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Abstract

This paper studies the NP-hard problem of /nding a minimum size 2-edge connected spanning subgraph (2-ECSS). An
algorithm is given that on an r-edge connected input graph G=(V; E) /nds a 2-ECSS of size at most |V |+(|E|−|V |)=(r−1).
For r-regular, r-edge connected input graphs for r = 3, 4, 5 and 6, this gives approximation guarantees of 5

4 ;
4
3 ;

11
8 and 7

5 ,
respectively.
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1. Introduction

The minimum size 2-edge connected spanning
subgraph (2-ECSS) problem is the following: Given
a 2-edge connected graph G, /nd a spanning sub-
graph H of G such that H is 2-edge connected and H
has the least number of edges. We denote the number
of edges in a minimum size 2-ECSS by �(G). We can
immediately note that �(G)¿ |V (G)|, and the equal-
ity holds only if G has a Hamiltonian cycle. This
problem is NP-hard because the NP-hard Hamiltonian
cycle problem reduces to it [2].
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An 	-approximation algorithm for a combinatorial
optimization problem is an algorithm which runs in
polynomial time, and delivers a feasible solution to the
problem whose cost is within a multiplicative factor
	 of the cost of the optimal solution. The number 	 is
called the approximation guarantee of the algorithm.
Khuller and Vishkin [4] gave a 3

2 -approximation
algorithm for the minimum size 2-ECSS problem
using the depth-/rst search algorithm and a notion
called “tree carving”. Garg et al. [3] claimed to have
a 5

4 -approximation algorithm for the minimum size
2-ECSS problem, but no proof was given. Cheriyan
et al. [2] devised an algorithm for the minimum size
2-ECSS problem with the approximation guarantee
of 17

12 . They used an ear decomposition to construct a
feasible 2-ECSS.
In this paper, we give an algorithm which, on an

r-edge connected input graph, /nds a 2-ECSS of
size at most |V | + (|E| − |V |)=(r − 1), where r¿ 2.
For r-regular, r-edge connected input graphs, the LP

0167-6377/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2003.08.006

mailto:huh@ieor.columbia.edu


W.T. Huh /Operations Research Letters 32 (2004) 212–216 213

relaxation of the integer program has the optimal
value of |V |, and thus for r = 3; 4; 5 and 6, this gives
approximation guarantees of 5

4 ;
4
3 ;

11
8 and 7

5 , respec-
tively.
Since the submission of this paper, Vempala and

Vetta [6] presented a 4
3 -algorithm for general graphs

by /rst /nding a minimum subgraph of degree at
least 2. Krysta and Kumar [5] recently improved the
approximation guarantee to 4

3 − �, and for 3-regular
graphs, to 21

16 + �.

2. De�nitions and notation

An ear decomposition of the graph G = (V; E) is a
partition of E(G) into P0+P1+· · ·+Pk such that P0 is
a trivial path with one vertex, and for 16 i6 k, Pi is
a nontrivial path or cycle where the subgraph formed
by {P0; P1; : : : ; Pi−1} contains both end vertices of Pi,
but none of the internal vertices of Pi. Each Pi is called
an ear, and if Pi has length l, it is an l-ear. We say k
is the number of ears.
It is easy to observe that k = |E| − |V | + 1. If the

ear decomposition P0 + P1 + · · · + Pk has t 1-ears,
then we can discard all 1-ears, and obtain a valid ear
decomposition for a spanning subgraph H of G. This
subgraph H is 2-edge connected by Proposition 1 be-
low. Thus we note that |E|− t is an upper bound for �.

Proposition 1 (Whitney [7]). A graph is 2-edge con-
nected if and only if it has an ear decomposition.

For S ⊂ V , we let �(S) = {vw∈E|v∈ S; w �∈
S} and �(S) = {vw∈E|v; w∈ S}. We denote by

�(v) = {vw∈E|w∈V} the set of neighbors of
vertex v.

