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Abstract

Linear stochastic programming problems with first order stochastic dominance (FSD) constraints are non-convex. For their
mixed 0–1 linear programming formulation we present two convex relaxations based on second order stochastic dominance
(SSD). We develop necessary and sufficient conditions for FSD, used to obtain a disjunctive programming formulation and
to strengthen one of the SSD-based relaxations.
© 2005 Published by Elsevier B.V.
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1. Introduction

The notion of first order stochastic dominance
(FSD), also called stochastic ordering, has been in-
troduced in statistics (see [10,11]) and further applied
and developed in economics (see [8,9,7,13,14]). A
random variable X dominates another random variable
Y in the first order, which we denote by X�(1)Y , if

FX(�)�FY (�) for all � ∈ R, (1)

where FX(�) = P [X��] denotes the distri-
bution function of a random variable X. It is
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well-known (see, e.g., [12]) that the stochastic order-
ing relation X�(1)Y can be equivalently expressed
as follows: E[u(X)]�E[u(Y )] for all non-decreasing
functions u : R → R for which the above expecta-
tions are finite.

For two integrable random variables X and Y,
X�(2)Y denotes the second order stochastic domi-
nance (SSD) relation:∫ �

−∞
FX(�) d��

∫ �

−∞
FY (�) d� for all � ∈ R. (2)

It is easy to see that the FSD relation (1) implies SSD
via integration over the interval (−∞, �). We are also
going to use the following equivalent formulation of
the SSD condition, featuring the expected shortfalls of
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the random variables (see [4]):

E([� − X]+)�E([� − Y ]+) for all � ∈ R. (3)

Dominance relations can be involved in stochastic
optimization problems as constraints, allowing us to
obtain solutions dominating some random reference
outcomes. Such models have been introduced and an-
alyzed in [4,6]. In [5] it is also proved that the con-
vexification of the set defined by the FSD relation is
equal to the set defined by the SSD relation, if the
probability space is non-atomic.

In this paper we analyze FSD constraints, which
are equivalent to a continuum of probabilistic con-
straints. Here the main challenge lies in the potential
non-convexity of the associated feasible region.

In Section 2 we formulate a linear FSD-constrained
optimization model as a mixed 0–1 programming
problem with multiple knapsack constraints. In Sec-
tion 3 a linear programming (LP) relaxation, based
on SSD constraints, is introduced, which is different
from the usual LP relaxation obtained by dropping
the integrality restriction. In Section 4 we introduce
a new necessary condition for FSD leading to yet
another LP relaxation, which we call interval sec-
ond order stochastic dominance (ISSD) relaxation.
Section 5 provides an analysis of the relations be-
tween these relaxations. We conclude the paper by
presenting in Section 6 a new necessary and sufficient
condition for FSD. Using this condition we obtain a
disjunctive programming formulation of the discrete
FSD-constrained optimization model.

The expected value operator is denoted by E. An
abstract probability space is denoted by (�,F, P ),

where � is the sample space, F is a �-algebra on �
and P is a probability measure on �. For a real number
� ∈ R let [�]+ = max(0, �) and [�]− = min(0, �).

2. Linear optimization with first order
constraints

Let (�, 2�, P ) be a finite probability space, where
� = {�1, . . . ,�N }, with corresponding probabilities
p1, . . . , pN , and � : Rn × � → R an outcome map-
ping satisfying the condition that �(·, �) is a linear
function for all � ∈ �. For a given vector z ∈ Rn let us
define the mapping �z : � → R by �z(�) = �(z, �).
Let Y be some random variable on � (reference out-

come). We consider the following linear stochastic op-
timization model with an FSD constraint:

max cTz
s.t. �z�(1)Y,

z ∈ Z,

(4)

where Z is a compact polyhedron. Without the domi-
nance constraint, problem (4) can be easily formulated
as a linear programming problem. The stochastic dom-
inance constraint, however, can render the feasible set
non-convex in the general case.

