3.2.- Data analysis pipeline

The diffusion-weighted imaging analysis methodssisted of two main steps, implemented in two
containers: preprocessing and tractography. Botte applied to WHL and YWM datasets. The HCP
dataset was preprocessed by that consortium (Asmierest al., 2003; Andersson and Sotiropoulos, 2016,

2015) and only the tractography container was agpli

2.3.2.1.- Preprocessing

The preprocessing consists of the data preparatgunired to do the tractography and fractional
anisotropy (FA) analyses. The preprocessing coamtaiomprises the following steps: first, using tihals
provided by MRtrix (github.com/MRtrix3/mrtrix3), wperform a principal component analysis (PCA)
based denoising of the data; second, additionabRibased denoising and Gibbs ringing corrections
were applied (Kellner et al., 2016; Veraart et 20]16a, 2016b); third, FSL's eddy current corretctias
applied (Andersson and Sotiropoulos, 2016); fouvil, performed bias correction using the ANTs
package (Tustison et al., 2010); fifth, we appkeRician background noise removal using MRtrix $ool
again. The code and parameters are available thrQitHub (github.com/vistalab/RTP-preproc) and

Docker Hub (hub.docker.com/r/vistalab/RTP-preproc/)

2.3.2.2.- DWI processing and tractography

The tractography container takes the preprocessd&fil data and an un-preprocessed anatomical T1-
weighted file as input. It outputs the FA of théested 6 homologous tract pairs. The algorithmghen
container perform the following steps: first, théu$ion data are aligned and resliced to the anatal

image (https://github.com/vistalab/vistasoft, dtiinsecond, the whole brain white matter streagdiare

estimated using the Ensemble Tractography (ET) odeffiakemura et al., 2016). ET invokes MRtrix’s
constrained spherical deconvolution (CSD) impleragom once and the tractography tool 5 times,
constructing whole brain tractograms with a rangmimimum angle parameters (values 47.2, 23.1,,11.5

5.7, 2.9). The LiFE (Linear Fascicle Evaluation)thogel evaluates the tractogram streamlines ancheetai



those that meaningfully contribute to predictingiaace in the DWI data (Pestilli et al., 2014). &y,
the Automated Fiber Quantification (AFQ) method ¥ean et al., 2012) segments streamlines into
tracts (Figure 2). The code and parameters ardablaithrough GitHub (github.com/vistalab/RTP-

pipeline) and the container through Docker Hub (dabker.com/r/vistalab/RTP-pipeline).

Cingulum Cingulate Arcuate

10
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Figure 2. Six pairs of homologoustracts and their defining ROIs.

The streamlines serve as a model of white matketdy they are selected by fitting to the diffusiegighted imaging (DWI)
measurements. The tracts are defined by regioimgest (ROIs, red) that select specific streaeslifrom the whole brain
tractogram. The region between the two ROls istikedly stable and called the trunk. We estimateoee diber from the
collection of streamlines and sample 100 equalhced segments. The FA of the core fiber is caledlély combining FA
transverse to the core fiber at every sample poBityg a Gaussian weighting scheme over distartue s€t of sample points

is the tract profile; the average of the FA valakthe core fiber is the mean tract FA.

2.3.2.3.- Mean tract FA values

We analyzed the six homologous-tract pairs analyzgWahl et al., 2010) (Figure 2). The ROIs used t
identify the streamlines that form the tracts dreven in red. The mean tract FA is calculated inesalv
steps. A core fiber, representing the central teaglef all the streamlines in the tract, is iddatif
Equally spaced positions along the fiber betwéentivo defining ROIs are sampled (N=100). The FA
values of streamlines at locations transverse ¢h sample position are measured and combined. The
value is a Gaussian-weighted sum where the weighemlds on the distance from the sample point
(Yeatman et al., 2012). The sampling and transvaveeaging generates a tract profile of 100 FA emlu

The mean tract FA is the average of these values.

2.3.3.- Data preparation and statistical analysis

The data preparation, statistical analysis andiptptscripts read the input data directly from Etgwheel
neuroinformatics platform using a software develeptrkit (SDK). To maintain reproducibility and data
provenance, these scripts are stored and versioneditHub repository, and the input data areestor
and the specific version that was executed is @tanethe neuroinformatic platform. The scriptsd¢he
files containing the FA values for each subject aadh tract, categorize it for the different expenmts,
create the descriptive plots and calculate theiosetFhe scripts to replicate the figures and dat@ns

can be found at https://github.com/qgarikoitz/pammroducibility.