3. Description of the algorithm

The algorithm 2-ECSS is based on /nding an ear
decomposition. The discussion in the previous section
motivates us to maximize the number of 1-ears. This
is equivalent to minimizing the number of ears whose
length is greater than 1. Our greedy algorithm attempts
to achieve this by constructing long ears one by one.
The /rst ear P1 is some cycle. At an intermediate

step, when there is a subgraph H := P1 + · · · + Pi−1

which is not spanning, we /nd an edge w0w1 such that
w0 is in H but w1 is not. Then we iteratively build
a path P by using only vertices w1; w2; : : : not in H .
When the iteration cannot proceed at some vertex z, we
call this vertex the critical vertex of the iteration. At
this point, we have either that �(z) intersects with H ,
or that �(z) is contained in V (P)−w0. In the /rst case,
we add this path Pi := P+ zv where v∈V (H)∩�(z)
to H . In the second case, we shrink a cycle formed by
a subset of V (P) − w0. We terminate when we /nd a
spanning subgraph.
Algorithm 1 states the details of algorithm 2-ECSS.

The input graph is an r-edge connected multigraph
G=(V; E) of order n with m edges, where r¿ 2. The
r-edge connectivity condition is needed in Theorem 3
because we require that the input G of every recursive
call to 2-ECSS must have a minimum degree r. The
other piece of initial input is the empty graph H =
(∅; ∅). In each recursive step, H is a 2-edge connected,
not necessarily spanning, subgraph of G. When there

Algorithm 1 (2-ECSS): Approximation Algorithm for the Minimum Size 2-ECSS Problem

Input: r-edge connected multigraph G = (V; E) with no loop, and a 2-edge connected submultigraph H .
Output: 2-ECSS S of G such that H is a subgraph of S.

if H is a spanning subgraph of G then
Return H . {Case A: H is a 2-ECSS.}

else if H is empty then
Let P be any cycle in G. {Case B: Found the /rst nontrivial cycle.}
Call algorithm 2-ECSS (G; P) to obtain S.
Return S.

else
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We have (H $ V ).
Choose w0 ∈H such that w0 is adjacent to a vertex outside H .
j := 0.
Let P be the trivial path from w0 to w0.
while wj has a neighbor wj+1 outside H and P do

Add wj+1 to P.
Increment j.

end while
if wj has a neighbor wj+1 in H then

Add wj+1 to P. {Case C1: Found an ear.}
Call algorithm 2-ECSS (G;H ∪ P) to obtain S.
Return S.

else
We have �{wj} ⊂ {w1; : : : ; wj}. {Case C2: Found a cycle.}
Let h¿ 1 be the smallest index such that wh is a neighbor of wj.
Let C be the cycle wh; wh+1; : : : ; wj; wh.
Shrink the cycle C into vertex vC and get GC .
Call algorithm 2-ECSS (GC;H) to obtain S.
Return S ∪ C.

end if
end if

is no ambiguity, we use H to refer to both H and
V (H).

4. Analysis: r-edge connected graphs

Theorem 3 holds trivially if r = 2. Continue the
analysis by assuming r¿ 3.

Algorithm 2-ECSS terminates when it /nds a span-
ning subgraph S. The algorithm also /nds an ear de-
composition of S such that each ear length is at least
2. Note that the size of E(S) is (n−1) plus the number
of ears in the construction. Thus our goal is to give an
upper bound on the number of ears using the sum of
degrees.
To achieve this goal, we introduce a potential func-

tion � such that �(v) is an upper bound on the num-
ber of neighbors of v in V (G) \ V (H). Initially set
�(v)=deg(v). We will show that ifH is neither empty
nor spanning, then each iteration reduces

∑
v �(v) by

2(r − 1 +  ), where  is the decrease in the size of
V (G) \ V (H).
Case A: We make no change in �.

Case B: For each v∈P in the /rst nontrivial cycle,
we decrease �(v) by 2. This case occurs only once
to construct the /rst cycle P1. Note that the length of
cycle P is  , and

∑
v �(v) decreases by 2 .