Let ŷi=Y (�i ), i=1, . . . , N , denote the realizations
of the reference outcome Y . Without loss of generality
we may assume ŷ1 � ŷ2 � · · · � ŷN . Let us denote the
different realizations of the reference outcome Y by
y1 < y2 < · · · < yD , and let y0 be an arbitrary number
such that y0 < y1, implying P [Y �y0] = 0.

Since the distribution function of the reference out-
come Y is a right-continuous step function, it is easy
to verify that the FSD constraint in (4) is equivalent to

P [�z < yk]�P [Y �yk−1], k = 1, . . . , D. (5)

We now reformulate problem (4) by introducing the
binary variables

�i,k =
{

1 if �(z, �i ) < yk,

0 otherwise,
i = 1, . . . , N, k = 1, . . . , D. (6)

Let Mi,k ∈ R satisfy the inequalities

Mi,k �yk − min
z∈Z

�(z, �i ),

i = 1, . . . , N, k = 1, . . . , D. (7)

Since �(·, �i ) is linear for all i = 1, . . . , N, and Z is
compact, such Mi,k values exist.

Now using (5)–(7) we can rewrite (4) as a mixed
0–1 linear programming problem, which we refer to
as MBLP:

max cTz

s.t.
N∑

i=1

pi�i,k �P [Y �yk−1], k = 1, . . . , D,

�(z, �i ) + Mi,k�i,k �yk , (8)

i = 1, . . . , N, k = 1, . . . , D, (9)

�i,k ∈ {0, 1}, i = 1, . . . , N ,

k = 1, . . . , D, (10)

z ∈ Z.
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Note that we can select a sufficiently large common
value Mi,k = M, i = 1, . . . , N, k = 1, . . . , D.

Inequalities (8) together with the integrality restric-
tion (10) define a set of knapsack constraints. With ev-
ery item i ∈ {1, . . . , N} we associate a weight pi > 0,
and every knapsack k ∈ {1, . . . , D} has a capacity
uk = P [Y �yk−1], k = 1, . . . , D.

Our intention is to employ the probabilistic structure
of the problem to derive new LP relaxations.

3. Relaxation based on second order constraints

Since FSD implies SSD and, as we are going to
see below, SSD constraints can be represented by a
system of linear inequalities, the SSD constraints can
be viewed as valid inequalities for the feasible set of
MBLP. This fact leads to an LP relaxation which is
different from the usual one obtained by relaxing the
integrality restriction. In Section 5 we provide exam-
ples which show that neither of these relaxations is
stronger than the other.

Since Y has a discrete distribution, inequalities (3)
are equivalent (see [4]) to

E([yk − X]+)�E([yk − Y ]+), k = 1, . . . , D. (11)

Let us introduce the following functions, representing
the shortfall values of the outcome �z:

sz(i, k) =

⎧⎪⎨
⎪⎩

0 for i = 1, . . . , N,

k = 0,

[yk − �(z, �i )]+ for i = 1, . . . , N,

k = 1, . . . , D.

(12)

When the policy z is clear from the context, we also
use the simplified notation si,k=sz(i, k). Then the next
system of linear inequalities is equivalent to the SSD
relation (11):

N∑
i=1

pisi,k �E([yk − Y ]+), k = 1, . . . , D. (13)

Let vk = E([yk − Y ]+). By introducing the decision
vector s̄ ∈ RN(D+1) to represent the shortfall values

we obtain the corresponding LP relaxation

max cTz (14)

s.t. �(z, �i ) + s̄i,k �yk ,

i = 1, . . . , N, k = 1, . . . , D, (15)

N∑
i=1

pi s̄i,k �vk, k = 1, . . . , D, (16)

s̄i,k �0, i = 1, . . . , N, k = 1, . . . , D, (17)

z ∈ Z. (18)

We refer to the above problem as the SSD-based LP
relaxation of MBLP.

Observation 1. For every feasible solution (z, s̄) of
(14)–(18) we have s̄�sz, and the pair (z, sz) is also
feasible for (14)–(18).

4. Relaxation based on interval second order
constraints

The results of this section are based on the
following condition on differences of expected
shortfalls.

