
Operations Research Letters 35 (2007) 1–9

Operations
Research
Letters

www.elsevier.com/locate/orl

The stable set problem and the thinness of a graph
Carlo Mannino∗, Gianpaolo Oriolo, Federico Ricci, Sunil Chandran

Dip. di Informatica e Sistemistica, Universita di Roma, ‘La Spapienza’, Via Bounarroti 12, I-00185 Roma, Italy

Received 25 August 2005; accepted 23 January 2006
Available online 29 March 2006

Abstract

We introduce a poly-time algorithm for the maximum weighted stable set problem, when a certain representation is given
for a graph. The algorithm generalizes the algorithm for interval graphs and that for graphs with bounded pathwidth. By a
suitable application to the frequency assignment problem, we improved several solutions to relevant benchmark instances.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Thinness; Stable set; Frequency assignment; Pathwidth

1. Introduction

We introduce a superclass of interval graphs for
which the maximum (weighted) stable set problem
may be solved by dynamic programming in poly-time
when a certain representation is given. The new class
is introduced by extending a classical characterization
[10,12]: a graph G(V, E) is interval if and only if
there exists an ordering {v1, . . . , vn} of V such that,
for each triple (r, s, t) with r < s < t , if vtvr ∈ E, then
vtvs ∈ E: if such an ordering is at hand, an O(|V |)-
time dynamic programming algorithm finds a maxi-
mum weighted stable set [6,7].

We generalize this property. Namely, we define a
graph G(V, E) to be k-thin if there exist an ordering

∗ Corresponding author.
E-mail address: mannino@dis.uniroma1.it (C. Mannino).

0167-6377/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2006.01.009

{v1, . . . , vn} of V and a partition of V into k classes
such that, for each triple (r, s, t) with r < s < t , if
vr , vs belong to the same class and vtvr ∈ E, then
vtvs ∈ E. If we are given for a graph G(V, E) such
an ordering and a partition, then a maximum weighted
stable set may be found via dynamic programming in
O(|V | · (� + 1)k−1)-time, where � is always bounded
by the maximum degree of a vertex. Since � = 0 for
interval graphs, this extends the result in [6,7].

We define the thinness of a graph G as the min-
imum k for which G is k-thin. We relate the thin-
ness to the pathwidth of a graph and show that
thinness(G)�pathwidth(G) + 1. Also it turns out
that our algorithm for finding a maximum weighted
stable set on a k-thin graph is in fact a generaliza-
tion of the weighted stable set algorithm for bounded
pathwidth graphs.

Our main application is discussed in Section 4. The
frequency assignment problem (FAP) in GSM networks

http://www.elsevier.com/locate/orl
mailto:mannino@dis.uniroma1.it

2 C. Mannino et al. / Operations Research Letters 35 (2007) 1–9

is the problem of assigning transmission frequencies
to transmitters of a wireless network, so as to mini-
mize the overall interference level, a crucial issue for
increasing the quality of service. For suitable subsets
T of transmitters, this problem can be formulated as a
maximum weighted stable set problem on a graph GT ;
since an ordering and a consistent |T |-partition of GT

can be easily built, the problem can then be efficiently
solved by our dynamic program (usually, ��2). This
allows us to implement an effective search in exponen-
tial neighborhoods [4]. We encapsulated our method-
ology into a simulated annealing framework and tested
the resulting algorithm on the COST259 test bed [5],
which consists of a number of large real-life instances
of the FAP in GSM networks. The numerical results are
extremely good and we were able to improve the best
known solutions on most instances of the test bed.

We deal with simple and undirected graphs. V (G)

and E(G) are, respectively, the vertex set and the edge
set of G. If W is a subset W ⊆ V , G[W] is the subgraph
of G induced by W. We simply write G−W for G[V −
W]; when W = {v}, we write G − v. For each v ∈ V ,
�(v) is the degree of v; �(G) is the maximum degree
of a vertex of G. We, respectively, denote by �(G) and
�w(G) the maximum size and weight of a stable set
of G (w : V → R+ is the weight function).

We denote by N(X) the set of neighbors of X ⊂ V ,
i.e. N(X) = {u /∈ X : uv ∈ E for some v ∈ X}, where
N(v) = N({v}). N(v) is the set of vertices different
from v and not adjacent to v, i.e. N(v)=V − (N(v)∪
{v}). A k-partition of V is a partition of V into k classes
V 1, . . . , V k . An ordering {v1, v2, . . . , vn} is a linear
ordering of V (therefore, vj > vi if and only if j > i).

Definition 1.1. Let G(V, E) be a graph with an or-
dering {v1, . . . , vn} and a k-partition (V 1, . . . , V k) of
V. For each 1�j �n:

• N(vj)< is the set of vertices of V which are lower
than vj and non-adjacent to vj , i.e. N(vj)< ={vi ∈
V : i < j and vivj /∈ E}.

