
SDP Diagonalizations and Perspective Cuts for a

Class of Nonseparable MIQP

Antonio Frangioni∗

Dipartimento di Informatica, Università di Pisa

Claudio Gentile
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.

March 28, 2019

Abstract

We present a new approach, requiring the solution of a SemiDefinite
Program, for decomposing the Hessian of a nonseparable Mixed-Integer
Quadratic problem to permit using perspective cuts to improve its con-
tinuous relaxation bound. The new method favorably compares with a
previously proposed one requiring a minimum eigenvalue computation.

Keywords: Mixed-Integer Quadratic Programs, Valid Inequalities,
SemiDefinite Programming, Portfolio Optimization

∗Corresponding author: Largo B. Pontecorvo 3, 56127 Pisa – Italy, e-mail
frangio@di.unipi.it

1

1 Introduction

We consider Mixed-Integer Quadratic Programs (MIQP) of the form

min xTQx+ qx+ cy
Ax+By ≥ b
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(1)

where Q is positive semidefinite (denoted by Q � 0); that is, each xi is a
semi-continuous variable whose domain is the (disconnected) set 0 ∪ [li, ui],
and/or one pays a fixed-charge cost ci whenever xi 6= 0. Actually, these ideas
can be extended to more general cases where several x variables depend on
the same y and the linking constraints are different, but for the sake of
clarity of the present discussion the above simple form is more appropriate.

When Q is diagonal, the continuous relaxation of (1) can be strengthened
by using perspective cuts [3], a simple family of disjunctive cuts which oper-
ate on the objective function. These are faces of the epigraph of the convex
envelope of the objective function on the set {liyi ≤ xi ≤ uiyi , yi ∈ {0, 1}},
which can be separated at the feasible (fractional) point (x∗i , y

∗
i) by the sim-

ple closed formula

vi ≥ (2Qiix̄i + qi)xi + (ci −Qiix̄
2
i)yi (2)

where x̄i = x∗i /y
∗
i and vi is the variable representing the objective func-

tion value. Despite the low dimensionality of the faces that they represent,
perspective cuts (2) significantly improve the efficiency of enumerative ap-
proaches to (MIQP)s with structure (1).

Using perspective cuts crucially requires the objective function to be
separable among the blocks; however, a simple reformulation technique was
proposed in [3] for nonseparable problems which moves “the nonseparable
part” of the objective function to newly introduced variables, leaving a sep-
arable objective function to which (2) can then be applied. In this paper, we
compare two different ways for decomposing the objective function: comput-
ing the minimum eigenvalue of Q, as done in [3], and a more costly procedure
which requires the solution of a SemiDefinite Program. We show that, at
least on instances of the Mean-Variance problem in portfolio optimization,
the new procedure significantly improves the quality of the obtained lower
bounds and the overall solution time.

2

2 The reformulation technique

In order to apply perspective cuts to (1) with a non-diagonal Q, one can
select any non-negative diagonalD ∈ Rn×n such thatQ−D � 0 and consider
the following equivalent formulation:

min xTDx+ zT (Q−D)z + qx+ cy
Ax+By ≥ b , z = x
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(3)

Model (3) allows direct application of perspective cuts, and retains most
of the structure of the original problem by introducing a copy of the x
variables and assigning it all the non-separability in the objective function.
Intuitively, the “larger” D—the “fraction” of the objective function that
is reflected on the separable costs—is, the more perspective cuts could be
expected to improve the lower bound; thus, procedures have to be devised
for (efficiently) finding a “large” D.

In [3] the Minimum Eigenvalue (ME) approach was proposed: D =
λminI, λmin being the minimum eigenvalue of Q. This requires Q to be
strictly positive definite, for otherwise λmin = 0⇒ D = 0.

