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Abstract

We study the minimum total weighted completion time problem on identical machines. We analyze a simple local search
heuristic, moving jobs from one machine to another. The local optima can be shown to be approximately optimal with
approximation ratio 3

2 . In a special case, the approximation ratio is 3
2 − 1/

√
6 ≈ 1.092.
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1. Introduction

We study the strongly NP-hard problem of
scheduling n jobs Jj (j = 1, . . . , n) with process-
ing times pj and weights wj on m identical parallel
machines in order to minimize total weighted com-
pletion time

∑
wjCj without preemption. In the
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classical scheduling notation this problem is denoted
by P || ∑

wjCj .
For m=1, an optimal assignment is easily obtained

by scheduling the jobs in order of non-increasing
weight to processing time ratios wj/pj (Smith-ratios,
cf. Smith [5]). The same argument shows that given
any schedule, we may assume w.l.o.g. that the jobs
on each machine are scheduled following Smith’s
rule. Given an assignment A of jobs to machines, we
denote by Z(A) the objective function value of the
corresponding schedule (obtained by scheduling the
jobs assigned to machine i according to Smith’s rule,
for all i = 1, . . . , m).

Smith’s rule gives rise to the so-called LRF-
heuristic (“largest ratio first”) for m�2 machines: An
LRF-assignment is obtained by first ordering the jobs
according to their Smith-ratios and then assigning
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them successively to the first available machine in a
greedy manner.

LRF-assignments have been analyzed by Eastman
et al. [3] and Kawaguchi and Kyan [4]. Relative to the
value Z(A∗) of an optimal assignment A∗, an LRF-
assignment A has been shown to satisfy

Z(A)

Z(A∗)
� 1

2
(
√

2 + 1) ≈ 1.21,

and this bound is tight. Indeed, examples approaching
the upper bound can be found (with all jobs having
equal Smith-ratios, cf. [4]).

Here we study another simple heuristic: a local
search which successively modifies a current as-
signment A by moving a job to another machine.
We are interested in the quality of move-optimal
assignments, i.e., local optima of this local search
procedure.

In the general case (arbitrary Smith-ratios) the re-
lation between LRF-assignments and move-optimal
schedules is unclear. We can prove certain upper
bounds on move-optimal schedules that are identi-
cal to corresponding bounds for LRF-schedules from
Eastman et al. [3] (although the proofs are completely
different). As a consequence of these we obtain our
main result:

Theorem 1. Let A be a move-optimal assignment of
jobs to machines and A∗ an optimal assignment. Then

Z(A)

Z(A∗)
� 3

2
− 1

2m
,

where Z(A) and Z(A∗) denote the corresponding ob-
jective values.

The worst example found so far is a small one for
m = 2 machines and has a ratio

Z(A)

Z(A∗)
= 6

5
.

Hence, it is unclear (even in case m = 2) whether the
bound in Theorem 1 is tight. And it is still not known,
whether move-optimal assignments have a better ap-
proximation ratio than LRF-assignments.

In a special case the situation looks a bit different.
We prove the following:

Theorem 2. Let all jobs have the same Smith-ratio.
Then the objective value Z(A) of a move-optimal as-
signment A satisfies

Z(A)

Z(A∗)
� 9 − √

6

6
≈ 1.092,

where Z(A∗) denotes the value of an optimal assign-
ment A∗. Moreover, this bound is tight.

This gives a better approximation ratio than for
general LRF-assignments. But, Chandra and Wong
[2] study a somehow related problem of minimizing
the sum of squared machine load. Their work implies,
that in case of all jobs having equal Smith-ratios
the approximation guarantee for LRF-assignments
can be improved. The jobs have to be ordered by
non-increasing processing times before assigning
them successively to the first available machine in a
greedy manner. Then an LRF-assignment A satisfies
Z(A)/Z(A∗)�25/24.

Recently, some work on the quality of local optima
and the efficiency of local search methods for some re-
lated scheduling problems has been carried out. Schu-
urman and Vredeveld [6] and in his PhD thesis, Vre-
develd [7] give an overview and present approxima-
tion guarantees of local optima for problem P | |Cmax
as well as Q ||Cmax and R ||Cmax. Moreover, Brucker
et al. [1] have shown that iterative improvement using
the move-neighborhood is a polynomial method for
problem P ||Cmax with complexity O(n2). Vredeveld
[7] improves this complexity to O(nm) by using a job
selection rule and generalized it for problem Q ||Cmax
resulting in a complexity of O(n2m).

