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Abstract
Given a sequence of iid demands and an order up to replenishment policy with negligible lead
time, we prove that average fill rate is monotonically decreasing in the number of periods in the

planning horizon. This was conjectured to be true in a recent issue of this journal.
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Average Fill Rate And Horizon Length

1. Introduction

Consider a simple inventory system for a single product over a finite horizon. Demand is
represented by a sequence of positive valued iid random variables. There are as many terms in the
sequence as there are periods in the horizon. The replenishment system is of the order up to type.
In a recent issue of this journal, Chen, Lin and Thomas [1] proved the following result for the
system just described: expected fill rate over a finite horizon with two or more periods is smaller
than expected fill rate over a single period and greater than expected fill rate over an infinite
horizon, assuming negligible lead time. As pointed out by the authors in [1], this result has the
interesting implication that the customary formula

Average Number of Units of Demand Filled
Average Demand

Fill Rate =

which applies exactly to periodic review inventory systems over an infinite horizon,
underestimates the fill rate achieved over a finite horizon.

It is conjectured in [1] that for a fixed order up to level, expected fill rate over a finite
horizon is a monotonically decreasing function of the number of periods in the horizon; in this
paper, we prove the conjecture. Incidentally, all the results about mean fill rate obtained by the
authors in [1] follow from the proof of the conjecture (Theorem 2 of the present paper).

2. Results and Discussion
Let X, X», ....,Xj, ... denote an iid sequence of positive valued demand random variables. Let s, a
fixed positive number, denote the order up to level. Then, provided that the replenishment lead

time is zero, the number of units of demand satisfied in period i is Min[Xj,s]. We write Y; =



. L Y +..+Y, .
Min[X;, s]. Then expected fill rate over k periods is E[—————*-]. Chen, Lin and Thomas

X, +.+X,

proved the following theorem:
Theorem 1
Let i be any positive integer and let k be any positive integer greater than 1. Then

i+.+7Y,

We prove a stronger result, which was conjectured to be true by the authors of Theorem 1:

Theorem 2
Y +..+7,
E[——"—"% 1 is non-increasing in k.
X, +.+X,

Notice that Theorem 1 can be deduced immediately from Theorem 2. Further, Theorem 2
validates the tacit assumption made by Chen, Lin and Thomas that the sequence

Y +..+7,

] has the property that lim infux = lim sup u (that is, the sequence has no limit
X, +.+X,

U = [

points other than the unique limit). It follows from Theorem 2 that for a fixed demand distribution
and an order up to replenishment policy with negligible lead time, the conventional formula for fill
rate is a progressively better approximation to the actual mean fill rate for finite horizon inventory
systems spanning a greater number of periods.

The related inequality £ [X k 1> E[ kel ] follows from the fact that if

et X, X, +..+X,,

X, +.+X,

X,y X, X,,, arepositive valued iid random variables, then — is greater than

X +.+X, +X,,
k+1

in the convex order ([3], Theorem 2.A.12). It is interesting to note that

Theorem 2 asserts that the numbers k and k+1 in the numerators of the above inequality can be



replaced by the random variablesY, +...+ Y, and ¥, +...+Y, + 7Y, respectively, despite the

stochastic dependence between Y; and Xj in the operand of the expectation operator. It is natural to
enquire whether Theorem 2 can be extended to a class of functions h(X;) that includes Min(X;, s)
as a special case. The class of increasing concave functions would seem to be a promising

candidate but it is ruled out by the following counterexample: if Y; = X — s (s > 0), then

Y +..+7, 1< £ Y +..+Y,,
X, +.+X, X, +..+ X,

E]

] (this follows from the convex ordering result alluded to, and

a little algebraic manipulation).

3. Proof of Theorem 2

We prove the theorem for arbitrary positive valued discrete random variables with finite support
(that is, for positive valued simple random variables). The result extends to arbitrary positive
valued random variables by convergence: for every positive valued random variable X, there
exists a sequence of positive valued simple random variables converging to X pointwise. Let s be
a fixed strictly positive real number. Let the underlying distribution consist of the points ay, ..., a,
and by, ..., by where 0 <a; <a; <... <a;<s <b; <b, <..... <b,. Further, suppose the distribution

attaches probability p; to the point a; (i= 1, ..., u) and probability g; to the point b; (i=1, ..., v), so

that z p;+ Zqi =1.Suppose Xi, ..., Xx (Where N > 2) are independent random variables drawn

i=1 i=1

from this distribution and let Y; = Min[Xj,s]. Then we have

Zu:kiai+zv:lis
M = N! i=1 i=1 k 4 I
X1+...+XN] Zkllkz!...ku!ll!lz!..]v!ik'a'+ -—Lr 1 (D)

Z libi i=1 i=1

i=1 i=1

E]




where the leading summation extends over all non-negative integers k;,.. ..k, 1;,...,l; such that

Zki + Zli = N . Note that in forming the convolution X;+ .... + Xy, the point a; occurs k; times,

i=l i=1

a, occurs ko times, ..., a, occurs k, times, by occurs 1; times, b, occurs 1, times, ..., b, occurs I
times. Let us compare X;+ .... + Xy and X;+ .... + Xy by conditioning on the outcome of the N-
th draw from the distribution in a random sample of size N. The N-th draw results in the point a;
with probability p; (i = 1 to u) and in the point b; with probability q; (i =1 to v). If the outcome of
the N-th draw is a;, then in forming the convolution X;+ .... + Xx_; the point a; occurs k;-1 times,
a, occurs ko times, ..., a, occurs k, times, by occurs 1; times, b, occurs 1, times, ..., by occurs I

times. This pattern extends in an obvious way to each of the other outcomes of the N-th draw.