11
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3.- Results

We first illustrate replication and generalizat@malyses for the FA measurement of individual sractd
evaluate the usefulness of this measure as aalliapplication. Next, we evaluate a metric basedhen
homologous tract correlation reported by Wahl ef{2010). The main figures describe one illustetiv
tract, the inferior fronto-occipital fasciculus ), and in total we report findings for six pawé
homologous tracts. We selected the mean FA ofctogeam as an example because it is useful to iexpla
our methods, but the analysis can be applied toyrotiver measures. For example, Wahl et al. repairt f

DWI measures (FA, MD, AD, RD).

3.1.- FA measurement

3.1.1.- Replication experiment

Figure 3A shows the mean tract FA profiles at tHrealues for the streamlines that model the IFOF.
The solid and dashed lines show the mean tracileratross subjects for the test (solid) and retest
(dashed) acquisitions. The profiles are similagaath b-value; consistent with prior measuremerts$-th
values decrease as b-value increases (Farrell @08I7a; Jones and Basser, 2004; Landman eD8l7, 2
Mukherjee et al., 2008a, 2008Ghe shaded regions indicate the range (+/- 1 SBysache population

of participants.

13
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Figure 3. Replication analyses of thetract profileand mean tract FA.

Analyses are shown for a representative tract (lDF), and based on the HCP test-retest detalract profiles of the
subject average FA in the test (solid) and reastfed) experiments. The mean profile (thin limg) 41 SD (shaded band)
are shown. The profiles at each b-value match elogely; across b-values the profiles have a sinstepe but different
absolute valuedB) Test-retest scatter plot. For all b-values, thedbhe difference between the test-retest paifsfofalues
is 0.01 (TRT SD), and the SD of the distributiorFéf values is 0.02 (Subj. SD). (Tract profiles awdtter plots for 11 other

tracts are similar and reported in Figures Sla, S2)

The test-retest analyses for the mean tract FA@ffOF are shown in Figure 3B. Each point is gesp
and the three types of symbols show test-retebira¢ b-values. The test-retest mean tract FA gadue
distributed near the identity line. For each b-eatbe mean tract FA varies between subjects (stdnda
deviation, 0.025). The scatter about the identitye lis smaller, (standard deviation, 0.01-0.02)e Th
scatter around the identity line is similar for m@@ments at the three b-values, suggesting thaidise

level is similar (Rokem et al., 2015).

The replication analyses for an additional 11 gdcliow the same trends as the IFOF (see Suppleinen

material, Figures Sla-S2). The FA values decreate increasing b-value, and the between-subject

standard deviation is larger than the within-subjest-retest standard deviation. Consideringralits,

14



the largest between-subject standard deviatiowrighfe arcuate fasciculus, and the smallest igHer
corticospinal tract. In all cases, the shape of tilaet profiles remain similar across b-values.sThi
supports the idea that tract profiles are a usefiget for further investigation (St-Jean et aD1%2,

Yeatman et al., 2014).

3.1.2.- Generalization experiments

We assess the generalization of the FA measuretmparing the HCP data with those from YWM and

WHL. Because of the large differences in FA, weasate the analysis by b-value (Figure 4).

15
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Figure4. FA Analysesfor the generalization experiment and selected tracts.

Top: Left Corticospinal. Bottom: Left IFOR) The curves show the average FA tract profilegiffierent experiments. Thz
shaded region is #1 SDB) Normal distribution summary of the mean FA valiressach experiment. The mean is the
average of the FA values of each participant’sifgoThe grey plot shows the distribution for alperiments; the curves are
scaled so that the sum of the areas of the expetimequals the grey area. The arrows show therdifte between each of
the means and the group mean, and the numberssexgdfect size (Cohend). The distributions were estimated using 10,000
bootstrap sample€) Mean FA values and 90% experimental confidencenimats.n.s.: non-significant. Plots for additional

tracts are in the Supplementary Materials (Figurie-S1c-S3a-S3b).