• For each 1�h�k, N(vj , h)< is the set of vertices of
V h which are lower than vj and non-adjacent to vj ,
i.e. N(vj , h)< = {vi ∈ V h : i < j and vivj /∈ E} =
V h ∩ N(vj)<.

Observe that, by definition, N(vn)< = N(vn) and
N(vj)< = ⋃

hN(vj , h)<.

2. The stable set problem on a superclass of
interval graphs

A graph G is an interval graph if it is the intersection
graph of a set of intervals of the real line. If we are
given an interval representation of G, then a maximum
weighted stable set can be found in O(|V | log |V |)-
time via a dynamic programming algorithm: this was
first observed in [6] and later in [7]. In the following
we review the latter approach. The first “ingredient”
is the following theorem providing a characterization
of interval graphs.

Theorem 2.1 (Olariu [10], Ramalingam and Pandu
Rangan [12]). A graph G(V, E) is interval if and only
if there exists an ordering {v1, v2, . . . , vn} of V such
that, for each triple (i, j, k), with 1� i < j < k�n, if
vkvi ∈ E, then vkvj ∈ E.

The second ingredient is the next lemma, the proof
is trivial, showing that an ordering satisfying Theorem
2.1 has a nice property called consistency (see Defini-
tion 1.1 for N(vj)<).

Lemma 2.2. Let G(V, E) be a graph and {v1, . . . , vn}
an ordering of V. The following statements are equiv-
alent:

(i) for each triple (i, j, k), with 1� i < j < k�n, if
vkvi ∈ E(G) then vkvj ∈ E(G);

(ii) [Consistency] for each 1�j �n, N(vj)< =
{v1, v2, . . . , v|N(vj)<|}.

In other words, if an ordering {v1, . . . , vn} is
consistent, then, for each j, the only vertices of
{v1, . . . , vj−1} adjacent to vj are the last (j − 1) −
|N(vj)<| ones. The following corollary is a straight
consequence of Theorem 2.1 and Lemma 2.2.

Corollary 2.3. The following statements are equiva-
lent:

(i) G is interval.
(ii) There exists an ordering {v1, . . . , vn} of V (G)

which is consistent.

Let G = (V , E) be a (interval) graph with a con-
sistent ordering {v1, . . . , vn} of V (G) and weights

C. Mannino et al. / Operations Research Letters 35 (2007) 1–9 3

v3

v1

v4

v2

v5 v6 v8 v11 v12

v7 v9 v10 v13

},,,,,,{ 121186543
1 vvvvvvvV =

},,,,,{ 13109721
2 vvvvvvV =

Fig. 1. A graph along with an ordering and a partition of the vertices which are consistent.

w(vj) for each vertex vj . Let �w(0) = 0 and, for each
1�j �n, denote by �w(j) the maximum weight of
a stable set Sj ⊆ {v1, . . . , vj }. If vj /∈ Sj then Sj is
a maximum weighted stable set in {v1, . . . , vj−1}. If
vj ∈ Sj then Sj − vj is a maximum weighted sta-
ble set in G[{v1, . . . , vj−1} − N(vj)] = G[N(vj)<]
by Definition 1.1. Since the ordering is consistent,
by Lemma 2.2 N(vj)< = {v1, v2, . . . , v|N(vj)<|}. So,
the following recursion correctly evaluates �w(j) and
�w(G) = �w(n) may be found in O(n)-time:

�w(j) = max

{
�w(j − 1),

�w(|N(vj)<|) + w(vj).
(1)

2.1. A superclass of interval graphs

The existence of a consistent ordering is at the ba-
sis of the dynamic program (1). On the other hand,
there is such an ordering if and only if a graph is in-
terval (Corollary 2.3). We now deal with a different
consistency property, involving also a partition of the
vertex set, which does hold for every graph: this prop-
erty can be exploited to define an efficient algorithm
for the maximum weighted stable set problem for ev-
ery graph for which the ordering and the partition are
given.

As usual, let G = (V , E) be a graph with an order-
ing {v1, . . . , vn} of V. Suppose that also we are given
a k-partition V 1, . . . , V k of V. Denote by ph the size
of each class V h and assume that V h ={vh

1 , . . . , vh
ph},

with vh
1 < vh

2 < · · · < vh
ph (i.e. with respect to the or-

dering). The following lemma is a natural extension
of Lemma 2.2. We omit the simple proof.

Lemma 2.4. Let G(V, E) be a graph with a k-parti-
tion (V 1, . . . , V k) and an ordering {v1, v2, . . . , vn}

of V. The following statements are equivalent:

(i) for each triple (i, j, k) such that 1� i < j < k�n,
if vkvi ∈ E and vi and vj belong to the same
class, then vkvj ∈ E;

(ii) [Consistency] for each vertex vj and each class
V h, N(vj , h)< = {vh

1 , vh
2 , . . . , vh

|N(vj ,h)<|}.