The remainder of the paper is organized as follows.
In Section 2 we prove Theorem 1 and give the best
lower bound found so far for the approximation ratio
of a move-optimal assignment. Afterwards, in Section
3 we deal with the case of equal Smith-ratios and prove
Theorem 2. The paper ends with some open problems.

2. General case

In order to derive an upper bound for the approx-
imation ratio of a move-optimal assignment A, we
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compare the objective value Z(A) with the optimal
objective value Z∗

1 of the one machine problem with
the same set of jobs.

Let A be an arbitrary assignment of jobs to ma-
chines. We obtain an optimal schedule respecting this
assignment by scheduling the jobs assigned to the
same machine by non-increasing Smith-ratios wj/pj .
Let MA

ij denote the jth job on machine i in this sched-
ule. If it is clear which assignment A is considered we
may write Mij to denote the job and pij and wij for
the corresponding processing times and weights. For
an arbitrary assignment, the objective value calculates
as

Z(A) =
m∑

i=1

ni∑
j=1

wij

⎛
⎝

j∑
k=1

pik

⎞
⎠

=
m∑

i=1

ni∑
j=1

pij

⎛
⎝

ni∑
k=j

wik

⎞
⎠ , (1)

where ni denotes the number of jobs scheduled on ma-
chine i. Now consider an assignment A′ arising from A
by reassigning the jth job from machine i (which is job
Mij ) to machine t. Observe, that the job has to be in-
serted on machine t at the appropriate position (defined
by the Smith-ordering). If we denote the insert position
of job Mij on machine t with �(i, j, t) = �(A, i, j, t),
the change in the objective value is given by

Z(A) − Z(A′) = wij

j−1∑
k=1

pik + pij

ni∑
k=j+1

wik

−wij

�(i,j,t)−1∑
k=1

ptk−pij

nt∑
k=�(i,j,t)

wtk .

(2)

Since in a move-optimal assignment we can find no
job and target machine that gives an improvement in
the objective value, all differences in (2) have to be
non-positive. Thus, if we define

�ij := pij

⎛
⎝

ni∑
k=j+1

wik

⎞
⎠ + wij

⎛
⎝

j−1∑
k=1

pik

⎞
⎠

for all 1� i�m and 1�j �ni ,

for a move-optimal assignment A the following in-
equalities hold for all 1� i, t �m, i �= t, 1�j �ni :

�ij �pij

⎛
⎝

nt∑
k=�(i,j,t)

wtk

⎞
⎠ + wij

⎛
⎝

�(i,j,t)−1∑
k=1

ptk

⎞
⎠ . (3)

Furthermore, the values �ij and the objective value
Z(A) are related. If we sum up all �ij for a fixed
machine i we get:

ni∑
j=1

�ij

=
ni∑

j=1

wij

⎛
⎝

j−1∑
k=1

pik

⎞
⎠ +

ni∑
j=1

pij

⎛
⎝

ni∑
k=j+1

wik

⎞
⎠

= 2
ni∑

j=1

wij

⎛
⎝

j∑
k=1

pik

⎞
⎠ − 2

ni∑
j=1

wijpij .

Therefore, for any assignment A and the corresponding
objective value Z(A) we have

2Z(A) = 2
m∑

i=1

ni∑
j=1

wij

⎛
⎝

j∑
k=1

pik

⎞
⎠

=
m∑

i=1

ni∑
j=1

(�ij + 2wijpij ). (4)

We now consider the single machine problem
1 || ∑

wjCj for the given set of jobs. Here Smith’s
rule gives an optimal schedule. W.l.o.g. we assume that
the jobs are numbered such that w1/p1 � · · · �wn/pn.
Then the optimal objective value for the single ma-
chine problem calculates as

Z∗
1 =

n∑
j=1

wj

⎛
⎝

j∑
k=1

pk

⎞
⎠ =

n∑
j=1

pj

⎛
⎝

n∑
k=j

wk

⎞
⎠ .