Case C1: We decrease � by 1 for each end vertex
of the ear P. (In case where both end vertices of P
are the same, we decrease � of the end vertex by
2.) We decrease by 2 for each internal vertex of P.
This accounts for edges in the newly added path P.
Furthermore, for each edge f=yz ∈ �(z)\E(P) where
z is the critical vertex, we subtract 1 from �(y) and
from �(z). This accounts for edges which disappear
from G \ V (H). There are at least r − 2 edges in
�(z) \ E(P) for r-edge connected graphs. Thus if l
represents the length of P, then

∑
v �(v) decreases by

at least 2l+ 2(r − 2). We note that  is l − 1.
Case C2: First, for each vertex v∈C we decrease

�(v) by 2. This accounts for edges in the cycle C. In
addition, for each edge f= yz ∈ �(z) \ E(C) where z
is the critical vertex, we subtract 1 from �(y) and also
from �(z). (Once again there are at least r − 2 such
edges.) This accounts for some chords in C. Then let
�(vC) =

∑
w∈V (C) �(w). If we let l be the length of

C, then
∑

v �(v) decreases by at least 2l+ 2(r − 2).
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We see that  is l − 1. Now we have the following
proposition.

Proposition 2. Let  i be the decrease in the size of
V (G)\V (H) at iteration i=1; 2; : : : : Case B reduces∑

v �(v) by 2 i = 2 1. Each iteration of Cases C1
and C2 reduces

∑
v �(v) by 2(r−1+ i). Also, �(v)

is an upper bound on the number of neighbors of v in
V (G) \ V (H).

Theorem 3. Let G be an r-edge connected multi-
graph with n vertices and m edges, where r¿ 2. Then
algorithm 2-ECSS outputs a 2-ECSS S of G satisfy-
ing

|E(S)|6 n+
m − n
r − 1

:

Proof. Suppose S is obtained after t iterations. Then
S has n−1+ t edges. Since initially

∑
v∈V �(v)=2m

and � should stay nonnegative, Proposition 2 implies

2m¿ 2 1 +
t∑

i=2

(2(r − 1 +  i))

= 2(t − 1)(r − 1) + 2n:

By dividing this expression by 2(r−1) and rearranging
it, we obtain the desired result.

Corollary 4. Let G be an r-edge connected r-regular
multigraph with n vertices and m edges, where r¿ 2.
Then we have

|E(S)|6
(
1 +

r − 2
2r − 2

)
n:

Therefore for r = 3, 4, 5 and 6, we have the approxi-
mation guarantees of 5

4 ;
4
3 ;

11
8 and 7

5 , respectively.
For a special case where G is 3-edge connected and

3-regular, we can obtain the same result by a simpler
algorithm using Menger’s Theorem [1].
We remark that the r-edge connectivity condition

cannot be discarded for the analysis of algorithm
2-ECSS. Consider the following example. We denote
by Ph the perfect binary tree where all the leaf ver-
tices are at level h. Note that Ph has 2h+1 − 1 vertices
and 2h+1 − 2 edges. We de/ne the Web Graph Wh by
taking two copies of Ph, identifying each pair of cor-
responding leaves, and adding an edge between a pair
of identi/ed “leaf” vertices that share the common

Fig. 1. Example showing the necessity of the r-edge connectivity
condition.

parent in Ph. Furthermore, we de/ne the Tri-Web Th
by taking three copies of Wh and introducing two
degree 3 vertices, each of which is adjacent to three
corresponding vertices of degree 2 in Wh. See Fig. 1
for illustration when h=2. We observe Th has 9·2h−4
vertices and 27

2 · 2h − 6 edges.
Note that if we run algorithm 2-ECSS on Th, which

is 3-regular but not 3-edge connected, the algorithm
may /nd and shrink all the 4-cycles at the start. In that
case, the output S has 12 ·2h −6 edges. Thus the ratio
|E(S)|
|V (Th)| asymptotically approaches 4

3 ¿
5
4 .
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