The HCP, YWM and WHL data obtained at b=1000 aremared in the top two panels. We use the IFOF

tract, but the conclusions are the same for otlaets (see Supplementary material Figures S1b,S4e-S

16
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S3h). The tract profile from the HCP dataset isshme as that shown in Figure 2, and the greemezhd

curves are from the WHL and YWM datasets, respeltiv Over much of the tract the three data sets
agree in the sense that they are closer than tiveede-subject variance. The HCP tractogram profile
diverges from the YWM and WHL on the left side b&tgraph (occipital end), and this appears to ee th

largest source of the difference between the that@sets.

The distribution of HCP mean tract FA values areuald standard deviation larger than the valughen
YWM and WHL data set, and this causes the precigfdhe generalization to be substantially lowearth
the precision of the replication (Figure 4B, top)s notable that at b=1000 the mean FA tract esifor

the IFOF in the WHL and YWM data sets contain valtiet are never observed in the HCP data set (FA
< 0.47). The expansion of the range of FA valuewipges an indication of what one would observe in a

clinical application compared to measurements obthat a single site.

The HCP and YWM data obtained at b=2000 are compamethe two bottom panels. In this
measurement the HCP FA values are generally lomaar the YWM FA values. This difference is seen
in the mean FA distributions, which are again safgal by about 1 standard deviation. It is notaimde

at b=2000 the mean FA values for the IFOF inclugleies in the YWM data that are never observed in
the HCP data (e.g., FA > 0.55). Again, the gemsatibn analysis shows that combining data from

multiple sites extends the range of FA values oaelevobserve from healthy participants.

3.1.3.- Evaluation

The analyses of replication and generalization@tdarce a conclusion about whether the technigag m
have value in practice. Rather, the analyses defieerange of values one might observe using a
restricted set of instruments and methods (rejdiaatcompared to the range of values observedeas w

measure in clinical applications (generalizatididr most tracts, the range of the mean tract FAe/al

17
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increases by about a factor of two as we includa ftam different, but typical, instruments ancesit

Adding more sites, or expanding the population, @ay increase this factor.

3.2.- Homologous tract FA values

The evaluation of mean tract FA motivated us tordeafor a dependent measure with better
generalization. The high positive correlation in BAtween pairs of homologous tracts (Wahl et al.,
2010), measured across subjects, suggests anatiterrmeasure. The correlation implies that a
participant with a relatively high FA value in tHeft tract will have a relatively high FA in the

homologous right tract. Using this type of meaduae the potential to improve generalization because
measurements of the two tracts depend on commariexgntal factors. Qualitatively, the measurements
of the left tract serve as calibration data to fmtethe FA measurement of the right tract. This is

analogous to the use of image contrast ratherithage value.

3.2.1.- Homologous tracts linear model

The next question we address is how to convertoleerved correlations, obtained from multiple
participants, into a measurement that can be appdiéndividual participants. The initial approaishto
use the linear model implicit in the correlatio8pecifically, the correlation between homologoexts
means that there is an affine transform that ptedice mean tract FA in the right from knowledgethaf

left.

PredictedRightpa = aMeasuredLeftpa +

The prediction error (residuals) are the differebetveen the measured and predicted FA,

Residuals = MeasuredRightpa — PredictedRightp a,

18
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and bootstrapping with replacement from the redsdwe estimate the FA range where we expect to find
some percentage, say 95%, of the data (Figureebvéitical black line represents this range). If we
calculate the range of possilPredictedRightra  values foMeasuredLeftra lues, we obtain a
band of likelyPredictedRightra values (green bands). The centethefband is the linear prediction
and the dashed (solid) lines represents the 68%)%imits. Given a measurement of the left FA, the

band defines the range of expected values for thasMredRightFA in a healthy participant.

Measured
Prgdicted

Measured
Predicted \

Right FA
0.3 04 0'.5 O'.6 O'.7

3 04 05 06 0703 04 05 06 0.7
Left FA Left FA

Figure 5. Representation of therelation between homologoustracts

The linear correlation between mean FA in homolagohite matter tracts defines a band of predidggiut FA values given a
left FA value. Measurements across clinically ralgvcases, including variations in population, datguisition, anc
computational methods, define the correlation déedsize and shape of this region. For each trgmrticipant’s data may fall
inside or outside the green region, and this sesesdiagnostic of their white matter healfleasured: the range of Right FA

values. Predicted: the size of the range of predicted Right FA values given a Left FA value (vertical height of the green band).