Our goal is to bound the objective value Z(A) of
a move-optimal assignment A in terms of Z∗

1 . For
this we examine the target positions �(i, j, t) for a
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fixed assignment A. All jobs Mtk with t �= i and
1�k��(i, j, t) − 1 have smaller indices and thus a
non-smaller Smith-ratio than Mij . To calculate the
starting time of a job in an optimal schedule for the
single machine problem we have to add the process-
ing times of all jobs with smaller indices. Therefore,
for a given assignment A we can expand the sums in
the objective value Z∗

1 to

Z∗
1 =

m∑
i=1

ni∑
j=1

wij

⎛
⎜⎝

m∑
t=1
t �=i

�(i,j,t)−1∑
k=1

ptk +
j∑

k=1

pik

⎞
⎟⎠ .

(5)

By a similar argument, we obtain:

Z∗
1 =

m∑
i=1

ni∑
j=1

pij

⎛
⎜⎝

m∑
t=1
t �=i

nt∑
k=�(i,j,t)

wtk +
ni∑

k=j

wik

⎞
⎟⎠ .

(6)

Adding (5) and (6) we arrive at

2Z∗
1 =

m∑
i=1

ni∑
j=1

wij

⎛
⎝

j∑
k=1

pik

⎞
⎠

+
m∑

i=1

ni∑
j=1

pij

⎛
⎝

ni∑
k=j

wik

⎞
⎠

+
m∑

i=1

ni∑
j=1

wij

⎛
⎜⎝

m∑
t=1
t �=i

�(i,j,t)−1∑
k=1

ptk

⎞
⎟⎠

+
m∑

i=1

ni∑
j=1

pij

⎛
⎜⎝

m∑
t=1
t �=i

nt∑
k=�(i,j,t)

wtk

⎞
⎟⎠

= 2Z(A) +
m∑

i=1

ni∑
j=1

wij

⎛
⎜⎝

m∑
t=1
t �=i

�(i,j,t)−1∑
k=1

ptk

⎞
⎟⎠

+
m∑

i=1

ni∑
j=1

pij

⎛
⎜⎝

m∑
t=1
t �=i

nt∑
k=�(i,j,t)

wtk

⎞
⎟⎠ .

If we now incorporate (3) and use afterwards (4) the
following is obtained:

2Z∗
1 �2Z(A) +

m∑
i=1

ni∑
j=1

m∑
t=1
t �=i

�ij

= 2Z(A) + (m − 1)

m∑
i=1

ni∑
j=1

�ij

= 2Z(A) + 2(m − 1)Z(A)

− 2(m − 1)

m∑
i=1

ni∑
j=1

wijpij

= 2mZ(A) − 2(m − 1)

n∑
j=1

wjpj .

Thus, a move-optimal assignment A satisfies

Z(A)� 1

m
Z∗

1 + m − 1

m

n∑
j=1

wjpj . (7)

We get a bound for the quotient of Z(A) and the
optimal objective value Z(A∗) by considering a result
from Eastman et al. [3]. They give the following lower
bound for Z(A∗):

Z(A∗)� 1

m
Z∗

1 + m − 1

2m

n∑
j=1

wjpj . (8)

Since trivially Z(A∗)�
∑n

j=1 wjpj holds, we con-
clude from (8) that

Z(A∗)��

⎛
⎝ 1

m
Z∗

1 + m − 1

2m

n∑
j=1

wjpj

⎞
⎠

+ (1 − �)

n∑
j=1

wjpj (9)

for every � ∈ [0, 1].
Comparing (7) with (9) for � = 2m/(3m − 1), we

find

Z(A)

Z(A∗)
� 3

2
− 1

2m
, (10)

proving Theorem 1.
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Consider an example consisting of four jobs and
two machines. The following table shows the job data.

job j 1 2 3 4
pj 1 1 2 2
wj 1 1 1

2
1
2

The assignment A in Fig. 1 is move-optimal and has
Z(A) = 6, whereas the optimum is Z(A∗) = 5. So
Z(A)/Z(A∗) = 6

5 which is smaller than 5
4 (obtained

from Eq. (10) with m = 2). For any even number of
machines we get the ratio 6

5 by taking multiple copies
of the instance for two machines. This leads to the
following lemma.

Lemma 3. The approximation ratio for move-optimal
assignments is at least 6

5 .