If an ordering and a k-partition are consistent, then
the only vertices of a class V h lower than a vertex vj

and non-adjacent to it are the first |N(vj , h)<| ones.
An example is in Fig. 1.

Theorem 2.5. If for a graph G we are given an or-
dering and a k-partition which are consistent, then a
maximum weighted stable set of G may be found in
O((|V |/k)k)-time.

Proof. Let G = (V , E) be a graph with weights
w(v) for each vertex v ∈ V . Let {v1, . . . , vn} and
(V 1, . . . , V k) be an ordering and a partition of V which
are consistent. Assume that V h = {vh

1 , . . . , vh
ph}, with

vh
1 < vh

2 < · · · < vh
ph . We use a dynamic program for

evaluating �w(G). Each state of the dynamic program
is associated to a k-tuple (j1, . . . , j k) with 0�jh �ph

for each h; the set all such k-tuples is denoted by K.
Let �w(0, . . . , 0)=0 and, for each (j1, . . . , j k) ∈ K,
denote by �w(j1, . . . , j k) the maximum weight of a
stable set S(j1,...,jk) ⊆ ⋃

h=1,...,k{vh
1 , . . . , vh

jh}.
We want to evaluate �w(j1, . . . , j k). Without loss

of generality, we assume that u = v1
j1 > vh

jh for
h ∈ {2, . . . , k}. As usual, either u /∈ S(j1,...,jk) or u ∈
S(j1,...,jk). In the former case, S(j1,...,jk) is also a maxi-
mum weighted stable set in G[{v1

1, . . . , v1
j1−1

}∪h=2,...,k

{vh
1 , . . . , vh

jh}]. In the latter case, S(j1,...,jk) −
u is also a maximum weighted stable set in
G[⋃h=1,...,k{vh

1 , . . . , vh
jh} − N(u)].

4 C. Mannino et al. / Operations Research Letters 35 (2007) 1–9

Claim. For 1�h�p, {vh
1 , . . . , vh

jh} − N(u) =
{vh

1 , . . . , vh
bh}, with bh = min(jh, |N(u, h)<|).

By Lemma 2.4, since the ordering and the par-
tition are consistent, for any class V h we have
that N(u, h)< = {vh

1 , vh
2 , . . . , vh

|N(u,h)<|}. Also, since

u is the highest vertex in the set {v1
j1 , . . . , v

k
jk },

for each h we have that {vh
1 , . . . , vh

jh} − N(u) =
{vh

1 , . . . , vh
jh} ∩ N(u, h)< = {vh

1 , vh
2 , . . . , vh

bh}, where

bh = min(jh, |N(u, h)<|).

Therefore, the following recursion holds for
�w(j1, . . . , j k):

�w(j1, . . . , j k) = max

{
�w(j1 − 1, j2, j3, . . . , j k),

w(u) + �w(b1, . . . , bk).

(2)

Since bh �jh for every h and b1 < j1, both k-tuples
(j1 − 1, j2, . . . , j k) and (b1, . . . , bk) are dominated
by (j1, . . . , j k) and are in K. The recursion will gen-
erate in a finite number of steps the (initial) k-tuple
(0, . . . , 0). This fact, along with the initial condition
�w(0, . . . , 0)=0 ensures that the recursion terminates.
Finally, since �w(G) = �w(p1, . . . , pk) and the size
|K| of the set of k-tuples is equal to (p1 + 1)(p2 +
1) . . . (pk + 1)�(|V |/k + 1)k , a maximum stable set
on G may be found in O(|V |/k)k-time. �

2.1.1. A strengthening of Theorem 2.5
The complexity established by Theorem 2.5 can be

refined by observing that indeed only a small sub-
set of k-tuples of K will be actually enumerated. By
simple counting arguments we give an upper bound
on the maximum size of this subset. We denote by
�={v1, . . . , vn} the ordering and by V=(V 1, . . . , V k)

the consistent k-partition.
For each j ∈ {1, . . . , n}, denote as p(j) the highest

index i < j such that vivj /∈ E. Recall that N(vj)<
is the set of vertices of V which are smaller than vj

and non-adjacent to vj . It follows that vp(j) is the
highest vertex in N(vj)< and p(j)� |N(vj)<|. In Fig.
1, we have, for instance, p(12) = 9 > |N(v12)<| = 8,
p(10) = 8 > |N(v10)<| = 6 and p(6) = 3 = |N(v6)<|.

Proposition 2.6. If p(j) = |N(vj)<| for every j then
G is interval.