Proposition 1. If X�(1)Y then for all �1 ��2 in R,

E([�2 − X]+) − E([�1 − X]+)

�E([�2 − Y ]+) − E([�1 − Y ]+). (19)

Proof. Similarly to the case of (2) and (3), we can
rewrite (19) in the form

∫ �2

�1

FX(t) dt �
∫ �2

�1

FY (t) dt , (20)

which immediately follows from (1) via integration on
the interval [�1, �2]. �

Using the above result we can obtain a strengthening
of the SSD-based LP relaxation by substituting X=�z,
�1 = yk−1, �2 = yk into (19).
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Corollary 1. If �z�(1)Y , then

E([yk − �z]+) − E([yk−1 − �z]+)

�E([yk − Y ]+) − E([yk−1 − Y ]+),

k = 1, . . . , D. (21)

In the discrete case condition (21) takes the form

N∑
i=1

pisi,k −
N∑

i=1

pisi,k−1 �vk − vk−1,

k = 1, . . . , D. (22)

By Observation 1 we obtain an LP relaxation of
MBLP, based on the necessary condition (22):

max cTz

s.t.
N∑

i=1

pi s̄i,k −
N∑

i=1

pi s̄i,k−1 �vk − vk−1,

k = 1, . . . , D,

�(z, �i ) + s̄i,k �yk ,

i = 1, . . . , N, k = 1, . . . , D,

s̄i,k �0, i = 1, . . . , N, k = 1, . . . , D,

s̄i,0 = 0, i = 1, . . . , N ,

z ∈ Z. (23)

The next lemma provides an upper bound for the
shortfalls, allowing us to further strengthen this relax-
ation. Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, with the
1 in the jth position.

Lemma 1. For a policy z ∈ Z the corresponding
shortfall vector s = sz satisfies

�si,k �
n∑

j=1

(zj + mj)[yk − ��(ej , �i )]+

+ �mj [�(ej , �i )]+,

i = 1, . . . , N, k = 1, . . . , D,

where mj = −[min{zj | z ∈ Z}]− and � = min{∑n
j=1

(zj + mj) | z ∈ Z}.

Proof. The result follows from the chain of inequali-
ties

�si,k = �

⎡
⎣yk −

n∑
j=1

zj�(ej , �i )

⎤
⎦

+

=
⎡
⎣�yk − �

n∑
j=1

(zj + mj)�(ej , �i )

+mj�(ej , �i )

⎤
⎦

+

�

⎡
⎣ n∑

j=1

(zj+mj)yk−
n∑

j=1

(zj+mj)��(ej , �i )

+�mj�(ej , �i )

⎤
⎦

+

�

⎡
⎣ n∑

j=1

(zj + mj)(yk − ��(ej , �i ))

+�mj�(ej , �i )

⎤
⎦

+

�
n∑

j=1

(zj + mj)[yk − ��(ej , �i )]+

+ �mj [�(ej , �i )]+.

The last inequality relies on the fact that zj + mj �0
and �mj �0 for j = 1, . . . , n. �

We can now strengthen the LP relaxation (23) by
adding to it the valid inequalities

�s̄i,k �
n∑

j=1

(zj + mj)[yk − ��(ej , �i )]+

+ mj�[�(ej , �i )]+,

i = 1, . . . , N, k = 1, . . . , D. (24)

We will refer to this new formulation as the interval
second order stochastic dominance (ISSD) relaxation.
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5. Comparison of the three LP relaxations

The following theorem compares the strength of the
various LP relaxations of MBLP introduced so far. For
a set W ⊆ Rn1 × Rn2 let us introduce the notation
Proj(W) = {z ∈ Rn1 : ∃v ∈ Rn2 (z, v) ∈ W)}.