A more general formulation, beyond the linear iefgtassesses the distribution of left-right FAues in

the plane. These distributions form a cloud of in the plane that can be reasonably approximated
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a bivariate Gaussian. Consequently, the likelytiooa of the points are circumscribed by an ellipgee
distance of any single point from the center ofdhipse, say measured by the Mahalanobis distarare,
serve as a measure of the participant’'s health dhinical application. This formulation has the add

benefit incorporating additional information: thesalute value of tract mean FA.

3.2.2.- Replication of the linear model

A scatterplot of the mean tract FA of the left aight IFOF for six HCP data sets (three b-valuest-t
retest) is in_Figure 6. The different blue coloepresent measurements at different b-values, and th
different shapes represent test (circles) andtrétessses) measurements. The slope of the lirdeatian
between the mean tract FA of the left-right IFO&cts is slightly less than one. Each pair of traetsits

own best-fitting line (see Figure S4a).

oo e TEST
0.7 1. ReTEST

Left FA
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Figure6. L eft-Right | FOF FA scatterplotsand iso-residual contour linesfor HCP

Scatterplot of the Left-Right IFOF HCP mean FA \eaulnside the square, the grey line (0.08) shtne96% range of all
Right FA values for b=2000, and the black line 4).8hows the range of possible values for any giveft FA value.
Although not pictured, the values when using th2d89 test-retest data points increases to 0.09 4 Outside the square
to the right, the grey line (0.21) shows the 95%geaof all right FA values for the combined six HT&st-Retest values. Tke
diagonal bands are the contour lines holding th# &8id 95% of the residuals from the linear modédi to all the six

datasets. See Figure S4a for the rest of the tracts

The test-retest data points thoroughly interminglbich is a replication of the left-right linearagon.
The mean tract FA of a single tract replicates wifbrecision of 0.01 s.d. (Figure 3), and the sejmar in
the FA plane for mean tract FA of left-right homgbwis tracts (corresponding circles and crosses)

replicates with the same precision (0.01 s.d.).

The data obtained at the three different b-valaéésafong roughly the same line. Consequently, leifis
right measurement generalizes well across b-vatlespite the fact that the mean tract FA valuesato
(Figure 3). Considering the data from the threealres, 95% of the FA measurements fall within 0.21
FA (gray line at right). Correspondingly, for tredtiright difference 95% of the measurements féthin

0.07 FA (black line at right).

In certain cases, different sites may adopt measeme protocols at a single b-value. In that cése,

range of the left-right difference is reduced. Erample, in the b=2000 data set the FA range wbald

reduced to 0.04 FA, which is smaller than the FAgeaacross subjects (0.08 FA).

There are different causes for the range of FAeshetween subjects. Some of the differenceslkaly li

to be the natural variation between subjects. Aalthi variation may be due to uncontrolled instrataé
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factors. The co-linear relation between data obthiat the different b-values suggests that some

differences arise because the nominal and trueegria@b-value) differs between subjects.

3.2.3.- Generalization of the linear model

To assess generalization we combined the six datas¢hree b-values (b=1000, 2000, 3000) and three
sites (WHL,YWM,HCP). The left-right scatterplot;efor each of the six pairs of tracts, are shawn i
(Figure 7). There are qualitative similarities beén data from different tracts, but each has ita ow

parameters and precision.

The left-right scatterplots of the IFOF, ILF andTT&e the most compact. Given a measurement of the
left mean tract FA, the right mean tract FA fallghin about 0.05 FA. For the Cingulum, Arcuate and
Uncinate the left mean tract FA predicts the rigigan tract FA within about 0.10 FA. In all cases th

slopes of the linear regions (orientation of thegipal axis of the ellipse) are near one.
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03 04 05 06 0.7 0.3 04 05 06 0.7
ILF Uncinate Corticospinal
ole
S =i =
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Figure 7. Homologoustract L eft-Right FA scatterplots and iso-residual contour lines
Scatterplot of the Left-Right mean FA for all traeind all projects. The grey vertical lines shomes 35% range of all Right
FA values, and the black line the range of possiblaes for any given Left FA value. The diagonahtls are the iso-residual

contour lines holding the 68% and 95% of the resliglfrom the linear model fitted to all the six alsts.