Proof. Assume that N(vj)< = {vj1 , . . . , vj|N(vj)<| }.
Since |N(vj)<| = p(j), then we must have j1 = 1,
j2 = 2, . . . , j|N(vj)<| = p(j) and so for each vj ∈ V ,

we have that N(vj)< = {v1, v2, . . . , vp(j)}. So the
ordering is consistent since it satisfies property (ii) of
Lemma 2.2. �

For each vj ∈ V and each class V h, denote
as �(vj , h) the number of vertices of V h that are
smaller than vp(j) and are adjacent to vj . Also let
� = �(�,V) = maxj,h�(vj , h).

Proposition 2.7. p(j) − |N(vj)<| = ∑
h�(vj , h).

Proof. Let u = vp(j). Let q(u, h) be the num-
ber of vertices in each class not larger than u, i.e.
q(u, h) = |V h ∩ {v1, . . . , vp(j)}|. It follows that
p(j) = ∑

hq(u, h). Also, by definition, �(vj , h) =
q(u, h) − |N(vj , h)<|, for each h. Finally, observe
that p(j) − |N(vj)<| = p(j) − ∑

h|N(vj , h)<| =∑
hq(u, h) − ∑

h|N(vj , h)<| = ∑
h�(vj , h). �

We have two simple corollaries: the former follows
from Propositions 2.6 and 2.7; the latter from the def-
inition of � and since, for any vertex v and each class
V h, �(v, h)��(v).

Corollary 2.8. If � = 0 then G is interval (and vice
versa if G is interval then � = 0 for any ordering
satisfying Lemma 2.2).

Corollary 2.9. ���(G).

In Fig. 1, we have �(12, 1)=1—recall that p(12)=9
and observe that the only vertex of V 1 which is adja-
cent to v12 but lower than v9 is v8—and �(12, 2) = 0.
Also, it is �(10, 2) = 2—in fact, p(10) = 8 and the
only vertices of V 2 that are adjacent to v10 but lower
than v8 are v2 and v7—and �(10, 1) = 0. Finally, it is
easy to check that � = 2.

It is the size of � that really matters for evaluating
the complexity of program (2). We have:

Theorem 2.10. If a consistent ordering � and a
k-partition V of V (G) are given, then a maxi-
mum weighted stable set of G may be found in
O(|V (G)| · (�(�,V) + 1)k−1)-time.

C. Mannino et al. / Operations Research Letters 35 (2007) 1–9 5

Proof. We use the same settings as for the proof
of Theorem 2.5. Moreover, we define a k-tuple
(j1, . . . , j k) to be relevant if, for the largest vi

j i in

the k-tuple and any h 	= i, the number n(vi
j i , v

h
jh) of

vertices in V h between vh
jh and vi

j i is at most �, i.e.,

n(vi
j i , v

h
jh) = |{u ∈ V h : vh

jh < u < vi
j i }|��. Observe

that the starting k-tuple (p1, . . . , pk) of our dynamic
programming algorithm (2) is trivially relevant. We
then show that, if the program is started at a relevant
k-tuple, it only considers relevant k tuples. This im-
plies the statement since, for any vertex v, the number
of k-tuples with v largest vertex in the k-tuple is then
bounded by (� + 1)k−1.

So suppose by induction that (j1, . . . , j k) is a rel-
evant k-tuple and w.l.o.g. suppose that v = v1

j1 is the
largest vertex in the k-tuple. Consider again Eq. (2)
and, first, consider the k-tuple (j1 − 1, j2, . . . , j k).
If v = v1

j1−1
is the largest vertex in the k-tuple, then,

for h 	= 1, n(v1
j1−1

, vh
jh)�n(v1

j1 , v
h
jh)��. So sup-

pose w.l.o.g. that v = v2
j2 is the largest vertex in the

k-tuple. For h 	= 1, 2, n(v2
j2 , v

h
jh)�n(v1

j1 , v
h
jh)��;

n(v2
j2 , v

1
j1−1

) = 0, since v = v1
j1 > v2

j2 .

Consider the k-tuple (b1, . . . , bk). First, suppose
that v1

b1 is the largest vertex in the k-tuple, that is, v1
b1

is the highest vertex that is not adjacent to v = v1
j1 .

Consider a class V h, h 	= 1, such that bh < jh: by
definition, n(v1

b1 , v
h
bh) = �(v1

j1 , h). Consider then a

class V h, h 	= 1, such that bh = jh: we have that
n(v1

b1 , v
h
jh)�n(v1

j1 , v
h
jh)��. The case where (w.l.o.g.)

v =v2
b2 is the largest vertex in the k-tuple goes exactly

along the same lines: we omit the details. �

Corollary 2.11. If a consistent ordering and a
k-partition of V (G) are given, then a maxi-
mum weighted stable set of G may be found in
O(|V (G)| · (�(G) + 1)k−1)-time.