Y +.+7
Hence we have E[————21 ] =
X+ +X,,
(N 1)| zkiai+zlis_al u v
-1 = = k-l k; I,
P z (k_l)lklkllllljlul - P Hp, H‘L
ilzil“’kuzo 1 U RETT A SRY TRY REPE ¥ Zkiai +lebl _al =2 i=l1
11,20 in1 i=1
+ .
ka+ ) ls—s
(N -1)! 2+ 2

u v—1
ta 2 Vo kL (=) - - qvlﬁlnp"kinq"li 2)
2}5}-’]{“20 RS RRITAR TS RS R R U . zkiai +zllbl —bv i=1 i=1

ool 120 i=1 i=1



where ki,....ky, 1i,...,]y are integers such that Zk,. + Zli = N . However, we shall soon see that it

i=1 i=1

will be useful to treat each of the (k,*1y) leading summations in (2) as extending over all non-

negative integers (including zero) ki, ...k, 1,...,ly such that Zki + ZZi = N . Note that when

i=1 i=1

Zkia[ —i—leAs—a1
(N_l)! i=1 i=1 k-1 = k; - l; th d f d
ky =Dy ke MY : P Hp" Hqi’ ¢ Hnaete
(k, Ve,V kM 2....V.Zkiai+zlibi_al i=2 i=1

i=1 i=l1

ki=0in p, ).

quantity (-1)! arises; the same thing happens mutatis mutandis with k; = 0 for every 1 > 2 and with

l; =0 for every j > 1. We define (-1)! to be co. Now using the fact that s = 0 in the extended real
e}

number system, every term with (-1)! simply drops out when we extend each of the (k,+1,) leading
summations in (2) to all non-negative integers that partition N. We now have a one-to-one
correspondence between the terms in (1) and the terms in (2), since the leading summations in (1)
and in (2) extend over the same range.

Now we need to prove that (2) when summed over all non-negative integers kj,...,ky,

ly,...,ly such that Zki + Zli = N is greater than or equal to (1) when summed over all non-
i=1 i=1

negative integers ki,...,ky, 11,...,ly such that Zki + ZZI. = N . That is, we need to prove that (2),

i=1 i=1
summed over all partitions k;+...+k,+ 1;,...+1, of N, is greater than or equal to (1) summed over
all partitions k;+...+ky+ 1;,...+1, of N. In fact, we shall prove that given any partition k;+...+k,+

li,...+1, of N,



(V1! ;kiai +Z:Zis—a1

1 &
u lv le qu
(k1 _1)'k2'ku'll'1"' Zkiai +zlibi -4 -
i=1 =l

V1)1 ;kiai+;lis—s . )

TR R RN v . H
BHL AL DI Sy

i=1 i=1

Y

1 Zk +§V:zs . ,
kel ke V) lvl Up"kil:[q"li

which implies our claim. Let us write Zk =n and ZI = m . Note that & 1)' = k, whenever
i=1 i=1 -
1 k!
k, >1 and = 0when k; = 0 (since— = 0). Hence for all k; > 0, we have =k, .
(k, —1)! © (k, =1)!
Using this fact, a little simplification shows that we need to prove
i Zkiai +Z:ll.s—a1 i Zkiai+21is—au
(n +1m) . - +m+(n +Mm) i”zl -
Zkiai +ZIibi —-a, Zkiai +Zlibi —-a,
i=1 i=1 i=1 i=1
I Zk +ZII.S—S ] ZkiaiJeris—s
+( " )— = +ot( +V )= =
o Zk + > Lb, ~b, TN ka + YL, -
i=1 i=1 i=1
Zkiai + ZZis
2 i=1 i=1 (3)

S ka, + 31,
i=l i=1



)4

Zlib,. v

We shall prove inequality (3) via two lemmas. Define b= =-— (so thathl.ll. =z L.D).
i=1

\4

Zli i=1
i=1

Lemma 1

The left hand side of inequality (3) is greater than or equal to

Zu:kiai+zv:lis—al Zu:kial.Jer:lis—au Zulkiai%rilis—s
( k= i=1 Fot ( k, = i=1 +( m_ .\ i i=1

n+m < N n+m < N n+m < o
D ka,+ lb—a D ka,+) lb-a, D ka,+>.Ib—b
i=1 i=1 i=1 i=1 i=1 i=1

Lemma 2

The right hand side of the inequality in Lemma 1 is greater than or equal to

Zu:kiai + Zv:lis
i=1 i=1
Zulkiai + Zv:lib
i=1 i=1

Theorem 2 follows from Lemma 1 and Lemma 2 since Zbl.ll. =Z [.b . We proceed to prove the

i=1 i=1
lemmas.