However, assuming tr(D)—the sum of the diagonal elements of D—to
be a relevant metric, finding the “largest” possible D can be directly cast
as the following dual pair of SemiDefinite Programs (SDP)

max
{ ∑n

i=1 di : Q−
∑n

i=1 di(eie
T
i) � 0 , d ≥ 0

}
min

{
tr(QX) : diag(X) ≥ e , X � 0

} (4)

where e is the vector of all ones and ei is the i-th vector of the canonical
base of Rn; clearly, this SDP approach can produce a nonzero D even if
λmin = 0. One might had chosen different cost coefficients for the di variables
in order to reflect different relevance of having a large quadratic coefficient
for each xi in (3); in want of sensible rules for computing those weights, for
our computational results we have used unitary costs. Problems (4) can be
easily solved by any of the several available SDP codes. Furthermore, the
constraint d ≥ 0 may be redundant (it was such on all the instances of our
test bed); eliminating it from the primal turns the dual problem into

min
{
tr(QX) : diag(X) = e , X � 0

}
(5)

which is usually faster to solve and can be tackled by some approaches, such
as the spectral bundle method, which require constant trace of the variable.

3

For both SDP and ME, in order to avoid that Q−D turns out not to be
positive semidefinite due to numerical errors, we subtracted from D (hence,
added to Q−D) a matrix εI for a suitably chosen “small” ε > 0.

3 Computational results

We have tested the influence of ME and SDP on the overall efficiency of
a B&C approach using perspective cuts to nonseparable (MIQP); as in [3],
we have applied it to instances of the Mean-Variance (MV) problem with
minimum and maximum buy-in thresholds, which is

min

{
xTQx

∣∣∣∣ ex = 1 , µx ≥ ρ ,
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

}
(6)

where µi, li and ui are respectively the expected unitary return and the
minimum and maximum buy-in thresholds for asset i, Q is the variance-
covariance matrix and ρ is the desired level of return. Several alternative
forms of portfolio selection problems have been proposed in the literature
(e.g., [1] and many others), many of which are difficult due to some form of
discrete decisions [5]. Our choice of model (6) is motivated by the fact that
it is quite simple but rather demanding for general-purpose (MIQP) solvers;
this is due to the fact that the root node gaps of the continuous relaxation
are huge (cf. Table 2, column “Cplex/r.gap”) and that it has very few
constraints with no structure, so that the classical polyhedral approaches
to improve the lower bounds [2] are ineffective. However, its simplicity also
means that simple MIP-rounding heuristics usually find good solutions if
the lower bounds are reasonably tight. Thus, (6) is an ideal candidate for
testing the effect of different ways for selecting D, as these only influence
the lower bounds produced by perspective cuts.

For our tests, we have generated 30 (MV) instances for each value of
n∈{200, 300, 400}: Q has been generated using the well-known random gen-
erator of [6], while ρ, li and ui has been uniformly drawn at random from
intervals [0.002, 0.01], [0.075, 0.125] and [0.375, 0.425], respectively. For each
value of n, we have generated three different set of matrices Q. The “+”
set has been generated with the same parameters as in [3], which turn out
to produce matrices that are strongly diagonally dominant: indeed, their
average dominance index Si = (Qii −

∑
j 6=i |Qij |)/Qii is around 0.6. In or-

der to evaluate the effect of diagonal dominance on the proposed procedure,
we have also modified the parameters in order to produce a “0” set with
average Si ≈ 0, and a “−” set with average Si ≈ −0.5. The data required
for reproducing the instances is available upon request by the authors.

4

For our experiments we have used the B&C approach using perspective
cuts described in [3]. Some aspects of the approach are nonstandard, due to
the cuts being applied to the objective function, but this is immaterial for
the issue at stake here, so we need not discuss them; the interested reader
is referred to the original paper for further details. We also compared the
approach with the general-purpose B&C algorithm of Cplex 9.1; for both
codes, a global time limit of 10000 seconds was set. The experiments were
performed on a PC with an Opteron 246 processor and 2Gb RAM, running
Linux. All the codes were compiled with gcc 4.0 and -O3 optimizations.
Our B&C code uses Cplex 9.1 to solve the continuous relaxations at each
node of the enumeration tree.