We close with a slight generalization of Theorems
2.5 and 2.10 which will be exploited in the application
described in Section 4. We omit its proof.

Theorem 2.12. Let G(V, E) be a graph together with
an ordering and a k-partition V 1, . . . , V k of V which
are consistent, and d ∈ Zk+. A maximum (minimum)

weighted stable set S, such that | S ∩ V h | =dh for
h= 1, . . . , k, may be found in O(|V (G)| · (�+ 1)k−1 ·
(D + 1)k)-time, where D = max{dh, 1�h�k}.

3. The thinness of a graph

Definition 3.1. A graph G is k-thin if there exists an
ordering {v1, v2, . . . , vn} and a k-partition of V (G)

which are consistent. The thinness of a graph G, de-
noted by thin(G), is defined as the smallest k such that
G is k-thin.

Observe that thin(G)� |V | for every graph
G(V, E). In fact, the partition of V into |V | classes
of size one (each class with one vertex) is consistent
with every ordering of V. Also, the thinness of a graph
G is 1 if and only if G is an interval graph. We now
relate the thinness of a graph to its pathwidth (for a
survey on the pathwidth and the treewidth, see [3]).

Definition 3.2. A path decomposition of a graph
G = (V , E) is a sequence of subsets of vertices
(X1, X2, . . . , Xr) such that

1. X1 ∪ · · · ∪ Xr = V

2. for all edges vw ∈ E, there exists an i, 1� i�r ,
with v ∈ Xi and w ∈ Xi .

3. for all i, j, k ∈ I : if i�j �k, then Xi ∩Xk ⊆ Xj .

The width of a path decomposition (X1, X2, . . . , Xr)

is defined as maxi |Xi | − 1. The pathwidth of a graph
G is the minimum possible width over all possible
path decompositions of G.

The pathwidth of G is bounded by |V (G)| − 1 and
the bound is tight for cliques. It is easy to check that
a graph G has a path decomposition of width q if and
only if it can be obtained from an interval graph G′
of clique size q+1, by deleting some edges. This is
related to the following theorem (in fact, the ordering
given in the proof is the interval order of V (G′) and
the (q + 1)-partition is an optimal coloring for G′).

Theorem 3.3. Let G(V, E) be a graph together with a
path decomposition (S1, S2, . . . , Sr) of width q. There
exists a consistent ordering and a k-partition of V such
that k�q + 1 and ��1.

6 C. Mannino et al. / Operations Research Letters 35 (2007) 1–9

Proof. Consider an optimal path decomposition. Let
k =pathwidth(G)+1 be the cardinality of the biggest
set. We demonstrate that the graph is k-thin.

Let S1, S2, . . . , St be the subsets in the order ap-
pearing in the path decomposition. We first describe
an ordering and then give a description of how we can
assign the vertices to classes, in order to get a partition
consistent with the ordering.

(1) Ordering: For a vertex x let i be the smallest
integer such that x ∈ Si : we say that x is first-met in
Si . Our numbering is as follows. If x is first-met in Si

and y is met in Sj with i < j then x < y. If i = j then
x and y can be relatively put in arbitrary order.

(2) Assigning vertices to classes: We keep k classes.
We start with S1 and process the vertices in it. The
rule is, we assign each vertex of S1 to a different class.
Since |S1|�k, this can be done. Now we take S2 and
we do the same thing. Note that some vertices in S2
are already assigned to certain classes, but all different
classes. We have only to deal with the remaining ver-
tices of S2, namely the vertices of S2 − S1. We assign
them to classes not used by the vertices of S2 ∩S1. All
of them can be assigned to different classes, since we
have enough classes as can be easily seen. We carry
on with this procedure.

We claim that by the process, for each i, vertices in
Si can be assigned to classes such that if x, y ∈ Si , then
x and y goes to different classes. Clearly, it is enough
to show that when we reach Si , those vertices in Si

which are already assigned are in different classes. If
not, let us assume that i is the smallest integer such
that inconsistency occurs in Si . Let x and y be the two
vertices in Si , which happen to be in the same class at
this stage. Clearly both x and y are first-met in Sj and
Sk , with j < k < i (without loss of generality). Then,
it means x, y have together occurred before in some
subset earlier than Si , for example, in Sk . (y is in Sk

by assumption; x is in Sk because it is in Sj as well
as in Si : then, by the definition of pathwidth x ∈ Sk

also.) This contradicts the fact that inconsistency was
occurring for the first time in Si .

We write down what we have achieved: if x, y ∈ Si ,
for some i, then class(x) 	= class(y).

Claim. Let the vertex x be first-met in Si . All neigh-
bors of x lower than x are present in Si .

