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Abstract  1 

Segmenting the continuous speech stream into units for further perceptual and linguistic 2 

analyses is fundamental to speech recognition. The speech amplitude envelope (SE) has 3 

long been considered a fundamental temporal cue for segmenting speech. Does the 4 

temporal fine structure (TFS), a significant part of speech signals often considered to 5 

contain primarily spectral information, contribute to speech segmentation? Using 6 

magnetoencephalography, we show that the TFS entrains cortical oscillatory responses 7 

between 3-6 Hz and demonstrate, using mutual information analysis, that (i) the temporal 8 

information in the TFS can be reconstructed from a measure of frame-to-frame spectral 9 

change and correlates with the SE and (ii) that spectral resolution is key to the extraction 10 

of such temporal information. Furthermore, we show behavioural evidence that, when the 11 

SE is temporally distorted, the TFS provides cues for speech segmentation and aids 12 

speech recognition significantly. Our findings show that it is insufficient to investigate 13 

solely the SE to understand temporal speech segmentation, as the SE and the TFS derived 14 

from a band-filtering method convey comparable, if not inseparable, temporal 15 

information. We argue for a more synthetic view of speech segmentation – the auditory 16 

system groups speech signals coherently in both temporal and spectral domains. 17 

 18 

Keywords: speech segmentation, cortical entrainment, spectral correlation, spectro-19 

temporal  20 
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Introduction 1 

Parsing the continuous speech stream into appropriate units for subsequent perceptual 2 

and linguistic analyses serves as the basis for recognition (Poeppel 2003; Ghitza 2012; 3 

Giraud and Poeppel 2012). Speech is typically argued to be comprised of slower 4 

amplitude fluctuations, called the speech amplitude envelope (SE) and faster temporal 5 

and frequency events, called the temporal fine structure (TFS). These distinct aspects of 6 

speech signals have been investigated in different experiments to elucidate their relative 7 

contributions (Smith et al. 2002; Xu and Pfingst 2003; Zeng et al. 2004; Lorenzi et al. 8 

2006; Moore 2008; Shamma and Lorenzi 2013; Ewert et al. 2018). Evidence suggests 9 

that the human auditory system relies on temporal information supplied by the SE for 10 

grouping speech information (Ghitza and Greenberg 2009; Ghitza 2012; Ding and Simon 11 

2014). Behavioural data demonstrate that four bands of noise modulated by the SE 12 

suffice for speech recognition (Shannon et al. 1995). Neurophysiological evidence shows 13 

that cortical entrainment to the SE shows a high correlation with speech intelligibility 14 

(Luo and Poeppel 2007; Ding and Simon 2012; Giraud and Poeppel 2012; Peelle et al. 15 

2013; Doelling et al. 2014). Speech, though can be decomposed into two parts (SE and 16 

TFS) using a ‘filterbank’ method (Shannon et al. 1995; Smith et al. 2002), containing 17 

coherent amplitude fluctuations and spectral cues. Does the auditory system primarily 18 

exploit the SE for segmentation or use additional attributes of the speech signal when 19 

segmenting the incoming speech stream?   20 

The TFS is argued to convey distinct cues not present in the SE (Gilbert et al. 2007) 21 

and to play an important role in mediating speech perception in challenging backgrounds 22 

(Hopkins et al. 2008; Moore 2008; Swaminathan et al. 2016). It was demonstrated in 23 
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neurophysiological studies that the TFS contributes to robust cortical entrainment for 24 

speech in noise (Ding and Simon 2014). Indeed, after eliminating amplitude fluctuations, 25 

the processed speech signal can still entrain cortical oscillatory responses (Zoefel and 26 

VanRullen 2015; 2016). These studies argue for an important role played by the TFS, 27 

which complements the traditional view that the SE is the dominant cue for speech 28 

segmentation. However, it remains unclear how the TFS contributes to robust cortical 29 

entrainment to speech and whether the TFS and SE play different roles in speech 30 

segmentation.  31 

Various studies suggest that the envelope can be ‘recovered’ from the TFS through 32 

cochlear processing (Ghitza 2001; Zeng et al. 2004; Shamma and Lorenzi 2013). From a 33 

neurophysiological perspective, it is argued that cues in the spectral structure of speech 34 

(without amplitude modulations) entrain cortical oscillations and provide temporal 35 

information (Zoefel and VanRullen 2015). The TFS provides acoustic cues to help form 36 

auditory objects for grouping and entrainment (Ding and Simon 2012; Ding et al. 2014). 37 

But the cues, whether acoustic or high-level, are not clearly specified in previous studies, 38 

and it is not well understood how these cues are extracted from the TFS.  39 

Here we first take a traditional approach by separating the SE and the TFS using the 40 

‘filterbank’ method and test whether the human auditory system can capitalize on the 41 

TFS to temporally segment speech signals. If the TFS and the SE represent different 42 

aspects of speech signals and the auditory system primarily extracts temporal information 43 

from the SE for segmenting speech, as indicated by the previous studies (Luo and 44 

Poeppel 2007; Ghitza and Greenberg 2009; Ding and Simon 2012; Ghitza 2012; Giraud 45 

and Poeppel 2012; Peelle et al. 2013; Ding and Simon 2014; Doelling et al. 2014), we 46 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508358doi: bioRxiv preprint 

https://doi.org/10.1101/508358
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

would expect that the TFS alone cannot entrain cortical oscillatory responses (to the same 47 

level) as the SE does. In contrast, if we do find that the TFS supplies sufficient temporal 48 

information and robustly entrains cortical oscillatory responses, we aim to determine how 49 

temporal information is extracted from the TFS, as well as the nature of this temporal 50 

information. We then test behaviourally whether the TFS will provide temporal cues and 51 

help increase intelligibility when the SE is disrupted temporally. 52 

We show through neurophysiological results that the TFS, similar to the SE, robustly 53 

entrains cortical oscillatory responses. The patterns of cortical entrainment differentiate 54 

between the TFS of different sentences. To better understand what in the TFS elicits 55 

robust cortical entrainment, we modified a method - cochlear scaled correlation (Stilp and 56 

Kluender 2010) - to derive temporal information from the TFS. We compute the mutual 57 

information between neurophysiological responses evoked by the TFS and 1) the original 58 

SE, 2) the recovered envelope from the TFS, and 3) the derived temporal information 59 

through spectral correlation in the TFS. We determine that the temporal information in 60 

the TFS is highly relevant to the SE, and is contributed by the spectral correlation of the 61 

TFS as well as by the recovered envelope. We further show that spectral resolution 62 

strongly affects the ability to extract temporal information from the TFS. Next, we 63 

temporally distort speech by using a widely cited but not often-used manipulation, locally 64 

reversing speech segments (Saberi and Perrott 1999; Kiss et al. 2008; Stilp et al. 2010). 65 

We demonstrate that the TFS helps restore critical temporal information and significantly 66 

improves intelligibility of temporally distorted speech.  67 

Our results demonstrate that the TFS provides significant temporal information for 68 

segmenting speech. The TFS and the SE convey comparable, if not inseparable, temporal 69 
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information for speech segmentation. We conclude that speech segmentation and cortical 70 

entrainment to speech are a result of tracking both the temporal and spectral structure of 71 

speech.   72 
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Materials and Methods 73 

Ethics statement.  74 

The study was approved by the New York University Institutional Review Board (IRB# 75 

10–7277) and conducted in conformity with the 45 Code of Federal Regulations (CFR) 76 

part 46 and the principles of the Belmont Report. All the participants in Experiment 1 and 77 