3. Instances with equal Smith-ratios

In what follows, we assume that all jobs have equal
Smith-ratios and prove an upper bound of (9−√

6)/6
on the approximation ratio of move-optimal assign-
ments. Let A be an assignment of jobs to machines.
We denote by MA

i the set of jobs scheduled on ma-
chine i according to assignment A. If it is clear which
assignment A is considered, we also write simply Mi .
In order to express the objective value we use similar
ideas as Kawaguchi and Kyan [4]. Since wj/pj = r

for all jobs j and some constant r, the objective func-
tion value Z(A) corresponding to the assignment A
calculates as

Z(A) =
m∑

i=1

∑
j∈Mi

wj

∑
k∈Mi,k � j

pk

=
m∑

i=1

∑
j∈Mi

rpj

∑
k∈Mi,k � j

pk

= r

2

m∑
i=1

⎛
⎝ ∑

j∈Mi

pj

∑
k∈Mi

pk +
∑
j∈Mi

p2
j

⎞
⎠ .

Let LA
i denote the workload of machine i (we omit

the index A if there are no ambiguities), i.e.,

Li =
∑
j∈Mi

pj .

2

21 1 3

3 4 4M2M2

Assignment A Assignment A*
1 2 3 4 1 2 3

M1 M1

Fig. 1. Gantt-charts for worst-case example found so far.

Then the objective value Z(A) is equal to

Z(A) = r

2

⎛
⎝

m∑
i=1

L2
i +

n∑
j=1

p2
j

⎞
⎠ .

In the following, let A denote a move-optimal assign-
ment and A∗ an optimal assignment. We are interested
in an upper bound for the ratio

Z(A)

Z(A∗)
=

∑m
i=1(L

A
i )2 + ∑n

j=1 p2
j∑m

i=1(L
A∗
i )2 + ∑n

j=1 p2
j

= 1 +
∑m

i=1(L
A
i )2 − ∑m

i=1(L
A∗
i )2

∑m
i=1(L

A∗
i )2 + ∑n

j=1 p2
j

. (11)

Therefore, we may scale the processing times and
weights such that r = 1 and

n∑
j=1

pj = m,

without changing the value of (11). Moreover, for
assignment A we reorder the machines, such that
L1 �L2 � · · · �Lm holds. Observe, that for the sum
of workloads we have

m∑
i=1

Li =
n∑

j=1

pj = m. (12)

Let �i := Li − Lm denote the deviation of the work-
load of machine i to the minimal workload Lm. From
(12) we get:

m∑
i=1

�i = m(1 − Lm). (13)
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With the help of (13) we obtain

m∑
i=1

�iLi =
m∑

i=1

�i (Lm + �i )

= Lm

m∑
i=1

�i +
m∑

i=1

�2
i

=
m∑

i=1

�2
i + mLm(1 − Lm). (14)

We can exploit (14) to rewrite the sum of the squares
of the workloads in terms of �i and Lm:

m∑
i=1

L2
i =

m∑
i=1

Li(Lm + �i )

= Lm

m∑
i=1

Li +
m∑

i=1

�iLi

=
m∑

i=1

�2
i + mLm(2 − Lm). (15)

The quadratic-arithmetic mean inequality together
with Eq. (12) yields

m∑
i=1

L2
i �m. (16)

While the above holds for all assignments A, we now
use the move-optimality of A to yield a lower bound
for the processing times of jobs.

Lemma 4. Let A be a move-optimal assignment. For
all jobs j ∈ Mi we have pj ��i .

Proof. Assume, for job j ∈ Mi we have pj < �i .
Because of the equal Smith-ratios we may schedule
job j after all other jobs of machine i without changing
the objective value Z(A). This yields a completion
time CA

j =Li . Consider now the assignment B arising
from A by assigning job j to machine m instead of i.
By scheduling job j in this assignment after all jobs
of machine m we receive a completion time of CB

j =
Lm+pj . For the corresponding objective values holds
Z(A)−Z(B)=wj(C

A
j −CB

j )=wj(Li −Lm −pj )=
wj(�i−pj ) > 0. This contradicts the move-optimality
of assignment A. �

With the help of Lemma 4 we obtain the following
for machine i:
∑
j∈Mi

p2
j ��i

∑
j∈Mi

pj = �iLi .