Let y be such a vertex. If it is not in Si , then it was
first found in some Sj where j < i, since y < x. But

since xy is an edge there should be one subset Sk such
that both x, y ∈ Sk . But since i is the smallest number
such that x ∈ Si , k > i. That is, y ∈ Sj and y ∈ Sk

where j < i and k > i and y /∈ Si . This contradicts with
the definition of pathwidth.

So, all neighbors of x which are lower than x are
present in Si . Thus, neighbors of x which are smaller
than x, go into different classes. Now consider the
class in which a neighbor y < x is present. We just
need to ensure that there exists no other vertex z in the
same class such that y < z < x. Suppose there exists
one such vertex z. Note that if z and y are in the same
class, there is no subset Sk such that z, y both in Sk .
Thus, y < z tells us that y is first-met in Sk and z is
first-met in Sj with k < j . Also, z < x tells us that
j � i. But by the claim above y ∈ Si , since y is a
neighbor of x (and is lower than x). Thus y ∈ Sk , y ∈
Si , but not in Sj where k < j � i, which is impossible
by the definition of pathwidth. Thus, the partition and
the ordering of V (G) we obtained are consistent and
thin(G)� pathwidth(G) + 1. �

We have two corollaries. The former is immediate
(observe that the gap between thinness and pathwidth
may be high since the thinness of a clique is 1).
The latter uses Theorem 2.10 and the result was al-
ready known [3]. We point out that our algorithm for
k-thin graphs is indeed a generalization of the
weighted stable set algorithm for bounded pathwidth
graphs.

Corollary 3.4. Thin(G)�pathwidth(G) + 1.

Corollary 3.5. If a path decomposition (X1, X2,

. . . , Xr) of width q is given for a graph G, then a
maximum weighted stable set of G may be found in
O(|V (G)|2q)-time.

4. An application to the frequency assignment
problem

The FAP is the problem of assigning radio frequen-
cies to a set T of transmitters of a wireless network so
as to establish a number of connections (more details
can be found in [1,8]). In general, if u, v are two trans-
mitters of T and f, g two frequencies in the available
spectrum F = {1, . . . , fmax}, assigning f to u and g to
v may cause interference: this fact is represented by

C. Mannino et al. / Operations Research Letters 35 (2007) 1–9 7

a penalty p(u, f, v, g). One wants to find an assign-
ment of frequencies to all transmitters minimizing the
sum of penalty costs.

For the solution of the FAP we have designed a local
search scheme. Local search proceeds by iteratively
optimizing in the neighborhood of the current optimal
solution until no improving solution exists [11]. Along
the lines of the ideas developed in [2,4], some set of
transmitters, the hard sets, can be exploited to define a
large-scale neighborhood search for the FAP. Namely,
for a hard set H ⊂ T and an assignment s of T, we
define the neighborhood N|H |(s) to be the set of all
feasible assignments obtained from s by substituting
all of the frequencies assigned to H.

As we will show, an optimal solution in N|H |(s)
can be found very efficiently. This is very useful
for our local search; on the other hand, since re-
optimizing over small portions of large operating net-
works is a routine operation, this result is relevant in
itself.

We now define hard sets. For special pairs of trans-
mitters (typically those mounted on a same physical
support), the penalties can be so large as to interdict
the corresponding assignments. We define u, v ∈ T as
a hard pair if there exists cuv �0 such that (i) assign-
ing f ∈ F to u and g ∈ F to v is infeasible for all
|f −g| < cuv and (ii) p(u, f, v, g)=0 for |f −g|�cuv .
A set H ⊆ T is a hard set if and only if u, v is a hard
pair for all u, v ∈ H .

Optimizing in N|H |(s) is therefore equivalent to
the following sub-problem. We are given a 5-tuple
(H, C, d, F, w): H is the hard set of transmitters, F =
{1, . . . , fmax} is the set of available frequencies, C ∈
Z

|H |×|H |
+ is the distance requirements matrix, d ∈

Z
|H |
+ is the demand vector (i.e. every transmitter v ∈

H has to be assigned a number dv of frequencies) and
w ∈ R

|H |×|F |
+ is the frequency costs matrix, i.e. wuf

denotes the (penalty) cost of assigning f ∈ F to u ∈
H (such cost accounts for the interference penalties
with the transmitters in T − H).

We want to find a feasible frequency assignment
of H such that the sum of frequency costs is mini-
mized. A feasible frequency assignment of H is a fam-
ily {F1, . . . , F|H |} of sets such that: (i) for each v ∈ H ,
Fv ⊆ F and | Fv | =dv (demand constraint); and (ii)
for each u, v ∈ H , if f ∈ Fu and g ∈ Fv , (u, g) 	=
(v, f), then |g − f |�cuv (distance constraint).

u z

v

2
1

1

1

2
1

u,1 u,2 u,3 u,4 u,5

v,1 v,2 v,3 v,4 v,5

z,1 z,2 z,3 z,4 z,5

Fig. 2. An example of the conflict graph. Here, cvv = czz =
cuz = cvz = 1, cuv = cuu = 2.