2 gave informed written consent. 78 

Participants.  79 

Fifteen Chinese native speakers from New York University took part in Experiment 1. 80 

The data from three participants were excluded from MEG analysis because trial orders 81 

were not recorded during neurophysiological recording. One participant was further 82 

excluded from the mutual information analysis because part of data from this subject was 83 

removed after preprocessing due to a noise issue, which resulted in the loss of the trial 84 

order for the mutual information analysis. Therefore, in Experiment 1, the analysis 85 

included the neurophysiological data from 12 participants for inter-trial phase coherence 86 

and single-trial classification (6 females; age ranging from 21 to 32; right-handed) and 87 

from 11 participants for the mutual information analysis (6 females; age ranging from 21 88 

to 32; right-handed). Handedness was determined using the Edinburgh Handedness 89 

Inventory (Oldfield 1971).  90 

Twenty-One Chinese native speakers studying at New York University took part in 91 

Experiment 2: ten in Experiment 2A (5 females; age ranging from 23 to 35; all self-92 

reported right-handed) and eleven in Experiment 2B (8 females; age ranging from 22 to 93 

28; all self-reported right-handed). One participant was excluded from Experiment 2B 94 
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 8 

because of poor performance. All participants had normal hearing and no neurological 95 

deficits according to their self-report.  96 

Stimuli.  97 

One hundred Chinese sentences from the Mandarin Hearing in Noise Test were used in 98 

the present study (Fu et al. 2011; Zhu et al. 2014). All sentences are composed of 7 99 

syllables each and have similar grammatical structure and are spoken by a female 100 

speaker. The overall power of all sound files was normalized to the same value before 101 

further acoustic processing. We first decomposed the sentences into envelopes and TFS 102 

(see detailed method also in (Smith et al. 2002)). We filtered the speech signal into 16 103 

bands using cochlear filter banks spanning from 80 to 8820 Hz and created analytic 104 

signals for each frequency band through a Hilbert transformation (see Figure 1A for an 105 

illustration). The envelope is computed as the magnitude of the analytic signal and TFS 106 

was reconstructed by applying a cosine function to the phase series of the analytic signal 107 

for each frequency band. We selectively chose 16 bands for decomposing the speech 108 

signal because previous studies show that the envelope cannot be recovered from the 109 

TFS, or the recovered envelope from TFS is no longer beneficial for speech recognition 110 

when 16 bands are used (Gilbert and Lorenzi 2006; Sheft et al. 2008), which enables us 111 

to further investigate what else in the TFS, besides the recovered envelope, can contribute 112 

to speech segmentation. 113 

In Experiment 1, we generated 28 TFS stimuli reconstructed from twenty-eight 114 

randomly selected sentences by averaging TFS of each frequency band across 16 bands 115 

for each sentence.  116 
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In Experiment 2, we processed the sentences and created four types of reversed 117 

speech: directly reversed speech (R), envelope reversed speech (ER), fine structure 118 

reversed speech (FSR), and envelope reversed noise-vocoded speech (ERNV). To 119 

generate R sentences, we cut each sentence into short segments using a rectangular 120 

window (e.g. 50 ms) and reversed each segment temporally. Then we concatenated the 121 

reversed segments of each sentence in the original order to form a new sentence, whose 122 

local segments were temporally reversed. The R sentences were generated in the same 123 

way as in previous studies (Saberi and Perrott 1999; Stilp et al. 2010).   124 

Figure 3A illustrates procedures to generate ER, FSR, and ERNV sentences. We cut 125 

the envelope of each band into segments using a fixed window size and reversed each 126 

segment temporally, and then concatenated them to form a reversed envelope for each 127 

band. The new reversed envelope was then used to modulate the intact TFS of the 128 

corresponding band to generate the ER sentences. We used the new reversed envelopes to 129 

modulate narrow band noise of corresponding frequency bands to get the ERNV 130 

sentences. We kept the envelopes intact while cutting TFS into segments and reversing 131 

TFS segments to form reversed TFS. The intact envelopes and the reversed TFS were put 132 

together to form FSR sentences. 133 

In Experiment 2A, R, ER, and FSR sentences were used to test intelligibility on each 134 

type of speech. Six window sizes were used to cut speech into segments for the R 135 

sentences: 30, 50, 70, 80, 90, and 120 ms; six window sizes for the ER sentences: 30, 70, 136 

90, 120, 150, and 200 ms; three window sizes for the FSR sentences: 30, 150, and 300 137 

ms. In Experiment 2B, ER and ERNV sentences were used. Six window sizes were 138 
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 10 

chosen for the ERNV sentences: 30, 50, 70, 80, 90, and 120 ms; six window sizes for the 139 

ER sentences: 30, 70, 90, 120, 150, and 200 ms. 140 

All stimuli used in Experiment 1 and 2 were normalized to ~65 dB SPL. The stimuli 141 

were delivered through plastic air tubes connected to foam ear pieces (E-A-R Tone Gold 142 

3A Insert earphones, Aearo Technologies Auditory Systems) in Experiment 1 and 143 

through Sennheisser 370 headphones in Experiment 2.  144 

Experiment 1: MEG procedure  145 

We selected TFS stimuli of 28 total sentences. 25 TFS stimuli of different sentences were 146 

presented once each and 3 TFS stimuli of 3 different sentences were presented 25 times 147 

each. All TFS stimuli were pseudo-randomly presented in one block during MEG 148 

recordings. To keep subjects alert, after hearing each TFS stimulus participants were 149 

prompted to make a judgment via a button box on whether TFS stimuli sounded like 150 

speech or not. The behavioral responses were not analyzed because all participants 151 

reported that TFS stimuli did not sound like speech. This could be because the TFS was 152 

derived using 16 bands and the envelope cues cannot be recovered from the TFS (Smith 153 

et al. 2002; Hopkins et al. 2010). The participants had no prior knowledge on the TFS 154 

stimuli or on the sentences from which the TFS stimuli were derived. The inter-trial 155 

interval (ISI) of 1.5 – 2 s began after the key press. The ISI was used as a baseline for 156 

MEG analysis.  157 

MEG recording and preprocessing.  158 

MEG signals were measured with participants in a supine position, in a magnetically 159 

shielded room using a 157-channel whole-head axial gradiometer system (KIT, 160 
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Kanazawa Institute of Technology, Japan). A sampling rate of 1000 Hz was used with an 161 

online 1-200 Hz analog band-pass filter and a notch filter centered around 60 Hz. After 162 

the main experiment, participants were presented with 1 kHz tone beeps of 50 ms 163 

duration as a localizer to determine their M100 evoked responses, which is a canonical 164 

auditory response (Roberts et al. 2000). 20 channels with the largest M100 response in 165 

both hemispheres (10 channels in each hemisphere) were selected as auditory channels 166 

for each participant individually. Further analysis was conducted only on the selected 167 

channels. 168 

MEG data analysis was conducted in MATLAB using the Fieldtrip toolbox 169 

(Oostenveld et al. 2011) and the wavelet toolbox. Raw MEG data were noise-reduced 170 

offline using the time-shifted PCA (de Cheveigné and Simon 2007) and sensor noise 171 

suppression (de Cheveigné and Simon 2008) methods. A low-pass filter with cutoff 172 

frequency of 100 Hz was applied offline on the de-noised data in the MEG160 software 173 