In Table 1 we report some data that describes the average results of the
initialization phase alone. Columns “dmax”, “dmin” and “davg” report the
ratio between, respectively, the maximum, minimum and average element
of the diagonal of D obtained by SDP and λmin used by ME. All other
columns report the time (in seconds) required for computing D. For ME, we
have used the eig() function of the open-source package octave 2.1; more
efficient methods may exist, but, as it will be clear shortly, there is little point
in improving upon this. For SDP, we have tested all open-source solvers
listed at C. Helmberg’s SDP page [4] which could be compiled as stand-
alone applications and linked to our B&C code; this restricted the choice
to CSDP 4.9, DSDP 5.6, SBmethod 1.1.3, SDPA 6.0 and SDPLR 1.02. For
each approach, columns “≥” and “=” report the time for solving (4) and (5),
respectively; SBmethod can only solve the latter problem.

ME CSDP DSDP SDPA SDPLR SB

dmax dmin davg ≥ = ≥ = ≥ = ≥ = =

200+ 1.96 0.97 1.47 0.13 3.12 2.98 1.86 0.10 1.81 0.29 3.71 2.23 23.77
2000 1.93 0.90 1.41 0.13 3.03 2.99 1.87 0.10 1.68 0.29 3.72 2.79 16.39
200− 1.86 0.87 1.37 0.13 3.00 2.95 1.86 0.10 1.62 0.40 2.30 2.19 16.58

300+ 1.97 0.97 1.47 0.23 10.54 9.84 4.92 0.26 5.33 0.73 13.20 5.02 69.13
3000 1.93 0.91 1.42 0.23 10.91 9.55 4.99 0.26 4.97 0.71 8.58 9.08 46.01
300− 1.69 0.89 1.29 0.23 10.91 9.62 5.10 0.26 5.11 0.72 5.67 5.53 41.82

400+ 1.98 0.97 1.47 0.39 31.03 29.28 10.56 0.52 5.02 1.40 17.48 21.60 146.07
4000 1.93 0.93 1.43 0.39 37.24 31.27 10.86 0.52 11.46 1.37 21.80 11.93 94.62
400− 1.87 0.89 1.38 0.39 36.77 31.61 10.75 0.52 11.10 1.38 15.10 21.11 90.07

Table 1: Comparison of SDP and ME initializations

On these instances, SDP finds a D whose diagonal elements are on av-
erage significantly larger than λmin, although the ratios uniformly decrease
as Q becomes less and less diagonally dominant. For doing so, it takes signif-

5

icantly longer than ME if the standard problem (4) is solved, but only very
marginally longer—at least if DSDP 5.6 is used—if (5) is solved instead; a
reasonable approach would then be to attempt solving (5) first, and revert
to (4) if the optimal solution turns out not to be nonnegative.

Besides, the running times of the initialization are hardly significant
when one considers the overall B&C approach, as shown in Table 2. Columns
“nodes” and “time” report respectively the total number of explored nodes
and the total time (in seconds) for the B&C approach, while columns “r.gap”,
“p.gap” and “d.gap” report respectively the root node gap, the gap of the
best primal solution and that of the best lower bound attained at the end of
the enumerative process (in percentage); a blank entry corresponds to a gap
less than 0.01%—the optimality tolerance of the B&C. As in the previous
table, results are averaged on all 10 instances of each class. We have avoided
to report column “time” for Cplex since it never terminated before the time
limit, as well as columns “p.gap” for our B&C approach, using either SDP or
ME, because it almost never attained a primal solution farthest from 0.01%
from optimality; the only exception are “400−” instances, upon which ME
attained an average primal gap slightly larger than 0.1% due to a single
instance terminating with a gap of 0.12%. Note that, to be on the safe side,
the SDP time comprises that for solving (4) with SDPA 6.0—so the actual
time could be (slightly) reduced by using (5) instead—while the ME time
does not include the (anyway, negligible) initialization phase.

