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Abstract 

Given a sequence of iid demands and an order up to replenishment policy with negligible lead 

time, we prove that average fill rate is monotonically decreasing in the number of periods in the 

planning horizon. This was conjectured to be true in a recent issue of this journal. 
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Average Fill Rate And Horizon Length  

1.  Introduction 

Consider a simple inventory system for a single product over a finite horizon. Demand is 

represented by a sequence of positive valued iid  random variables. There are as many terms in the 

sequence as there are periods in the horizon. The replenishment system is of the order up to type. 

In a recent issue of this journal, Chen, Lin and Thomas [1] proved the following result for the 

system just described: expected fill rate over a finite horizon with two or more periods is smaller 

than expected fill rate over a single period and greater than expected fill rate over an infinite 

horizon, assuming negligible lead time. As pointed out by the authors in [1], this result has the 

interesting implication that the customary formula 

Demand Average
Filled Demand of  UnitsofNumber  Average  Rate Fill =  

which applies exactly to periodic review inventory systems over an infinite horizon, 

underestimates the fill rate achieved over a finite horizon. 

It is conjectured in [1] that for a fixed order up to level, expected fill rate over a finite 

horizon is a monotonically decreasing function of the number of periods in the horizon; in this 

paper, we prove the conjecture. Incidentally, all the results about mean fill rate obtained by the 

authors in [1] follow from the proof of the conjecture (Theorem 2 of the present paper). 

2. Results and Discussion 

Let X1, X2, …. ,Xi, … denote an iid sequence of positive valued demand random variables. Let s, a 

fixed positive number, denote the order up to level. Then, provided that the replenishment lead 

time is zero, the number of units of demand satisfied in period i is Min[Xi,s]. We write Yi = 



Min[Xi,,s]. Then expected fill rate over k periods is ].
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 Chen, Lin and Thomas 

proved the following theorem: 

Theorem 1 

Let i be any positive integer and let k be any positive integer greater than 1. Then 
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We prove a stronger result, which was conjectured to be true by the authors of Theorem 1: 

Theorem 2 
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 is non-increasing in k. 

 Notice that Theorem 1 can be deduced immediately from Theorem 2. Further, Theorem 2 

validates the tacit assumption made by Chen, Lin and Thomas that the sequence 

uk = ]
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 has the property that lim inf uk = lim sup uk (that is, the sequence has no limit 

points other than the unique limit). It follows from Theorem 2 that for a fixed demand distribution 

and an order up to replenishment policy with negligible lead time, the conventional formula for fill 

rate is a progressively better approximation to the actual mean fill rate for finite horizon inventory 

systems spanning a greater number of periods.  

 The related inequality ]
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 are positive valued iid random variables, then 11 ,,..., +kk XXX
k

XX k++ ...1  is greater than 

1
...1

+
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k
XX k 1+X k  in the convex order ([3], Theorem 2.A.12). It is interesting to note that 

Theorem 2 asserts that the numbers k and k+1 in the numerators of the above inequality can be 
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replaced by the random variablesY kY++ ...1  and 11 ... ++++ kk YYY respectively, despite the 

stochastic dependence between Yi and Xi in the operand of the expectation operator. It is natural to 

enquire whether Theorem 2 can be extended to a class of functions h(Xi) that includes Min(Xi, s) 

as a special case. The class of increasing concave functions would seem to be a promising 

candidate but it is ruled out by the following counterexample: if Yi = Xi – s (s > 0), then 
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a little algebraic manipulation). 
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3. Proof of Theorem 2  

We prove the theorem for arbitrary positive valued discrete random variables with finite support 

(that is, for positive valued simple random variables). The result extends to arbitrary positive 

valued random variables by convergence: for every positive valued random variable X, there 

exists a sequence of positive valued simple random variables converging to X pointwise. Let s be 

a fixed strictly positive real number. Let the underlying distribution consist of the points a1, …, au 

and b1, …, bv where 0 < a1 < a2 <… < au < s < b1 < b2 < ….. < bv. Further, suppose the distribution 

attaches probability pi to the point ai (i = 1, …, u) and probability qi to the point bi (i = 1, …, v), so 

that ∑ ∑ Suppose X1, …, XN (where N > 2) are independent random variables drawn 

from this distribution and let Yi = Min[Xi,s]. Then we have  
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where the leading summation extends over all non-negative integers k1,…,ku, l1,…,lv such that 

. Note that in forming the convolution XNlk
v

i
i

u

i
i =+∑∑

== 11
1+ …. + XN, the point a1 occurs k1 times, 

a2 occurs k2 times, …, au occurs ku times, b1 occurs l1 times, b2 occurs l2 times, …, bv occurs lv 

times. Let us compare X1+ …. + XN-1 and X1+ …. + XN by conditioning on the outcome of the N-

th draw from the distribution in a random sample of size N. The N-th draw results in the point ai 

with probability pi (i = 1 to u) and in the point bi with probability qi (i = 1 to v). If the outcome of 

the N-th draw is a1, then in forming the convolution X1+ …. + XN-1 the point a1 occurs k1-1 times, 

a2 occurs k2 times, …, au occurs ku times, b1 occurs l1 times, b2 occurs l2 times, …, bv occurs lv 

times. This pattern extends in an obvious way to each of the other outcomes of the N-th draw. 
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where k1,…,ku, l1,…,lv are integers such that . However, we shall soon see that it 

will be useful to treat each of the (k

Nlk
v

i
i

u

i
i =+∑∑

== 11

u

i
∑
=1

u+lv) leading summations in (2) as extending over all non-
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quantity (-1)! arises; the same thing happens mutatis mutandis with ki = 0 for every i > 2 and with 

lj = 0 for every j > 1. We define (-1)! to be ∞ . Now using the fact that 01
=

∞
in the extended real 

number system, every term with (-1)! simply drops out when we extend each of the (ku+lv) leading 

summations in (2) to all non-negative integers that partition N. We now have a one-to-one 

correspondence between the terms in (1) and the terms in (2), since the leading summations in (1) 

and in (2) extend over the same range. 

Now we need to prove that (2) when summed over all non-negative integers k1,…,ku, 

l1,…,lv such that  is greater than or equal to (1) when summed over all non-

negative integers k
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1,…,ku, l1,…,lv such that . That is, we need to prove that (2), 

summed over all partitions k
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1+…+ku+ l1,…+lv of N, is greater than or equal to (1) summed over 

all partitions k1+…+ku+ l1,…+lv of N. In fact, we shall prove that given any partition k1+…+ku+ 

l1,…+lv of N,     
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We shall prove inequality (3) via two lemmas. Define b = 
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Write A = . To prove (4), we first show that the function ∑
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The last inequality follows from b – ai > 0 for i = 1,2, …, u. This proves Lemma 2.  

Lemma 1 and Lemma 2 together yield Theorem 2, completing our proof. 
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