Theorem 1. Let us denote the feasible regions of the
SSD-based LP relaxation, the ISSD relaxation and the
usual LP relaxation of MBLP by QSSD, QISSD and Q,
respectively. Then the following relations hold:

1. Proj(QISSD) ⊆ Proj(QSSD), in general
Proj(QISSD)�Proj(QSSD).

2. In general Proj(QISSD)�Proj(Q).
3. In general Proj(Q)�Proj(QSSD).

Proof. Let Z ={z ∈ R2+ : z1 + z2 =1}, z̄ = (0, 1), ẑ =
(1, 0), z̃ = ( 1

2 , 1
2 ), and consider the probability spaces

on ground sets � = {�1, �2, �3} and �′ = {�′
1, �

′
2},

with P [�1] = P [�2] = P [�3] = 1
3 and P [�′

1] =
P [�′

2] = 1
2 .

1. Summing the interval dominance constraints in
(23) over the index ranges {1, . . . , k}, k=1, . . . , D, we
obtain the SSD constraints, therefore Proj(QISSD) ⊆
Proj(QSSD). Now consider on � the outcome function

�(1)(z, �1) = 3z1,

�(1)(z, �2) = 4z1 + 4z2,

�(1)(z, �3) = 5z1 + 6z2,

the reference outcome Y = �(1)
z̄ and the deci-

sion vector (policy) ẑ. It is easy to see that �(1)

ẑ
dominates Y in the second order, implying ẑ ∈
Proj(QSSD). On the other hand, for any (ẑ, s̄) fea-
sible for ISSD, inequalities (24) imply s̄1,2 �1,
s̄2,2 �0, s̄3,2 �0, and so

∑N
i=1 pi s̄i,2 � 1

3 . Since∑N
i=1 pi s̄i,3 �

∑N
i=1 pisi,3 =2, we have

∑N
i=1 pi s̄i,3 −∑N

i=1 pi s̄i,2 � 5
3 > 4

3 = v3 − v2. Therefore, the con-

straint
∑N

i=1 pi s̄i,k−∑N
i=1 pi s̄i,k−1 �vk−vk−1 in (23)

is violated for k=3, which shows that ẑ /∈ Proj(QISSD).
2. Consider on � the outcome function

�(2)(z, �1) = 2z1,

�(2)(z, �2) = 5z1 + 4z2,

�(2)(z, �3) = 5z1 + 6z2,

the reference outcome Y =�(2)
z̄ and the decision vector

(policy) ẑ. It is easy to see that ẑ ∈ Proj(QISSD). On
the other hand, the strongest formulation of the usual
LP relaxation of MBLP is obtained by setting Mi,k =
yk − minz∈Z �(z, �i ), yielding in our case M1,3 = 6,
M2,3 = 2, M3,3 = 1. It follows from (9) that�1,3 � 2

3 ,
�2,3 � 1

2 and �3,3 �1 hold for any (ẑ, �) ∈ Q, implying
that inequality (8) cannot be satisfied for the decision
vector ẑ, thus ẑ /∈ Proj(Q).

3. Consider on �′ the outcome function

�(3)(z, �1) = 10z1 + 6z2,

�(3)(z, �2) = 4z1 + 10z2,

the reference outcome Y =�(3)
z̄ and the decision vector

(policy) z̃. It is easy to see that for the values �̂1,1 =
�̂2,1 = 0, �̂1,2 = �̂2,2 = 1

2 we have (�̂, z̃) ∈ Q for any
Mi,k values satisfying (7), while z̃ /∈ Proj(QSSD), as
�̃z does not dominate Y in the second order. �

6. A disjunctive programming formulation

We are going to show that the necessary condition
for FSD presented in Proposition 1 is also sufficient,
even when restricted to a finite set of pairs �1, �2. For
a random variable X we write xi = X(�i ).

Theorem 2. X�(1)Y if and only if

E([yk − X]+) − E([xi − X]+)

�E([yk − Y ]+) − E([xi − Y ]+) (25)

for all i ∈ {1, . . . , N} and k ∈ {0, . . . , D} such that

xi < yk and

{y1, . . . , yD, x1, . . . , xN } ∩ (xi, yk) = ∅, (26)

where (xi, yk) is the open interval with endpoints xi

and yk .