SDP ME Cplex

time nodes d.gap r.gap time nodes d.gap r.gap nodes p.gap d.gap r.gap

200+ 164 1.2e+4 1.14 904 7.7e+4 6.48 1.9e+7 0.14 45.33 85.63
2000 161 1.1e+4 2.14 320 2.8e+4 6.10 8.5e+6 0.38 51.27 84.47
200− 1902 1.3e+5 3.65 3306 2.6e+5 0.02 6.69 8.9e+6 0.24 42.09 78.88

300+ 818 2.9e+4 4.54 2061 9.3e+4 5.62 4.0e+6 0.41 64.68 92.01
3000 856 2.7e+4 1.97 1715 7.1e+4 6.28 3.6e+6 0.43 59.91 87.87
300− 1709 5.2e+4 2.68 2797 9.4e+4 0.05 7.04 3.0e+6 0.53 45.11 78.77

400+ 2264 7.0e+4 4.79 4756 1.1e+5 0.10 6.15 1.9e+6 1.03 61.47 89.06
4000 4378 7.2e+4 0.10 2.29 7421 1.6e+5 0.16 6.53 1.5e+6 1.18 68.68 90.03
400− 6311 1.0e+5 0.23 3.06 6901 1.4e+5 0.36 6.49 1.5e+6 1.60 65.88 88.47

Table 2: Results of the three B&C approaches

As already seen in [3], the standard continuous relaxation has huge root
node gaps, usually in the 80-90% range, that are only reduced to the 40-70%
range within 10000 seconds of the standard B&C; while the MIP rounding
heuristics of Cplex obtain relatively good primal solutions, these problems
are unsolvable to optimality with standard means. With ME diagonaliza-

6

tion, perspective cuts close the root node gap to a more manageable 5-8%;
this allows to solve most of the smallest instances, but it is not enough for
the largest ones. There also is a clear trend between dominance of Q and
effectiveness of the perspective cuts approach; indeed, ME could not solve
two “−” instances for both n = 200 and n = 300, while for n = 400 it could
not solve 3, 5 and 6 instances of class “+”, “0” and “−”, respectively.

The trend is clearly present for SDP, too: while the “better” D allows
to solve all smaller instances and all “400+” ones, 3 and 6 instances of
class “4000” and “400−”, respectively, remained unsolved. However, the
bound improvements due to the SDP diagonalization—testified by the fur-
ther reduction of the root node gaps—significantly improve the overall per-
formances of the B&C approach: SDP solves more problems, it is faster on
those that are solved, and obtains better dual gaps on those that are not,
than ME.

Our results clearly show that, despite the cost of solving (4), the SDP
approach is significantly more efficient than the ME one; for all our instances,
by solving (5) instead, the extra effectiveness of perspective cuts could also
be obtained at basically no extra cost. An interesting issue that still remains
open is the development of different weighting schemes for the di variables
in (4) which further improve the quality of the obtained bounds.

Acknowledgements

We are grateful to an anonymous referee for several comments which have
helped us to significantly improve the paper. The second author has been
partly supported by the EU “Marie Curie” Research Training Network no.
504438 ADONET.

References

[1] S. Ahn, L.F. Escudero, and M. Guignard-Spielberg. On modeling robust
policies for financial trading. In T.A. Ciriani and R.L. Leachman, editors,
Optimization in Industry 2, pages 163–184. Wiley, Chichester, 1994.

[2] D. Bienstock. Computational Study of a Family of Mixed-Integer
Quadratic Programming Problems. Mathematical Programming,
74(2):121–141, 1996.

[3] A. Frangioni and C. Gentile. Perspective Cuts for 0-1 Mixed Integer
Programs. Mathematical Programming, 106(2):225–236, 2006.

7

[4] C. Helmberg. http://www-user.tu-chemnitz.de/~helmberg/semidef.html.

[5] N.J. Jobst, M.D. Horniman, C.A. Lucas, and G. Mitra. Computational
aspects of alternative portfolio selection models in the presence of dis-
crete asset choice constraints. In Quantitative Finance, volume 1, pages
1–13. Wiley, Chichester, 2001.

[6] P.M. Pardalos and G.P. Rodgers. Computing aspects of a branch
and bound algorithm for quadratic zero-one programming. Computing,
45:131–144, 1990.

8