The left-right relation generalizes across theedéht sites and b-values. For each of the trdmsetis no
substantial loss of FA precision when calculatihg teft-right difference using the data at a single

nominal b-value or data from all b-values at altsi

The scatter plots reveal outliers in the cohort, ane particular sample point stands out. Thistpaises

from a single subject at b=2000 who is an outlierll of the tracts (YWM2000 data, red dot). In a

clinical setting, this subject would be subjectriore scrutiny. We can compare this subject’s dathe
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acquisition at b=1000 (YWM1000). The subject’s F&lues in the YWM1000 acquisition are normal, so
we assume that something went wrong in the YWMZ28@fuisition and/or analyses. Such outliers occur,

and it is not unexpected that one of 264 data paimght be problematic

Some of the variation in the mean tract FA arisesmfthe tractography algorithms. For example, the
Arcuate and Uncinate are more curved than the dthetrs, and previously several groups observed tha
the right Arcuate is not well-recovered from DWltaldCatani et al., 2007; Lebel and Beaulieu, 2009;
Wabhl et al., 2010; Yeatman et al., 2011). Othdiediinces may arise because of differences in tigtHe

of the trunks used to estimate the mean FA of &ach (see Figure 2).

Similar variability was observed in five of the holmgous tract pair correlations in the original Wah

al (2010) experiment (Cingulum Cingulate: 0.57, yate: 0.5, IFOF: 0.88, ILF: 0.73, Uncinate: 0.7),
with the one exception of the corticosopinal tr@c62). The original Wahl et al. result for cortpinal
may be due to their method of identifying the amsipinal tract; because using our tractography oasth

on the original data (WHL1000) the value is higte71).

The correlation values of the data combined acbegslues are very high (Cingulum Cingulate: 0.85,
Arcuate: 0.76, IFOF: 0.94, ILF: 0.94, Uncinate: Q.8 orticospinal: 0.95). This suggests that as tidpe
same left-right relation is revealed at differentdiues and that using the relation rather thaolates FA

levels compensates for variations in the data adopn.
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4.- Discussion

We write in support of the idea that modern neusegjing is sufficiently mature to develop useful
guantitative applications for structural neuroinmagiAs an example, we showed how the test-retedt MR
scans produce highly reliable diffusion measurgsenevhen accounting for instrumental noise, system
calibration between scans, and repeating the piligib numerical processing in the computational
methods. On the other hand, the experiments corgiian reports that the compliance range of thedat
acquisition parameters for FA does not extend &nghs in the diffusion gradient b-value (Chou et al
2013; Farrell et al., 2007b; Hutchinson et al., ZQlandman et al., 2007). For this reason, we @ego

() a two-step assessment system (measure replicatieasure generalization) to translate MRI metric
with potential to be useful in the clinic; and,) (@ simple method for improving the precision of ou
metrics by using the relationship between two memamsants that compensates for the acquisition

differences.

4.1.- Replication-gener alization tradeoff

There is a tradeoff between replication and geizatadn in neuroimaging. Over the past decadetwloe
extremes have been represented by: (1) the HCRidbrquality highly replicable anatomic, diffusion
and functional imaging using custom-designed hardwthe Connectome scanner) and software (e.g.,
multiband echo planar sequences) that were notrglezable to other platforms (Glasser et al., 2016)
and (2) the Enhancing Neurolmaging Genetics thrddgta-Analysis (ENIGMA) consortium that began
with low quality and low precision imaging metritsat were primarily limited to gross macroscopic
features such as total intracranial volume, buevptatform-independent and did not require staridedd

sequences and therefore generalized for worldwadz alggregation.
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The tension between these two goals is being askebleby specifying standardized pulse sequences
across a broad range of scanners for multicentgtiest. This approach is exemplified by the HCP
Lifespan protocol (Bookheimer et al., 2019; Harmhale 2018; Somerville et al., 2018), the ENIGMA
protocol (Acheson et al., 2017; Adhikari et al.L20Kochunov et al., 2017), and protocols for Fieci
Medicine studies such as ADNI3 for Alzheimer diseéReid et al., 2017; Zavaliangos-Petropulu et al.,
2019) and TRACK-TBI for traumatic brain injury (Yudt al., 2013). This approach is applicable to

coordinated multi-center studies.