(Yokogawa Electric Corporation and Eagle Technology Corporation, Tokyo, Japan) and 174 

the preprocessed MEG data was then downsampled to 500 Hz. Trials were visually 175 

inspected, and those with artifacts such as channel jumps and large fluctuations were 176 

discarded. An independent component analysis was used to correct for eye blink-, eye 177 

movement-, heartbeat-related and system-related artifacts. Each trial was divided into 6s 178 

epoch, with 2s pre-stimulus period and 4s post-stimulus period. The variable baseline was 179 

corrected for in each trial by subtracting out the mean of the whole trial before doing 180 

further analyses. 181 

To extract instantaneous phase information, single-trial data in each MEG channel 182 

were transformed using a Morlet wavelet function embedded in the Fieldtrip toolbox, 183 
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with a frequency ranged from 1 to 60 Hz in steps of 1 Hz. To balance spectral and 184 

temporal resolution of the time-frequency transformation, from 1 to 20 Hz, the window 185 

length increased linearly from 1.5 cycles/frequency to 7 cycles/frequency, and was kept 186 

constant at 7 cycles/frequency above 20 Hz. The analysis windows for each trial was 187 

from 1s pre-stimulus period to 3s post-stimulus period with a temporal step of 10 ms. 188 

Phase and power response (squared absolute value) were extracted from the wavelet 189 

transform output at each time-frequency point for classification and mutual information 190 

analysis.  191 

Inter-trial phase coherence (ITPC).  192 

In Experiment 1, the ‘inter-trial phase coherence’ (ITPC) was calculated on each time-193 

frequency point (details as in (Lachaux et al. 1999)). ITPC is a measure of consistency of 194 

phase-locked neural activity entrained by stimuli across trials. ITPC of different 195 

frequency bands reflects phase tracking of cortical oscillations to temporally modulated 196 

stimuli. ITPC was computed across 20 trials for each of 3 TFS stimuli that were 197 

presented repeatedly and across 20 of 25 different TFS stimuli that were presented once 198 

each. As 1 – 5 trials were removed for each stimulus during preprocessing, to avoid bias 199 

of estimating ITPC caused by unequal numbers of trials across different stimuli, we only 200 

selected 20 trials for calculating ITPC. 201 

Single-trial classification.  202 

A single-trial classification analysis of 3 repeated TFS stimuli was carried out to 203 

investigate whether cortical oscillations entrained by TFS can differentiate the TFS from 204 

specific sentences. This classification analysis was described in detail in (Ng et al. 2013) 205 

as well as in (Luo and Poeppel 2007; Cogan and Poeppel 2011; Herrmann et al. 2013). 206 
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For 20 trials of each repeated TFS stimulus, one trial was left out, and then a template 207 

was created by averaging phase series using the circular mean across the remaining trials 208 

for each of the TFS stimuli. There were three repeated TFS stimuli; so three templates of 209 

TFS stimuli were created. The circular distances between each template and each left-out 210 

trial from each TFS stimulus was computed. The circular distance was applied for phase 211 

classification by taking the circular mean during the period of 300 ms to 1500 ms after 212 

the stimulus onset, and on each frequency. A trial was given one template’s label if the 213 

distance between this trial and the template was the smallest among the three templates.  214 

The classification analysis was conducted on each frequency within the frequency 215 

range that showed robust ITPC for 3 TFS stimuli compared with 25 TFS stimuli that 216 

were present once each. 217 

A confusion matrix of classification scores was constructed for each trial of each 218 

stimulus type on each auditory channel. Then, classification performance was measured 219 

in a signal detection framework: correctly labelling the target stimulus was count as a 220 

‘hit’ while labelling the other two stimuli as the target stimulus was counted as ‘false 221 

alarm’; d’ was calculated based on hit rates and false alarm rates and averaged across all 222 

auditory channels. Classification accuracy using the phase of each frequency was 223 

indicated by the mean of d’ over the three TFS stimuli, which was compared to the total 224 

d’ of the identification task which indicates participants’ sensitivity in the behavioral 225 

study (Macmillan and Creelman 2004) 226 

Spectral correlation and cochlear-scaled spectral correlation.  227 

The TFS preserves rich spectral information in speech, which may confer temporal 228 

information through the change of spectral content along time. To quantify this spectral 229 
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change, inspired from cochlear-scaled entropy (Stilp et al. 2010), we created two indices 230 

– spectral correlation (SC) and cochlear-scaled spectral correlation (CSC). We first used 231 

a short-time Fourier transformation to generate spectral profiles of acoustic segments of 232 

20 ms and then computed Pearson’s correlation coefficients of the spectral contents 233 

between adjacent temporal segments. This correlation, constrained by sampling rate and 234 

the number of samples in the sound files, is indicated as SC. Similar to the cochlear-235 

scaled entropy, the spectral correlation computed after binning frequencies according to 236 

cochlear bands was indicated as CSC. We computed CSC using 32, 18, 8 and 4 bands 237 

separately to evaluate the effect of the number of cochlear bands on resolving temporal 238 

information from TFS. 239 

Recovered envelope from TFS.  240 

Previous studies have shown that speech amplitude envelopes can be recovered from TFS 241 

through cochlear processing (Ghitza 2001; Zeng et al. 2004). To measure how the 242 

recovered envelope from the TSF provides temporal information, we filtered 28 TFS 243 

stimuli in neurophysiological recording using Gammatone filterbanks of 32, 18, 8 and 4 244 

bands, separately. The envelope of each cochlear band was extracted by using the Hilbert 245 

transform on each band and taking the absolute value (Glasberg and Moore 1990; 246 

Søndergaard and Majdak 2013). We then averaged the envelopes across all bands to get 247 

the recovered envelope from TFS. 248 

Mutual information (MI) analysis.  249 

To investigate what temporal information in TFS entrains neurophysiological responses 250 

and distinguishes different TFS sounds, we used the framework of MI to quantify shared 251 

information between MEG signals and acoustic properties in the stimuli (Quian Quiroga 252 
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and Panzeri 2009; Panzeri et al. 2010). MI was calculated using the Information 253 

Breakdown Toolbox in MATLAB (Pola et al. 2003; Magri et al. 2009). We computed the 254 

MI between the phase series of each frequency (1 – 60 Hz) extracted from the time-255 

frequency analysis described above and the acoustic properties of the stimuli in 256 

Experiment 1 - SC, CSC, original envelopes of sentences from which TFS stimuli were 257 

extracted, and the recovered envelopes from TFS (Cogan and Poeppel 2011; Gross et al. 258 

2013; Ng et al. 2013; Kayser et al. 2015).  The MI value of each frequency was 259 

calculated for each subject, for each condition, and for each auditory channel across 260 

trials.  261 

In the present study, the acoustic properties of each stimulus are simply the values at 262 

each time point. For each frequency of the neurophysiological response, the phase 263 

distribution was composed of six equally spaced bins: 0 to pi/3, pi/3 to pi * 2/3, pi * 2/3 264 

to pi, pi to pi * 4/3, pi * 4/3 to pi * 5/3, and pi * 5/3 to pi * 2. By choosing 6 bins for 265 

phase information, we ensured that there is enough temporal resolution to capture 266 

acoustic dynamics (Cogan and Poeppel 2011). The acoustic properties were first 267 

normalized within each sentence by dividing their maximum value and then grouped 268 

within each condition using 8 bins equally spaced from the minimum value to the 269 

maximum value. Eight bins were chosen because we wanted to have enough discrete 270 

precision to capture changes in acoustic properties while making sure that each bin has 271 

sufficient counts for MI analysis, since the greater number of bins would lead to zero 272 

counts in certain bins. 273 

The estimation of MI is subject to bias caused by finite sampling of the probability 274 

distributions because limited data was supplied in the present study. Therefore, a 275 
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quadratic extrapolation embedded in the Information Breakdown Toolbox was applied to 276 

correct bias. MI is computed on the data set of each condition. A quadratic function is 277 

then fit to the data points and the actual MI is taken to be the zero-crossing value. This 278 

new value reflects the estimated MI for an infinite number of trials and greatly reduces 279 

the finite sampling bias (Montemurro et al. 2007; Panzeri et al. 2007). 280 

A shuffling procedure of sentence labels was applied to determine the baseline for MI 281 

analysis.  28 TFS sentences used in Experiment 1 were randomly assigned to trials in 282 

each condition to create a new date set and the same MI analysis was implemented on 283 

each frequency. This procedure was repeated 1000 times to get a distribution of MI 284 

values, from which a 99% one-side threshold was derived. By doing this, we preserved 285 

the structure of time series in data. Therefore, be comparing the baseline with the results, 286 

we ensured that MI results were not due to noise and specific processing procedures. 287 