Adding this up for all machines i leads together with
(14) to

n∑
j=1

p2
j =

m∑
i=1

∑
j∈Mi

p2
j �

m∑
i=1

�iLi

=
m∑

i=1

�2
i + mLm(1 − Lm). (17)

Using (15), (16) and (17) we receive for the approxi-
mation ratio (11) the following:

Z(A)

Z(A∗)
�2 − m(2 − Lm)∑m

i=1 �2
i + m(1 + Lm − L2

m)
. (18)

Since we have Lm �1, the nominator and the denom-
inator are positive. In order to simplify (18) we have
to give an upper bound for

∑m
i=1�

2
i .

We denote with a worst-case instance a scaled
instance I for the considered scheduling problem
for which the ratio Z(A)/Z(A∗) is maximal. The
next lemma shows that from a certain workload on
there have to be at least two jobs scheduled on a
machine.

Lemma 5. Let I be a worst-case instance. If for a
move-optimal assignment A there is a machine i with
Li > 1 then there are at least two jobs scheduled on
machine i.

Proof. Let i be a machine with workload Li > 1 and
job j be the only job scheduled on this machine, i.e.
pj > 1. We prove the lemma by showing that this
job j is scheduled alone in any move-optimal assign-
ment B. Since A∗ is also move-optimal, this contra-
dicts that I is a worst-case instance. (Removing this
job from the instance would yield a higher worst-case
ratio.)

Assume to the contrary, that job j is not sched-
uled alone on machine i in a move-optimal assign-
ment B. Let j0 be a job also scheduled on machine i.
We have pj0 �Li − pj < Li − Lm = �i contradicting
Lemma 4. �
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The preceding lemma also gives an upper bound
on the processing times of the jobs in a worst-case
instance.

Corollary 6. Let I be a worst-case instance. Then
pj �1 for all jobs j.

The following lemma gives an important upper
bound on the deviations �i in a worst-case instance.

Lemma 7. Let I be a worst-case instance. Then
�i �Lm for all machines i for a move-optimal as-
signment A.

Proof. If L1 �1, then 1=L1 =· · ·=Lm, which yields
�i = 0 for all machines i.

Consider now the case, that there exists a machine
i with Li > 1. Assume �i > Lm, i.e. Li > 2Lm. Thus,
due to Lemma 4, each job j ∈ Mi has pj > Lm. Since
we furthermore have Li > 1, we know that |Mi |�2.
Thus, at least one of the jobs on Mi starts later than Lm.
Moving this job to machine m reduces the objective
value, contradicting the move-optimality of A. �

Using Lemma 7 and (13) we get

m∑
i=1

�2
i �Lm

m∑
i=1

�i = mLm(1 − Lm).

With the help of this we bound the approximation ratio
(18) by

Z(A)

Z(A∗)
�2 − 2 − Lm

1 + 2Lm − 2L2
m

.

The maximum is obtained at Lm = 2 −√
6/2 yielding

Z(A)

Z(A∗)
� 9 − √

6

6
. (19)

In case of equal Smith-ratios there is the follow-
ing worst-case example for m machines. (Thanks to
Tjark Vredeveld for providing this example!) For k
with 0 < k < 1

2 there are 2km jobs with p =w =1 and
(m− km)/� jobs of size p =w = �. The move-optimal
assignment A shown in Fig. 2 schedules on each of the
first km machines two of the jobs with p = 1. More-
over, on each of the last m − km machines 1/� of the
jobs with p = � are scheduled. The assignment A has

Fig. 2. Move-optimal assignment A for equal Smith-ratios.

Fig. 3. Optimal assignment A∗ for equal Smith-ratios.

an objective value of

Z(A) = 1
2m(5k + 1 + (1 − k)�).

In an optimal assignment A∗ (see Fig. 3) k/� jobs with
p=� and 1 job with p=1 are scheduled on each of the
first machines. Moreover, on each of the last m−2km

machines (1 + k)/� jobs with p = � are scheduled,
yielding an objective value of

Z(A∗) = 1
2m(k2 + 4k + 1 + (1 − k)�).

For � → 0, k → (
√

6 − 1)/5 and m sufficiently large
such that km ∈ N, the ratio Z(A)/Z(A∗) approaches
the maximum:

Z(A)

Z(A∗)
→ 9 − √

6

6
.

So, the bound (19) is tight. This proves Theorem 2.
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4. Open problems

As mentioned already, it would be interesting to also
have tight upper bounds in the general case. In par-
ticular, it is unclear, whether the approximation ratio
indeed grows with the number m of machines (as does
the upper bound in Theorem 1).
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