As we show in the following, this sub-problem can
be reduced to the solution of a minimum weight (car-
dinality constrained) stable set problem on a suitable
graph G(W, E) (named conflict graph [1]), where W=
{(v, f) : v ∈ H, f ∈ F } and E = {(u, g)(v, f): |g −
f | < cuv , (u, g) and (v, f) ∈ W, (u, g) 	= (v, f)}:
an edge (u, g)(v, f) ∈ E indicates that we cannot
(simultaneously) assign frequency g to u and fre-
quency f to v. An example is given in Fig. 2.

Lemma 4.1. The graph G(W, E) is |H |-thin.

Proof. Let H = {v1, . . . , vn}. Define on the set
W the ordering � = {(v1, 1), . . . , (vn, 1), . . . ,

(v1, fmax), . . . , (vn, fmax)} and the partition W =
{Wv1 , . . . , Wvn}. It is immediate to verify that � and
W are consistent. �

Theorem 4.2. An instance (H, C, d, F, w) of the sub-
problem can be solved in O(fmax · |H | · (1 +�)|H |−1 ·
(D +1)|H |)-time, where �=maxu∈H ;v,z∈H |cuv −cuz|
and D = maxv∈H dv .

Proof. Let G(W, E) be the conflict graph. With every
subset of vertices S ⊆ W , we associate a frequency
assignment F = {F1, . . . , F|H |}, by letting Fv = {f :
(v, f) ∈ S} for all v ∈ H . Moreover, if S is an stable
set of G, then S corresponds to feasible assignment
of frequencies to the transmitters of H whose cost is
equal to the weight w(S) = ∑

(v,f)∈Swv,f : similarly,
every feasible assignment corresponds to a stable set
of G of equal weight. So, denoting by Wv = {(v, f) :
f ∈ F }, finding a minimum cost feasible frequency
assignment of H is equivalent to finding a stable set S
of G(W, E) such that |S ∩ Wv| = dv for each v ∈ H

and the weight of S is minimum.

8 C. Mannino et al. / Operations Research Letters 35 (2007) 1–9

Table 1
Computational results over COST253 instances

Instance name Size Old best SA + NZ Time

siemens1 930 2.30 2.20 5
siemens2 977 14.28 14.27 9
siemens3 1623 5.19 5.1 15
siemens4 2785 80.97 77.24 18
bradford_nt-1-eplus 1970 0.86 0.86 22
bradford_nt-1-free 1970 0 0 17
bradford_nt-1-race 1970 0 0 16
bradford_nt-2-eplus 2199 3.17 3.20 24
bradford_nt-2-free 2199 0 0 12
bradford_nt-2-race 2199 0 0 13
bradford_nt-4-eplus 2650 17.73 17.72 21
bradford_nt-4-free 2650 0 0 12
bradford_nt-4-race 2650 0 0 11
bradford_nt-10-eplus 2468 146.20 144.94 19
bradford_nt-10-free 2468 5.86 5.42 14
bradford_nt-10-race 2468 1.07 1.09 14
bradford-0-eplus 2947 0.80 0.60 64
bradford-0-free 2947 0 0 30
bradford-0-race 2947 0 0 26
bradford-1-eplus 2947 33.99 33.80 64
bradford-1-free 2947 0.16 0.12 30
bradford-1-race 2947 0.03 0.01 26
bradford-2-eplus 3406 80.03 79.38 75
bradford-2-free 3406 2.95 2.69 37
bradford-2-race 3406 0.42 0.32 39
bradford-4-eplus 3996 167.7 167.0 90
bradford-4-free 3996 22.09 20.00 46
bradford-4-race 3996 3.04 2.93 36
bradford-10-eplus 4871 400.0 395.5 128
bradford-10-free 4871 117.8 113.7 63
bradford-10-race 4871 30.22 27.38 46

Columns: Size number of assigned frequencies; Old best value of best known solution, SA+NZ value of our solution, Time time to best
in hours. All solutions and references are available at the FAP-WEB [5]. The times refer to a C code, running under LINUX operating
system on a two processors Intel Xeon, 1.5 GHz.