Experiment 2: Behavioral measurement 288 

All participants were sitting in a soundbooth while doing the tasks. In Experiment 2A, 10 289 

R, 10 ER, and 10 FSR sentences for each window size were presented. We presented 290 

each type of sentence in separate blocks, such that three blocks (R block, ER block, and 291 

FSR block) were presented in Experiment 2A and there were 60 different R sentences 292 

(six window sizes × 10 sentences), 60 ER sentences (six window sizes × 10 sentences), 293 

and 30 FSR sentences (three window sizes × 10 sentences) total. Since we only have 100 294 

different sentences in the materials, 10 sentences were shared between the R block and 295 

ER block. These shared ten sentences were in the largest window size condition (120 and 296 

200 ms). Because intelligibility is very low for R and ER blocks under the largest 297 
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window size, we can avoid the confound of hearing an intelligible sentence a second time 298 

which could prime listeners to better understand the second instance of the sentence.  299 

Thirty different FSR sentences were selected from the sentences of the largest window 300 

size used in the R block and ER block, 15 from each block. The FSR block was always 301 

presented at the end, because, in our preliminary testing, we found that the FSR sentences 302 

were highly intelligible. We first presented the R block and then the ER block, instead of 303 

counter-balancing the order of two blocks. By doing this, we tried to avoid the confound 304 

that ER sentences contain more speech cues - as the intact TFS was preserved in ER 305 

sentences, participants could in theory adapt to the cues in ER sentences and improve 306 

performance in the R block. 307 

In Experiment 2B, 10 ER and 10 ERNV sentences for each window size were 308 

presented and there were 60 ER sentences and 60 ERNV sentences total in two separate 309 

blocks. 10 sentences were shared between the ER block and the ERNV block. We set 310 

these ten shared sentences in the condition of the largest window size. The order of ER 311 

block and ERNV block was counter-balanced between participants. 312 

Using MATLAB, the participants were presented with one sentence on each trial and 313 

were required to type in an Excel sheet what they heard after each sentence was presented 314 

(10 second limit). After the participants finished typing, they pushed a key on a message 315 

dialogue box to start next sentence. The input method for Chinese characters was 316 

Microsoft Pinyin IME 2003 without autocomplete. We treated each character of a 317 

sentence as one response and used the total number of the correct characters typed by the 318 

participants over 10 sentences divided by the total number of characters (70) as the 319 

intelligibility score for each window size.  320 
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Psychometric function fitting.  321 

For the R and ER blocks in Experiment 2A and the ER block and ERNV block in 322 

Experiment 2B, we fitted a psychometric curve to each participant’s intelligibility score 323 

for each block using a Weibull function in the Palademes toolbox 1.5.2 (Prins and 324 

Kingdom 2009). The 50 percent intelligibility threshold and the slope of the 325 

psychometric curves were derived for each participant and later used for further analysis. 326 

Because intelligibility in FSR stayed at a ceiling level across all window sizes, we did not 327 

fit a psychometric curve to the data of FSR block. For the purpose of illustration, we 328 

averaged the intelligibility scores across subjects and fit a psychometric function to the 329 

averaged scores. These psychometric functions using group averaged scores were not 330 

used in any analysis.  331 
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Results 332 

TFS robustly entrains low frequency cortical oscillatory responses 333 

We used magnetoencephalography (MEG) recordings to measure neurophysiological 334 

responses to the TFS in Experiment 1. As cortical oscillatory responses entrained by 335 

auditory signals reflect how the auditory system both extracts temporal information and 336 

parses the incoming acoustic stream, studying cortical entrainment evoked by the TFS 337 

can reveal what information in TFS is extracted (Giraud and Poeppel 2012; Henry and 338 

Obleser 2012; Kayser et al. 2012; Luo and Poeppel 2012; Doelling et al. 2014; Henry et 339 

al. 2014; Kayser et al. 2015; Di Liberto et al. 2016; Teng et al. 2017).  340 

We presented the 28 TFS stimuli in one block to 12 Mandarin Chinese native speakers 341 

while recording their neurophysiological responses. Three of the 28 TFS stimuli were 342 

repeatedly presented (25 times), and the remaining 25 TFS stimuli were presented once. 343 

We selected 20 MEG channels using a tone localizer (see Methods) and computed inter-344 

trial phase coherence (ITPC) across 20 trials for each of three repeated TFS stimuli and 345 

across TFS stimuli from 20 different sentences. We conducted a one-way repeated 346 

measures ANOVA on ITPC from 1 to 60 Hz, with four sentence types (three repeated 347 

sentences and one group of different sentences) as the main factor, and found a 348 

significant main effect from 1 – 8 Hz (p < 0.05, False Discovery Rate (FDR) corrected 349 

(Benjamini and Hochberg 1995)). We then grouped ITPC values from 1 to 8 Hz and 350 

conducted pairwise comparisons to examine differences between the four sentence types. 351 

The ITPC results show that cortical responses between 1 to 8 Hz are robustly entrained 352 

by the three repeated TFS stimuli (compared to the ITPC from the 20 distinct sentences; 353 

Fig 1B) (p < 0.05, paired t test, Bonferroni corrected). The topographies of ITPC show 354 
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response patterns with an auditory origin, which is consistent with the hypothesis that the 355 

TFS evoked robust cortical entrainment (Fig. 1D). 356 

 357 

Figure 1.  358 

Cortical entrainment to TFS. (A) Speech signals were decomposed using 16 bands into the speech 359 
amplitude envelope (SE) and the temporal fine structure (TFS). (B) The repeated TFS stimuli evoke robust 360 
cortical entrainment from 1 to 8 Hz. X-axis: frequency of neural response. Y-axis: inter-trial phase 361 
coherence (ITPC). Black lines show entrainment to the three repeated TFS stimuli, separately. The violet 362 
line shows cortical entrainment to 20 random TFS sentences, used as a baseline for the ITPC. The dashed 363 
box indicates frequencies where ITPC of the repeated TFS stimuli is significantly larger than ITPC of the 364 
20 random TFS stimuli (p < 0.05, paired t test, Bonferroni corrected). (C) Left panel, classification analysis 365 
conducted on the phase series within each frequency band. The results show that the neural signals in 366 
frequencies between 3 and 6 Hz are the most informative to separate out different repeated TFS stimuli. 367 
Right panel: the group-averaged confusion matrix between 3 and 6 Hz. Each repeated TFS stimulus can be 368 
robustly classified. (D) Topographies for ITPC between 1 and 8 Hz confirm that the cortical entrainment to 369 
repeated TFS stimuli is of auditory origin. The error bars represent +/- SEM over subjects. Asterisks show 370 
significant level (***, p < 0.001; *, p < 0.05). 371 