The harmonization of measurements puts a strondnasigoon replication, hoping to limit the problefn o
generalization. There are economic and technoloagetmark issues that will prevent the widespread
distribution of the most advanced instruments. Beedhere will be variations in clinical instrumastiin

and methods, we advocate for investigators to desipls and experiments that directly address
generalization. The approach in this paper empésaginllecting multiple datasets and then evaluating
different dependent measures to select the onegeharalize. In this approach, it becomes impoitan
specify the precision and the compliance range wiegrorting results for potential application, as

different pathologies will have different requireme

4.2.- Explicit measures of generalization and context of use

Clinical applications should be based on measuresribat replicate with confidence intervals that ar
compact enough to support a meaningful diagnodtids attribute is crucial for the validation of
“biomarkers” that can be widely used for biomedisalence and clinical translation. A biomarker is
defined by the US National Institutes of HealthHINbnd the US Food & Drug Administration (FDA) as
“a defined characteristic that is measured as dicator of normal biological processes, pathogenic
processes, or responses to an exposure or intemeiricluding therapeutic interventions” (Naylor,

2003). This definition encompasses brain imagingy{®lix, 2004). Precision Medicine is "an emerging
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approach for disease treatment and preventiont#tkass into account individual variability in genes,
environment, and lifestyle for each person” (Callend Varmus, 2015). Objectively quantifying these
individual differences in order to tailor treatmentd prevention strategies for specific patientplires
validated biomarkers. Ensuring the reliability tie$e biomarkers over time in individual subjects is
crucial for adequately testing the efficacy of js&m medicine therapies (Senn, 2018). Throughlaist t
work, we provided a valid range of normal valueatthives the precision at which departures from
normality can be measured. This range, like alltl@asurements we used in this work, is given in FA

units, which is directly interpretable by any resbar or clinical practitioner.

In addition, but less appreciated, is that neurgin@applications deployed in the field will useramge

of instruments, participant populations, and meament protocols (Goodman et al., 2016); the rarige o
conditions in the field will be wider than that enaitered in scientific studies. It is importantnéfore,

to assess how effectively an applied measurememerglizes across the clinical conditions. For an
applied measurement to scale from the lab to thwicclthe result must generalize across these
measurement conditions. This range of conditiongre/the measurement is valid for a proposed
application should be specified contained in tbentext of use” that the FDA requires as part &f th
biomarker qualification process (Goodsaid and Miet¢r2010). After our experiment, we could claim
that the context of use of our metric is circumsed to 3 Tesla MRI magnets and b-values betwee@i 100
and 3000. We think that the symmetry in homologmasn tract FA is a fundamental human biological

trait, but we should extend our generalization expents to extend its context of use.

4.3 - A continuous aggr egation platform

The relatively recent increase in complexity of mgmaging is a major complicating factor that imgsac
reproducible research. New MR instruments, anabfgjerithms and the use of special participantehav

increased the size and complexity of datasets. dnymmeuroimaging publications, there is no realisti
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chance that a reader can repeat the experimert@alagdguisition or even the computational analyses
(Buckheit and Donoho, 1995; Sandve et al., 2013saMiet al., 2017). The best we can hope for lsto
able to repeat, check, and explore portions ofcthraputational analysis of the published data (Peng,

2011; Stodden et al., 2014).

The increase in computational power has also leghtimcrease in algorithm complexity and the number
of user-defined parameters. Several authors haalgzau the effect of pipeline parameters and replort
large impacts on fMRI data; the variations in tlesult as a function of the parameters can be quite
significant. For example, the position of the pealtivation may range over a cortical area of 25 cm
(Carp, 2012). (Yarkoni and Westfall, 2017) obsehet we are often uncertain about critical paranset
that must be in computational models. We can confinat the general point also applies to DWI
methods. It is our experience, too, that scientistd it very difficult to keep track of the speicif
parameters used in any particular analysis, andh deeer scientists record the combinations of

parameters they used during data exploration (B&K416).

To overcome most of these problems, the systemsed in this paper encapsulates the software and its
dependencies in a container; it also stores therli®f which analyses (and with what configurajion
were run in the database. This approach overlagpsmany of the proposals for scientific reprodudipi

For example, (Poldrack et al., 2017) describe @eatd for reproducible research tools that cloaggn

with those we have implemented.