So, our original task is now reduced to the problem
of finding a minimum weight (cardinality constrained)
stable set problem on a |H |-thin graph. To complete
the proof we only need to verify that �(�,W)=� and
the result follows immediately from Theorem 2.12. In
order to evaluate �(�,W), we need to compute, for
every vj ∈ W , the quantity �(vj , z), i.e. the number of
vertices of Wz that are smaller than vp(j) and are ad-
jacent to vj . First observe that the ordering � implies
(x, r) < (u, f) whenever r < f . Now, let vj = (u, f).
If N(vj , z)< is empty then �(vj , z) = 0; otherwise
vp(j) = maxh<f {(w, h) : f − h = cuw}. Suppose the
maximum is attained for vp(j) =(v, f −cuv). Observe

now that it is f − g < cuz for every vertex (z, g) ad-
jacent to (u, f). In particular, for a class Wz, the ver-
tices of Wz which are adjacent to (u, f) belong to the
set {(z, f − cuz +1), . . . , (z, f)}. Also, the vertices in
the set {(z, f − cuv + 1), . . . , (z, f)} are higher than
vp(j)=(v, f −cuv). So, the vertices in Wz that are adja-
cent to vj =(u, f) but smaller than vp(j)=(v, f −cuv)

belong to the set{(z, f − cuz + 1), . . . , (z, f − cuv)}
and thus their cardinality �(vj , z) is at most cuz −cuv .
The result follows from the definition of �. �

We tested our approach on the COST259 test-bed
[5], a collection of large instances of the FAP in GSM

C. Mannino et al. / Operations Research Letters 35 (2007) 1–9 9

networks. The scenarios have been contributed by
three industrial sources, namely E-Plus Mobilfunk
GmbH, Siemens AG, and Swisscom Ltd. These prob-
lems are of high interest both from the academic and
the industrial point of view. The initial solutions for
the local search were found by a suitable implemen-
tation of simulated annealing; details may be found
in [9]. In these instance usually ��2, and therefore
the sub-problem in Theorem 4.2 could be solved very
efficiently. As detailed in Table 1, we were able to
improve most of the former best known solutions
(listed in column Old best), contributed by a number
of academic and industrial research groups (see [5]).
Observe that in one case (bradford-1-race) the im-
provement exceeds 60%, a very large improvement
for a mobile operator. Only in two cases the algo-
rithm did not obtain the best known solution values,
however, performing only slightly worse (less than
2%) than Old Best. The large running times are mo-
tivated (for our and other approaches as well) by the
huge size of real-life instances and are irrelevant in
practical planning.

Acknowledgments

We are grateful to Antonio Sassano for sparking our
interest in the problem. We also wish to thank Günter
Rote for an insightful discussion and an anonymous
referee for several helpful comments.

References

[1] K. Aardal, S.P.M. van Hoesel, A. Koster, C. Mannino,
A. Sassano, Models and solution techniques for frequency
assignment problems, 4OR 4 (1) (2003) 261–317.

[2] R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, A
survey of very large-scale neighborhood search techniques,
〈http://web.mit.edu/jorlin/www/papersfolder/VLSN.pdf〉.

[3] H. Bodlaender, A tourist guide through treewidth, Acta
Cybernet. 11 (1993) 1–21.

[4] V.G. Deineko, G.J. Woeginger, A study of exponential
neighborhoods for the travelling salesman problem and for
the quadratic assignment problem, Math. Program. 87 (A)
(2000) 519–542.

[5] A. Eisenblätter, A. Koster, FAP web—A website about
frequency assignment problems, 〈http://fap.zib.de/〉.

[6] U.I. Gupta, D.T. Lee, J.Y.T. Leung, Efficient algorithms for
interval graphs and circular-arc graphs, Networks 12 (1982)
459–467.

[7] J.Y. Hsiao, C.Y. Tang, R. Chang, An efficient algorithm for
finding a maximum weight 2-independent set on interval
graphs, Information Process. Lett. 43 (5) (1992) 229–235.

[8] A. Koster, Frequency assignment—models and algorithms,
Ph.D. Thesis, Maastricht University, Netherlands 1999.

[9] C. Mannino, G. Oriolo, F. Ricci, A short note on the
implementation of a simulated annealing procedure for FAP,
〈http://www.dis.uniroma1.it/∼mannino/papers/SA_FAP.pdf〉.

[10] S. Olariu, An optimal greedy heuristic to color interval graphs,
Inform. Process. Lett. 37 (1991) 21–25.

[11] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[12] J. Ramalingam, C. Pandu Rangan, A unified approach to
domination problems on interval graphs, Inform. Process.
Lett. 27 (1988) 271–274.

http://web.mit.edu/jorlin/www/papersfolder/VLSN.pdf
http://fap.zib.de/
http://www.dis.uniroma1.it/mannino/papers/SAprotect LY1	extunderscore FAP.pdf

	The stable set problem and the thinness of a graph
	Introduction
	The stable set problem on a superclass of interval graphs
	A superclass of interval graphs
	A strengthening of Theorem 2.5

	The thinness of a graph
	An application to the frequency assignment problem
	Acknowledgments
	References