To determine whether cortical oscillatory responses track distinct temporal structures 372 

reflected in the TFS, we employed a single-trial classifier to classify trials of the three 373 

repeated TFS stimuli between 1 and 8 Hz, using the MEG phase series (Fig. 1C) (Cogan 374 

and Poeppel 2011; Herrmann et al. 2013; Ng et al. 2013). We used a signal detection 375 

paradigm and converted the results of the classifier into the total d’, which indicates the 376 

classification accuracy across all of the three repeated TFS stimuli (See Methods). We 377 

found that the total d’ was significantly above the zero value (d’ for 33 percent correct 378 
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classification) from 1 to 8 Hz (p < 0.05, one sample t test, Bonferroni corrected) (Fig. 1C, 379 

left panel). We then compared the total d’ between different frequencies and found that 380 

the phase patterns between 3 to 6 Hz were the most informative to the classification 381 

analysis (p < 0.05, paired t test, Bonferroni corrected). 382 

These data on cortical entrainment to the TFS bear a strong resemblance to previous 383 

studies in which the SE was found to entrain neural responses below 10 Hz  384 

(Luo and Poeppel 2007; Kerlin et al. 2010; Cogan and Poeppel 2011; Ding and Simon 385 

2012; Peelle et al. 2013; Zion Golumbic et al. 2013). As prominent temporal information 386 

in speech between 3 and 6 Hz is carried by the SE (Ding et al. 2017), the results suggest 387 

that the temporal information relevant to the SE is perhaps read-out from the TFS by the 388 

auditory system.  389 

Temporal information extracted from TFS correlates with original envelope and 390 

can be reconstructed from spectral correlation.  391 

To investigate the nature of the temporal information extracted from the TFS, we 392 

measured how the SE could explain phase patterns evoked by the corresponding TFS 393 

using a mutual information (MI) framework (Quian Quiroga and Panzeri 2009; Panzeri et 394 

al. 2010). Analyses were conducted on the data from 11 of 12 Mandarin Chinese native 395 

speakers used in the previous analysis. One subject was excluded because of noise issues. 396 

We computed MI between the SE of 20 different sentences and the phase series evoked 397 

by the TFS derived from these 20 sentences. To set a baseline for MI values, we 398 

generated a null distribution of MI values by shuffling the labels between the sentences 399 

and computed MI values from 1000 shuffled datasets. We found that phase patterns of 400 

the entrained oscillations by TFS share a significant amount of information with the SE 401 
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from 1 to 8 Hz (p < 0.01) (Fig. 2A, left panel), which aligns with the findings above on 402 

cortical entrainment (Fig. 1A). This result demonstrates that the temporal information 403 

extracted from the TFS strongly correlates with the envelope information.  404 

 405 

Figure 2.  406 

Results of mutual information (MI) analysis. (A) MI between MEG phase series evoked by the TFS and the 407 
speech amplitude envelope (SE), spectral correlation (SC), and recovered envelope (RE). The speech 408 
amplitude envelope and the recovered envelope were computed using 16 bands. The left panel shows MI 409 
results from 1 to 15 Hz. The dashed lines are significance thresholds with a one-sided alpha level of 0.01 410 
for each acoustic property, which were derived from a permutation method (see Methods). The right panel 411 
shows average MI between 3 and 6 Hz where the phase series is most informative to discriminate the TFS 412 
from different sentences. The results show clearly that the TFS contains temporal information which 413 
correlates with the SE. The temporal information of the TFS can be derived from the spectral correlation 414 
and the recovered envelope. (B) Illustration of acoustics. The left panel shows the averaged spectra of the 415 
three acoustic properties used in the MI computation. The results were computed using the same 25 416 
sentences for all the acoustic properties. The middle panel shows an example time series of each acoustic 417 
property for the same sentence. The color code is as in (A). The right panel shows Fisher-transformed 418 
Pearson correlation coefficients between three acoustic properties. It can be seen that the SE and the SC are 419 
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highly correlated (p < 0.001). (C) Effects of spectral resolution on MI results. The left panel shows MI 420 
results of the spectral correlation and cochlear-scaled correlation. The dashed line indicates frequencies 421 
where the main effect of band number or spectral resolution is significant (p < 0.05, FDR corrected). The 422 
middle panel shows MI results of the recovered envelope computed using different number of frequency 423 
bands. The dashed line indicates frequencies where the main effect of band number is significant (p < 0.05, 424 
FDR corrected). The right panel shows averaged MI values between 3 and 6 Hz where the phase series is 425 
most informative. The results indicate that the spectral resolution or band number significantly affects the 426 
extraction of temporal information through spectral correlation - but not much through recovered envelope. 427 
This suggests that for cochlear implant users or people with hearing loss, the inability to use the TFS for 428 
speech perception could be due to degraded spectral resolution. The shaded area indicates +/- SEM over 429 
subjects. Asterisks show significance levels (***, p < 0.001; *, p < 0.05). 430 

Next we tried to determine how temporal information is extracted from the TFS. It has 431 

been suggested that the SE can be recovered from TFS through cochlear processing 432 

(Ghitza 2001; Zeng et al. 2004; Shamma and Lorenzi 2013). We filtered TFS stimuli 433 

using a gammatone filter bank of 16 bands to simulate cochlear processing (Patterson 434 

1976; Patterson et al. 1987) and obtained the recovered envelopes from the gammatone 435 

filter outputs (See Methods for details). The averaged spectrum of recovered envelopes 436 

over the 25 sentences and an example of a time series can be seen in Figure 2B (red line). 437 

We then computed MI between the recovered envelope and the phase series evoked by 438 

the TFS. Although we found significant MI values across a wide range of frequencies (1 439 

– 15 Hz) (p < 0.01, FDR corrected), the amount of MI between the recovered envelope 440 

and the phase series was much smaller than the MI between the SE and the phase series 441 

(Fig. 2A, red line). This result suggests that the recovered envelope is not solely what the 442 

auditory system uses to extract temporal information from TFS (Sheft et al. 2008). Other 443 

processes may be in play. Nonetheless, the result confirms the previous finding from a 444 

neurophysiological perspective, namely that when TFS is extracted using more than 8 445 

bands, as in our present study, the recovered envelopes are no longer beneficial for 446 

speech recognition (Gilbert and Lorenzi 2006). 447 
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As TFS contains rich spectral information (Moore 2008; Shamma and Lorenzi 2013) 448 

and many studies have shown that cortical responses can be entrained by frequency 449 

modulations (Henry and Obleser 2012; Herrmann et al. 2013; Henry et al. 2014; Teng, 450 

Tian, Doelling, et al. 2017; Teng, Tian, Rowland, et al. 2017), the cortical entrainment 451 

elicited by the TFS may be caused by the spectral structure of the TFS. To reconstruct 452 

temporal information from the spectral structure of the TFS, we modified the cochlear-453 

scaled entropy paradigm (Stilp and Kluender 2010) and computed spectral correlation 454 

using a short moving temporal window (20 ms) (see Methods for details). The average 455 

spectrum of spectral correlation of 25 sentences and an example of time series for one 456 

sentence can be seen in Figure 2B (blue line), which showed similar dynamics to the SE 457 