. The entire analysis workflow (including both sessful and failed analyses) would be
completely automated in a workflow engine and pgelain a software container or virtual
machine to ensure computational reproducibilityl ddta sets and results would be assigned

version numbers to enable explicit tracking of gnoance ... (page 124).
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Furthermore, our system is extensible. We can addsédts to our neuroinformatics platform, analyze
them with identical computational methods, and kheaw the compliance range of our measurement
changes. Analogously, we can containerize a cortipot tool from another group, process our data
again, and do the same checks. Therefore, newtsesets can be continuously aggregated. In the long
term, this continuous aggregation will continuenfmrm the compliance range, and it will naturakigrk
towards the harmonization of measurement protoceitings that worsen the compliance range will be
abandoned. We think that this continuous aggregaimd improvement process will provide a useful

approach for translating scientific research todlhsc.

4.4 .- Related resear ch

A particularly related recent investigation of D\§neralization considered data from 13 different 3T
MRI scanners throughout the USA, representing takkd major vendors (GE, Philips and Siemens),
found a coefficient of variation (CoV) of 4.2% ftire FA of whole-brain white matter, with the FA CoV

varying from 2% to 6% for individual major white tter tracts (Palacios et al., 2017). That studg wa
limited to a single subject, to scanners with samihardware capabilities, and to a harmonized DTI

protocol in which all major acquisition parametars as similar as possible.

This study extends that work by probing generabraticross a wider range of acquisition parameters
(e.g., spatial resolution, b-value, and the nundfediffusion directions) using scanners with diffat
hardware capabilities (e.g., 8 receiver channel832vand 40 mT/m maximum gradient amplitude vs 100
mT/m), and in different participant populations.eThcope of our tests is for a very modest set of
instruments, data acquisition parameters, and ptpuol statistics; but the generalization could have
proved much worse. A fundamental difference in wark is the intention to vary the experimental
conditions instead of harmonizing them, assessow the instrumental variations affect the precision

range.
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Furthermore, the generalization issues in neuraingagpplications are similar to those in other homa
research fields (He et al., 2015; Shavelson etl8B9; Shavelson and Webb, 1991; Tipton, 2014); the
issues are also closely linked to meta-analysisichwlaggregate the outcomes of multiple studies
(Evangelou and loannidis, 2013; Simpson and Peark®®4). The unique features of neuroimaging
applications we discuss are that they are motivbyetthe observation that these applications aedlito

arise from experimental measures that are notgelccontrolled.

4.5.- Limitations and opportunities

All the datasets were obtained from research enmiemts. We obtained data from different sites to
illustrate our point, but for a real experiment, rmaatasets with more variability should be inchlide
Further generalization could come from scannersdéis) mean field strength), acquisition sequences
(e.g. dual-spin echo), population (e.g. age rangepmputational methods (e.g. Tracula (Yendikalet
2011)). The database system we use is extensildlecan add data and re-evaluate the generalization

should new dataset become available.

This work assesses one type of structural datahwblininated the need to analyze the impact of
experimental design. Developing a deeper understgndf such factors is important for clinical

assessments using task-based functional MRI, saypdgchiatric disorders. Such analyses introduce
many new parameters including factors ranging fretimulus selection and delivery and subject

instructions and compliance.
Some functional experiments quantify charactesst€ individual participants (e.g. defining V1). A

much larger set of the scientific literature usesig comparisons. In many cases, it will not barcheow

to convert a group comparison experiment into@adi assessment of individual participants.

30



ACCEPTED MANUSCRIPT

31



10

5.- Conclusion

This paper illustrates an approach for translatisgroimaging findings from the lab to the clinicew
describe software tools designed for large data aetl computational reproducibility that are hdlpfu
calculating the impact of increasing the numbesitefs, experiments, different subjects, and/oiirtigact

of higher quality instrumentation. We consider # &pproach, from the definition of the data set fo
replication and generalization experiments, tortaroinformatics platform and computational methods

required to define an evaluate metrics with diagnoslue.
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Reproducible white matter diagnostics, generalizable to clinical conditions
Data collected from multiple scanners into a searchable and computable database
Data analysis software implemented as platform-independent, reproducible

containers
Strategy to minimize measurement variance across a likely span of clinical scanners