Proof. The necessity of the condition follows imme-
diately from Proposition 1. Now suppose that X does
not dominateY in the first order. Then there exists some
t∗ ∈ R for which FY (t∗) < FX(t∗). Recall that both
functions FX(·) and FY (·) are piecewise constant. Let
(a, b) be the largest interval containing t∗ and such
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that FY (t) < FX(t) for t ∈ (a, b):

a = inf{	 : FY (t) < FX(t), t ∈ [	, t∗]},
b = sup{	 : FY (t) < FX(t), t ∈ [t∗, 	]}.

Both a and b are finite, because both functions are
equal to 0 for sufficiently small t and equal to 1 for
sufficiently large t. Since both functions FX and FY

are right continuous, b > t∗.
It follows that FX has a jump at a and FY has a

jump at b. Now we find a jump point xi∗ ∈ [a, b) of
FX and a jump point yk∗ ∈ (a, b] of FY such that
none of these functions has jumps in the open interval
(xi∗ , yk∗). Such a pair exists: we can take xi∗ to be the
last jump point of FX in the interval [a, b) and yk∗ to
be the first jump point of FY in the interval (xi∗ , b].

The pair (i∗, k∗) satisfies (26) by construction. To
complete the proof we observe that the pair (i∗, k∗)
violates (25), which, similarly to (20), can be written
as∫ yk∗

xi∗
FX(t) dt �

∫ yk∗

xi∗
FY (t) dt. �

In the following we are going to use for X = �z a
weaker form of Theorem 2.

Corollary 2. �z�(1)Y if and only if

E([yk − �z]+) − E([�(z, �i ) − �z]+)

�E([yk − Y ]+) − E([�(z, �i ) − Y ]+)

for all i ∈ {1, . . . , N} and k ∈ {0, . . . , D} such that
�(z, �i ) < yk .

Let us introduce the following decision vectors, rep-
resenting the above shortfalls for a policy z ∈ Z:


i,k = [�(z, �k) − �(z, �i )]+,

i = 1, . . . , N, k = 1, . . . , N ,

�i,k = [�(z, �k) − yi]+,

i = 0, . . . , D, k = 1, . . . , N .

We conclude by presenting a disjunctive program-
ming formulation of our problem. For an introduction
to disjunctive programming (optimization under logi-
cal constraints involving linear inequalities) see [1,2].

Since the condition y =max(a, b) can be written in
the disjunctive form(

y = a

a�b

)
∨

(
y = b

b�a

)
,

by Corollary 2 the FSD-constrained problem (4) can
be formulated as a disjunctive programming problem:

max cTz

s.t. (yk ��(z, �i )) ∨
⎛
⎝ N∑

j=1

pj sj,k −
N∑

j=1

pj
j,i

�vk −
D∑

j=1

∑
l:ŷl=yj

pl�j,i

⎞
⎠ ,

i = 1, . . . , N, k = 0, . . . , D,(
si,k = yk − �(z, �i )

yk − �(z, �i )�0

)

∨
(

si,k = 0

yk − �(z, �i )�0

)
,

i = 1, . . . , N, k = 0, . . . , D,(
i,k = �(z, �k) − �(z, �i )

�(z, �k) − �(z, �i )�0

)

∨
( 
i,k = 0

�(z, �k) − �(z, �i )�0

)
,

i = 1, . . . , N, k = 1, . . . , N ,(
�i,k = �(z, �k) − yi

�(z, �k) − yi �0

)

∨
(

�i,k = 0
�(z, �k) − yi �0

)
,

i = 0, . . . , D, k = 1, . . . , N .

In an upcoming paper we shall obtain other disjunc-
tions by restating the inequalities arising from the
underlying combinatorial structure of the problem as
logical conditions. This will lead to the generation of
valid inequalities for the corresponding disjunctive re-
laxations, by applying the lift-and-project procedure
developed in [3].
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[4] D. Dentcheva, A. Ruszczyński, Optimization with stochastic
dominance constraints, SIAM J. Optim. 14 (2003) 548–566.
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