(Fig. 2B, orange line). The SE and the SC are significantly correlated over the 25 458 

sentences used (one-sample t-test against zeros, t(24) = 12.16, p < 0.001, Bonferroni 459 

corrected), but no significant correlation was found between the RE and the SE (t(24) = 460 

1.58, p = 0.384, Bonferroni corrected) as well as between the RE and the SC (t(24) = 461 

1.45, p = 0.480, Bonferroni corrected) (Fig. 2B, right panel). We computed MI between 462 

the spectral correlation and the phase series evoked by TFS. MI values were found to be 463 

significant from 1 to 10 Hz (p < 0.01, FDR corrected) and were larger than the MI 464 

between the recovered envelope and the phase series from 2 to 4 Hz, which coincides 465 

with the peak of spectra of the SE (~ 3 Hz) (Fig. 2A, orange line). The results 466 

demonstrate that the auditory system extracts temporal information relevant to the SE 467 

from TFS using a procedure modelled by spectral correlation.  468 

We combined MI computed from both spectral correlation and recovered envelope and 469 

summarized the MI values over 3 to 6 Hz, the most informative frequency range found in 470 
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the classification analysis (Fig. 2A, right panel). We found that there was no significant 471 

difference between the MI values computed using SE and the MI values computed using 472 

both the recovered envelope and the spectral correlation (t(10) = 1.18, p = 1, d = 0.37, 473 

Bonferroni corrected).  474 

In summary, the results suggest that temporal information can be extracted from TFS 475 

which correlates with the temporal information carried by the SE. A process that 476 

computes the spectral correlation between adjacent temporal frames could be used by the 477 

auditory system to extract the envelope information from TFS. The recovered envelope 478 

from cochlear processes also provides temporal information but does not seem to play a 479 

prominent role (Sheft et al. 2008).  480 

Extraction of temporal information from TFS depends on the number of frequency 481 

bands (spectral resolution).  482 

As cochlear implants often provide poor spectral resolution (Oxenham and Kreft 2014) 483 

and persons with hearing loss manifest degraded spectral sensitivity (Hopkins and Moore 484 

2011), we tested whether the number of frequency bands (spectral resolution) affects 485 

extracting temporal information from TFS, which may explain the inability of the 486 

cochlear implant users to effectively use TFS.  487 

We computed the cochlear-scaled correlation (CSC) by binning frequencies into 32, 488 

16, 8 and 4 cochlear bands separately (see Methods) and then calculated MI between 489 

MEG phase series and the CSC of the different band numbers (Fig. 2C, left panel). We 490 

conducted a one-way repeated measures ANOVA from 1 to 60 Hz, with spectral 491 

resolution as the main factor (five levels: SC, CSC of 32, 16, 8 and 4 bands), and found a 492 

significant main effect of the spectral resolution from 1 to 10 Hz (p < 0.05, FDR 493 
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corrected). We then averaged MI from 3 to 6 Hz and found a downward linear trend with 494 

decreased spectral resolution (F(1,10) = 67.76, p < 0.001, ηp
2 = .871) (Fig. 2C, right 495 

panel). The results provide compelling evidence that spectral resolution significantly 496 

affects extraction of temporal information from the TFS. 497 

We next examined the effect of the band number on the recovered envelope. We 498 

computed recovered envelopes using 32, 16, 8, and 4 cochlear bands separately and 499 

calculated MI between MEG phase series and the recovered envelopes of different band 500 

numbers (Fig. 2C, middle panel). We conducted a one-way repeated measures ANOVA 501 

from 1 to 60 Hz, with the number of cochlear bands as the main factor (four levels: 32, 502 

16, 8 and 4 bands), and found a significant main effect of the band number from 1 to 13 503 

Hz (p < 0.05, FDR corrected). We then averaged MI over 3 to 6 Hz and found a 504 

downward linear trend with decreased band number (F(1,10) = 61.93, p < 0.001, ηp
2 505 

= .861). However, in a post-hoc test, we found that MI computed using 32 bands was 506 

larger than using 16 bands (t(10) = 4.18, p = .011, d = 1.32) but not more than 8 bands 507 

(t(10) = 0.80, p = 1, d = 0.25). The MI computed using 4 bands is lower than all the other 508 

bands (32 bands: t(10) = 9.89, p < .001, d = 3.13; 16 bands: t(10) = 6.86, p < .001, d = 509 

2.17; 8 bands: t(10) = 10.89, p < .001, d = 3.44). Bonferroni correction was applied.  510 

The results show that the number of bands does not affect recovering the envelope 511 

from the TFS as the frequency bands decrease from 32 to 8 bands. In contrast, we found a 512 

significant effect of the band number for spectral correlation. This is consistent with 513 

previous findings that spectral resolution modulates the efficiency of extracting temporal 514 

information from the TFS  (Léger et al. 2015; Oxenham 2018).  515 
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TFS significantly compensates for SE temporal information compromised in 516 

temporally disrupted speech.  517 

We tested whether the TFS compensates for lost temporal information when the SE is 518 

disrupted in Experiment 2. We used a ‘reversed speech’ paradigm in which the temporal 519 

structure of speech signals is compromised by temporally reversing local segments and 520 

then tested speech intelligibility (Saberi and Perrott 1999; Stilp et al. 2010).  The 521 

rationale is that the reversing procedure disrupts the modulation phase of the SE and, as 522 

the reversed temporal window becomes larger, the modulation phase gets distorted more 523 

severely and provides incorrect cues on the temporal structure of speech. This reversing 524 

procedure, therefore, renders the temporal cues carried by the reversed SE unavailable for 525 

segmenting speech signals. Then we can test whether the auditory system extracts certain 526 

cues provided by the TFS to segment speech signals. Figure 3A show a schematic 527 

illustration of stimulus generation. By comparing speech intelligibility for the reversed 528 

speech when TFS is intact with the conditions when the SE and TFS are both disrupted, 529 

we determine whether the TFS, similar to the SE, provides critical temporal information 530 

for speech segmentation. 531 
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 532 

Figure 3.  533 

Illustration of stimulus manipulations and behavioral results. (A) Speech signals were first decomposed 534 
into the amplitude envelope (SE) and the temporal fine structure (TFS). Rectangular windows with various 535 
lengths were used to segment speech signals and then locally reverse each speech segment in time. 536 
Depending on which part of the speech signal was locally reversed, four types of reversed sentences were 537 
generated: directly reversed (R) – raw broadband speech signals were locally reversed; envelope reversed 538 
(ER) – we reversed only the envelope and then used it to modulate the intact TFS; envelope reversed noise-539 
vocoded (ERNV) – we reversed the envelope and used it to modulate narrow band noise; fine structure 540 
reversed (FSR) – we reversed the TFS and used the intact envelope to modulate the reversed TFS. (B) 541 
Behavioral results of Intelligibility of Experiments 2A and 2B. The top panels show group-averaged results 542 
of Experiment 2A and Experiment 2B and the psychometric functions fit to the data. The x-axis represents 543 
window length, the y-axis represents the intelligibility score. It can be clearly seen that ER sentences with 544 
intact TFS show significantly higher intelligibility than sentences without intact TFS (R in Expt. 2A and 545 
ERNV in Expt. 2B). The lower panel shows 50% thresholds of psychometric function fits to individual 546 
data. Each black line represents each subject’s individual threshold. The x-axis shows sentence type and the 547 
y-axis the threshold. Asterisks show significance levels (***, p < 0.001). The error bars are +/- SEM over 548 
subjects. 549 