Proof of Lemma 1

Note that since Zbili =z [.b, the first u terms on both sides of the inequality in Lemma 1 are

i=1 i=1

equal and the inequality simplifies to

; ikiai+zv:lis—s / ikiai+zv:lis—s ikiai+iliS—S
i=1 > i=1 i=1

1 i=1 i=1 i=1
(—) ; ! + ...+ () ul

\4

"N ka, + Y Lb, ~b "Nk, + 1, b, . S ka, + 3 1b-b
i=1 i=1 i=1 i=1 i=1 i=1

(4)



Write A = Zaiki . To prove (4), we first show that the function Q(x,,...,x,) = ——=—— defined
= A+ bx,

for non-negative x; and restricted to the hyperplane le. =m—1 is convex in (Xy, .... , Xy). To
i=1

show this, we write x; = &, +tf, where;and f, are parameters and 0 <t <1 and show that

Qa, +1f,,....,a, +tB,) is a convex function of t. (For details about the validity of this procedure,

see [2], page 446). Note that ) x, =m—1 implies that Y @, =m—1land ) f, =0.

i=1 i=1 i=l

Hence we have

A+Zv:sai+szv:ﬂi A+Zv:sai
i=1 i=1 _ i=1

Qa, +tp,,....a, +tf,)= - . = - - .
A+ ba, +1) b A+ ba,+1) bp,
i=1 i=1 i=l i=1

The second derivative of this function with respect to t is

24+ Y sa) XA 2Ad+ Y sa )Y hp)

v v = > 205inceA>0,SZai>0,
(A+Zbiai +tzbiﬂi)3 (A+Zbi(ai +tﬁi))3 i=1
i=1 i=1 P

b; >0 and x, = a, +¢£, > 0 by hypothesis. Hence, Q(x,,...,x,)1s convex. Next, we shall use the

. [ / :
convexity of Q(x,,...,x,)to prove (4). Note that -+ ...+ -~ =1. We define the following v-
m m

vectors: z, = (I, = L1,,....0 ),z, =(,,l, = 1,....,0 ),....z, =(l,,,,...,[, = 1) . Now the left hand side of

v

(4) can be written as (%)Q(zl) + (%)Q(zz) +...+ (%)Q(zv) .



/
A little algebra shows that (l—l)zl + (1—2)22 ot (H)z, =, (1- ) [, (1- ), BN ——))
m m m

Finally, note that Q(/,(1- ! —)yeend (1= —)) reduces to the right hand side of (4). Since
m

Q(x,,...,x,)1s convex, Lemma 1 follows.

Proof of Lemma 2

We can rewrite the inequality to be proved as follows:

k b—s)m k b—s)m m b—s)(m-1
e e L e [
T Zkiai+mb—a1 o Zkiai+mb—au T Zkiai+(m—l)b
- b=om

Zkiai+mb
Since b > s, this is equivalent to

k m k m m m—1

- ot G I e
o Zk +mb —a, o Zka +mb—a o Zka +(m—-1)b

i=1
m

Zkiai+mb
i=1
=
: k, ot k, (m-1) < n+m
> k., +mb-a, > ka, +mb-a, Zka +(m—1)b Zka +mb
Note that

k.a.
kj J
Zka +mb-a,
k. ‘
- ! G=1,2,...,u)
Zkiai+mb Zkiai+mb—aj



(m—1)b

(m—1)+—
> ki, +(m—1)b |
Also, = =— m- )
> ka, +mb > ka, +(m—-1)b
i=1 i=1
So we need to show that
k k —
ko ko (m—1y+—— =D
Zkiai +mb—a, Zkiai +mb—a, Zkiai +(m-1)b
L +ot L + L < nEm
> k.a, +mb > k.a, +mb > k.a, +mb > k., +mb
i=1 i=1 i=1 i=l
N
klal + . kuau + (m_l)b Sl

.+
Zkl.al. +mb—a, Zkial_ +mb—a, Zkia[ +(m-1)b
i=1 i=1 i=1

the preceding equivalence following from the fact that Zki =n.
i=1

Now the left hand side of the inequality above can be written as

ka, - k,a, N (m-=1b

Dk, +(m-1)b+(b-a,) Yka,+(m-Db+(b-a) D ka, +(m-1)b
i=1 i=1 i=1

<— ka, ot — k,a, +— m=Db  _,
> ka, +(m-1)b Y ka,+(m-Db > ka, +(m-1)b
i=1 i=1 i=1
The last inequality follows from b —a; > 0 fori= 1,2, ..., u. This proves Lemma 2.

Lemma 1 and Lemma 2 together yield Theorem 2, completing our proof.
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