    In Experiment 2A, we directly reversed the speech segments and varied the segment 550 

size to generate directly reversed (R) sentences – i.e. SE and TFS were both reversed. 551 

Next, we locally reversed the SE and used this reversed SE to modulate the intact TFS to 552 

generate envelope reversed (ER) sentences. For fine structure reversed (FSR) sentences, 553 

we used the intact SE to modulate the reversed TFS. An illustration of the stimulus 554 
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generation and spectrograms of one example sentence is shown in Fig 3A (See Methods 555 

for details). We recruited 10 Chinese native speakers and tested speech intelligibility for 556 

these sentences (ten sentences for each segment size). For Experiment 1B, we created 557 

envelope reversed noise-vocoded (ERNV) sentences by using the reversed SE to 558 

modulate noise (Fig 3A). By comparing intelligibility of 10 Chinese native speakers for 559 

the ER sentences with the ERNV sentences, we further evaluated the contribution of the 560 

TFS. The behavioral results are shown in Fig 3B.   561 

We fit each participant’s intelligibility scores to a psychometric function (see 562 

Methods) and conducted a two-way mixed effect ANOVA on the thresholds of the 563 

psychometric functions (fifty percent correct threshold). We treated Experiment 564 

(Experiment 2A and Experiment 2B) as the between-subjects factor and TFS (with intact 565 

TFS: ER, or without intact TFS: R and ERNV) as the within-subject factor. We found a 566 

significant main effect of TFS (F(1,18) = 227.14, p < 0.001, ηp
2 = .927), but not for 567 

Experiment (F(1,18) = .233, p = 0.635, ηp
2 = .013). In a post-hoc test, we found in 568 

Experiment 1A that thresholds (which are best interpreted as temporal tolerance with 569 

respect to the reversal distortion) in the ER block were significantly larger than in the R 570 

block (paired sample t-test: t(9) = 26.41, p < .001, d = 8.35, 95% CI [33.83, 29.49]); in 571 

Experiment 1B, thresholds in the ER block were significantly larger than the ERNV 572 

block (paired sample t-test: t(9) = 7.71, p < .001, d = 2.44, 95% CI [38.65, 21.12]).  573 

The behavioral results for R sentences replicate previous findings that the 574 

intelligibility of locally reversed speech degrades with increased segment size (Saberi and 575 

Perrott 1999; Kiss et al. 2008; Stilp et al. 2010). Although Mandarin is a tone language, 576 

and one might have expected tone-related differences in behavioral thresholds, the results 577 
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of R sentences are comparable to the results of previous studies using sentences from 578 

non-tonal languages (Saberi and Perrott 1999; Stilp et al. 2010).  579 

Next we turn to the novel manipulations. In Experiment 2A, speech intelligibility for 580 

the ER sentences was significantly higher than for the R sentences. As the key difference 581 

between the R and ER sentences is only whether the TFS is disrupted, this result suggests 582 

that the intact TFS in the ER sentences aids in restoring the temporal information in the 583 

reversed speech by increasing intelligibility. In Experiment 2B, we also found that the 584 

intelligibility threshold for the ER sentences was significantly larger than for the ERNV 585 

sentences, and that the intelligibility difference between ERNV and ER sentences was 586 

comparable to the difference between the R and ER sentences. This second result lends 587 

strong support to the hypothesis that the auditory system extracts temporal information 588 

from the TFS to compensate for the disrupted SE. 589 

Speech intelligibility for the FSR sentences did not change across different segment 590 

sizes. This could be because the intact SE supplied sufficient information for speech 591 

segmentation even though TFS was compromised. This could be considered a similar 592 

case as Shannon et al. (1995), where noise modulated by four bands of the SE was 593 

sufficient for speech perception. The data invite the hypothesis that the temporal 594 

information in the TFS only starts to become a significant cue when the SE is disrupted. 595 

The gain in speech intelligibility by adding the intact TFS may be caused by an 596 

interaction at the acoustic level between TFS and the reversed envelope, such that the 597 

original envelope is recovered (Kates 2011; Shamma and Lorenzi 2013). Admittedly, 598 

while the shape of the envelope can be changed depending on its carrier, we argue that 599 

this contributes little to the gain in intelligibility. In Figure 4, we show that the spectra of 600 
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the envelopes of the ER and ERNV sentences do not significantly differ across different 601 

segment sizes. We first generated the ER and ERNV sentences from 20 raw sentences 602 

and then extracted their envelopes using 16 bands. We computed the average spectra of 603 

the ER and ERNV envelopes (Fig. 4A, upper panel) and then the differential spectra 604 

between the ER and ERNV envelopes (Fig. 4A, lower panel). To quantify whether the 605 

differences between the ER and ERNV envelope spectra were significant, we computed a 606 

bootstrap threshold with a two-sided alpha level of 0.05: we randomly sampled from the 607 

ER and ERNV sentences to form two new groups of sentences and then computed a 608 

differential spectrum. We repeated this procedure 1000 times to generate thresholds for 609 

the differential spectra between ER and ERNV. For window lengths of 70 and 90 ms, 610 

speech intelligibility differed significantly between ER and ERNV sentences (Fig. 3C), 611 

but there were no significant differences of the spectra of the envelopes (Fig. 4B). 612 

 613 

 614 

Figure 4.  615 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508358doi: bioRxiv preprint 

https://doi.org/10.1101/508358
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

(A) The upper panels: averaged spectra of the envelopes from 20 ER and ERNV sentences across four 616 
window lengths used in Experiment 1. The green line represents the ERNV sentences; the red line 617 
represents the ER sentences. The x-axis is frequency and the y-axis shows normalized amplitude of the 618 
spectra. The lower panel depicts the differential spectra computed by subtracting the spectra of ERNV 619 
sentences from the spectra of ER sentences. The black line represents the differential spectra and the red 620 
and blue lines show bootstrap thresholds. The envelopes of the ER and ERNV sentences do not 621 
significantly differ. Note that this is also true for the window lengths of 70 ms and 90 ms, where speech 622 
intelligibility for the ER sentences was significantly higher than the ERNV sentences. (B) Example 623 
envelopes of an ER and ERNV sentence across different window lengths. The shaded area represents +/- 624 
SEM over sentences. 625 

626 
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Discussion 627 

Previous studies that principally focused on the speech amplitude envelope revealed only 628 

part of the mechanism for segmentation. The SE and the TFS convey comparable 629 

temporal information to elicit cortical entrainment. The auditory system relies on various 630 

cues in speech signals, both temporal and spectral, for segmentation. The data we 631 

presented demonstrate that the TFS contains temporal information that can be used for 632 

speech segmentation by entraining cortical oscillatory responses. Using MEG 633 

experiments, we first demonstrated that the TFS could entrain cortical oscillatory 634 

responses, with phase patterns specific to a particular TFS. We then evaluated 635 

contributions to temporal information from the recovered envelope and the spectral 636 

dynamics in the TFS and found that the temporal information of the TFS comes primarily 637 

from the dynamics of its spectral structure, which can be captured using spectral 638 

correlation. A further analysis on the effect of the number of frequency bands showed 639 

that spectral resolution plays a major role in extracting temporal information from TFS. 640 

Using behavioral measurements, we next showed that the TFS contains critical acoustic 641 

cues for the auditory system to restore the temporal structure of speech and aids speech 642 

recognition. 643 

The data explain previous findings on the benefit of TFS in challenging listening 644 

environments.  645 

Our behavioral results showed that TFS helps the auditory system restore temporal 646 

information when the SE is disrupted. This result echoes previous findings that TFS helps 647 

increase speech intelligibility under challenging environments (Hopkins et al. 2008; 648 

Moore 2008) and further suggests that the gain from the TFS is a result of 649 
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complementary temporal information contained in the TFS. The auditory system can 650 

monitor spectral changes to recover temporal information lost due to a disrupted 651 

envelope.   652 

Our results involving cortical entrainment evoked by the TFS could explain the 653 

finding that, when the SE is smoothed by added noise, robust cortical entrainment can 654 

still be found (Zoefel and VanRullen 2015). The smoothing procedure used in Zoefel et 655 

al. (2015) operated on each frequency band and could have left the TFS intact and 656 

therefore, the auditory system could still extract sufficient temporal information from the 657 

spectral structure of the processed speech signals. Other data show that the TFS helps the 658 

speech amplitude envelope entrain cortical oscillatory responses in noise (Ding et al. 659 

2014), which is presumably because the TFS contains temporal information similar to the 660 

SE and can provide comparable temporal information to entrain cortical oscillatory 661 

responses when the envelope is disrupted by white noise.    662 

The auditory system extracts temporal information from both the TFS and the SE. 663 

Previous studies (Ghitza 2001; Zeng et al. 2004) suggest that the auditory system extracts 664 

temporal information from the TFS through the recovered envelope. Our data support this 665 

general point. Furthermore, we also found that the recovered envelope by itself cannot 666 

fully explain the amount of temporal information in the TFS (Fig. 2A). Our MI analysis 667 

between SC and the MEG phase series reveals that the auditory system monitors spectral 668 

changes in the TFS to extract temporal information, and that the dynamics of the spectral 669 

structure in the TFS explains a larger amount of variance, indicated by MI analysis, in the 670 

MEG phase series than the recovered envelope.  671 
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The TFS preserves the rich spectral information of speech and carries information 672 

relevant to pitch (Moore and Moore 2003; Moore et al. 2006), lexical tone (Xu and 673 

Pfingst 2003; Zeng et al. 2005), and the acoustic transitions between consonants and 674 

vowels (Rosen 1992). All this information in the spectral domain of speech provides 675 

dynamic cues for speech segmentation. We used SC and CSC to extract temporal 676 

information from TFS, which we aim to reveal in the TFS how spectral information 677 

changes along time and where temporal information exists. This does not necessarily 678 

mean that SC and CSC represent how exactly the auditory system extracts information 679 

from the TFS. SC and CSC can be viewed as one of many algorithms that the auditory 680 

system implements to process the TFS, and other algorithms may also achieve a similar 681 

computational goal of recovering temporal information from the TFS (Shamma and 682 

Lorenzi 2013; Ewert et al. 2018).  683 

Spectral resolution plays a key role in processing the TFS.  684 

We found that the number of frequency bands strongly modulates the extraction of 685 

temporal information from the TFS (Fig. 2C). Although temporal acuity, which is 686 

important for processing temporal fluctuations in speech, is relatively preserved in 687 

cochlear implant users, deficits of perceiving speech in challenging environments among 688 

people with hearing loss still exists (Oxenham and Kreft 2014). It has been argued that 689 

the reduced spectral resolution smears spectral details of speech and maskers (Fu and 690 

Nogaki 2005; Oxenham and Kreft 2014).  Our results suggest that the reduced spectral 691 

resolution smears the spectral details of TFS which results in poor extraction of temporal 692 

information from the spectral structure in speech. This smearing effect prevents the 693 
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auditory system from parsing the speech stream using spectral contents and therefore 694 

leads to degraded intelligibility.  695 

The  correlation between spectral resolution and speech intelligibility (Oxenham and 696 

Kreft 2014) could be due to the way the auditory system groups speech information in 697 

terms of spectral and temporal structure. Modulated noise often reduces listeners’ 698 

sensitivity to the TFS (Hopkins and Moore 2011), which could be because modulated 699 

noise contains dynamic changes in spectral contents and interferes with the spectral 700 

structure preserved in TFS. Reduced spectral resolution prevents the auditory system both 701 

from tracking spectral changes in speech signals and from separating maskers from target 702 

speech based on spectral details.  703 

The relationship between the envelope and fine structure.  704 

Speech is often investigated as an envelope and a fine structure. As the envelope 705 

manifests characteristic temporal structures of speech signals, such as syllable and 706 

phoneme structures (Di Liberto et al. 2016), mechanisms revealed by studies on the 707 

envelope are often argued to be related to temporal coding. Therefore, many studies on 708 

speech segmentation mostly focus on the SE and separate between the SE and the TFS. 709 

The present study indicates a blurred line between the envelope and TFS in speech 710 

segmentation, as our results show that the auditory system can rely on the TFS to 711 

temporally group speech information. The common practice of using band-filtering 712 

methods to separate envelope and TFS may not be an ideal way to extract critical features 713 

from speech signals, as previous finding shows that the TFS and the SE code comparable 714 

information in the early/periphery auditory system and therefore cannot be fully 715 

separated (Shamma and Lorenzi 2013). Speech segmentation could rely on local 716 
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temporal-spectral operations, such as SC and CSC used in the present study and spectro-717 

temporal receptive fields found in many studies (Theunissen et al. 2000; Eggermont 718 

2001; Machens et al. 2004; Ding and Simon 2013; Mesgarani et al. 2014). 719 

We calculated the modulation power spectra of raw speech signals and the TFS, using 720 

different numbers of frequency bands (Singh and Theunissen 2003; Elliott and 721 

Theunissen 2009). We created time-frequency representations of the speech signals and 722 

TFS using the log amplitude of their spectrograms obtained with Gaussian windows. We 723 

then applied the 2D Fourier Transform to the spectrograms and created modulation power 724 

spectra by taking the amplitude squared as a function of the Fourier pairs of the time and 725 

frequency axes. We illustrate in Figure 5 that the TFS represents the residual signals left 726 

by envelope extraction - the higher the number of frequency bands used, the less 727 

modulation power was left in the TFS. This demonstration further argues that TFS and 728 

envelope cannot be fully separated and the auditory system segments speech signals in a 729 

‘holistic’ or ‘synthetic’ manner, concurrently and cooperatively using both temporal and 730 

spectral information.  731 

 732 

Figure 5.  733 

Averaged modulation power spectrum of speech signals and TFS. (A)We selected 20 sentences used in the 734 
present study for analysis and averaged the results across 20 sentences. The x-axis of each plot represents 735 
temporal modulation and the y-axis spectral modulation. From left to right, the modulation power spectrum 736 
was calculated for raw sentences and the TFS reconstructed using different numbers of frequency bands. 737 
The modulation power decreases as more frequency bands are used to extract the envelope. (B) We 738 
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quantified the difference of the modulation power spectrum between the raw sentences and the TFS by first 739 
calculating subtraction between the modulation power spectrum of the raw sentences and the TFS and then 740 
taking the norm. It can be seen that, as the number of frequency bands increases, the TFS preserves less 741 
modulation information of the raw sentences (the matrix norm increases).   742 
 743 

Conclusion: speech segmentation from a synthetic perspective.  744 

The envelope and the temporal fine structure of speech are often studied separately in the 745 

context of cortical entrainment to speech and speech segmentation. Our study 746 

demonstrates that the auditory system treats speech as a whole, and that temporal speech 747 

segmentation involves processing both the temporal and spectral contents of speech. This 748 

view provides new interpretations to previous findings and also generates new 749 

hypotheses for the future study of the neural basis of speech segmentation.  750 

  751 
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