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Abstract

The purpose of this note is to give a probability bound on symmetric matrices to improve
an error bound in the Approximate S-Lemma used in establishing levels of conservatism results
for approximate robust counterparts.
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1 Introduction

The purpose of this note is to prove the following result:

Lemma 1 Let B denote a symmetric n× n matrix and ξ = {ξ1, .., ξn} ∈ Rn . If the coordinates
ξi of ξ are independently identically distributed random variables with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (1)

then one has
Pr(ξT Bξ ≤ TrB) ≥ 1

2dlog2(n)e >
1
2n

. (2)

The above result improves Lemma A.4 by Ben-Tal et al. [1] which stated

Pr(ξT Bξ ≤ TrB) ≥ 1
8n2

,

and where the authors conjectured that the right hand side could be improved to 1
4 . Ben-Tal et

al. [1] used Lemma A.4 to give the Approximate S-Lemma used in levels of conservatism results
for approximate robust counterparts of uncertain convex programs. Our Lemma 1 above improves
the error bound in the Approximate S-Lemma of [1] to

ρ := ( 2log( 4n
∑K

k=1 rankRk ) )
1
2 (3)

from
ρ := ( 2log( 16n2

∑K
k=1 rank Rk ) )

1
2 . (4)
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2 Proof of the Main Result

Our proof, which is based on contradiction, recursively eliminates the non-zero entries of a sym-
metric matrix while the proof of [1] uses moments. We arrive at the proof of Lemma 1 after giving
three intermediate results.

First, since TrB = ξT diagBξ for any ξ ∈ {−1, 1}n it follows that

Pr(ξT Bξ ≤ TrB) = Pr(ξT Bξ − TrB ≤ 0) = Pr(ξT (B − diagB)ξ ≤ 0).

This enables us to restrict ourselves to the case that the matrix under consideration is a symmetric
matrix with zero diagonal since B − diagB is a matrix with this property. Therefore, in order to
prove Lemma 1 we need to show that for any symmetric matrix B with zero diagonal, and for ξ

as defined in Lemma 1 we have

Pr(ξT Bξ ≤ 0) ≥ 1
2dlog2(n)e . (5)

Now, we will give three intermediate results which lead to the proof of Lemma 1.

Lemma 2 Let X be a finite set. Then for any pair of subsets U and V of X , one has

|U ∩ V | ≥ |U |+ |V | − |X|.

Proof: Using the inclusion-exclusion principle we have |U | + |V | − |U ∩ V | = |U ∪ V | ≤ |X| .
After rearranging the right and left sides of the inequality we get the desired result.

Lemma 3 Let f : N → N be a function such that f(n) = dn
2 e. If k = dlog2(n)e, then fk(n) =

f(f(...(f(n))...)) ≤ 1.

Proof: By the definition of k we have k− 1 < log2(n) ≤ k , which implies n ≤ 2k . Since f is a
non-decreasing function, we have fk(n) ≤ fk(2k). It can be seen that fk(2k) = 1. Therefore the
result holds.

In the remaining part of the paper for any q ∈ Rn such that q(i) ∈ {−1, 1} for any i ∈ {1, .., n}
we denote diag(q) by Q . Here, q(i) is the ith entry of vector q . For any such Q and any symmetric
matrix B having zero diagonal entries we define

Bq =
1
2
(B + QBQ).

The matrix QBQ is a symmetric matrix with zero diagonal. Hence, Bq is a symmetric matrix
with zero diagonal. Since q(i)q(j) ∈ {−1, 1} and the (i, j) entry of QBQ is given by q(i)q(j)Bij

we have

Bq
ij =

{
Bij if q(i)q(j) = 1
0 if q(i)q(j) = −1.
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Lemma 4 Let ξ and B defined as in Lemma 1. Moreover, let Q = diag(q), with q ∈ <n such
that qi ∈ {−1, 1} and Bq as defined above. Then one has

Pr(ξT Bξ > 0) = Pr(ξT QBQξ > 0), (6)

and
Pr(ξT Bqξ > 0) ≥ 2Pr(ξT Bξ > 0)− 1. (7)

Proof: We have
(Qξ)T ·QBQ ·Qξ = ξT Q2BQ2ξ = ξT Bξ,

since Q2 = In , where In is the n× n identity matrix. Hence

Pr(ξT Bξ > 0) = Pr((Qξ)T ·QBQ ·Qξ > 0).

Since ξ and Qξ occur with the same probability this implies (6). To prove (7) we use the fact

Pr(ξT Bqξ > 0) = Pr(ξT (B + QBQ)ξ > 0) ≥ Pr(ξT Bξ > 0 & ξT QBQξ > 0).

Then using Lemma 2 we get

Pr(ξT Bξ > 0 & ξT QBQξ > 0) ≥ Pr(ξT Bξ > 0) + Pr(ξT QBQξ > 0)− 1 = 2Pr(ξT Bξ > 0)− 1,

where the last equality follows from (6). Therefore we get inequality (7).

At this point, using our result in Lemma 4, we are ready to prove Lemma 1.
Proof of Lemma 1: Assume to the contrary that Lemma 1 is false. Then, one can see from the
derivation of inequality (5) that there exists a symmetric n × n matrix B having zero diagonal
such that

Pr(ξT Bξ ≤ 0) <
1

2dlog2(n)e (8)

which is equivalent to

Pr(ξT Bξ > 0) > 1− 1
2dlog2(n)e . (9)

We construct a sequence of block diagonal matrices Bi having zero diagonal such that

B1 = B, Bi+1 = Bqi
i , i = 1, 2, . . . , k.

We have k = dlog2(n)e , and qi ’s are chosen according to the following process. For q1 we take
the first dn

2 e entries as 1’s and the remaining entries as −1’s. Let us call these two parts of q1 as
segments of q1 . We illustrate this for n = 13 with two segments separated by the symbol “ | ”.

q1 = [ 1 1 1 1 1 1 1 | −1 −1 −1 −1 −1 −1 ].

For qi+1 , consider each segment of qi . If the length of a segment is l we take the first d l
2e entries

as 1’s and the remaining entries in the segment as −1’s. Let us call these two parts segments
again. Note that if l = 1 for a segment the process will produce only one part of length 1 out of
the segment. The resulting vector is qi+1 with its segments defined as above. To illustrate it for
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n = 13, we show q2 obtained from q1 . Here, q2 has four segments separated by the symbol “ |
” again:

q2 = [ 1 1 1 1 | −1 −1 −1 | 1 1 1 | −1 −1 −1 ].

Now, let S denote the first principal submatrix of B with size dn
2 e × dn

2 e , and let T denote the
last principal submatrix of B with size bn

2 c × bn
2 c . Denote the remaining matrix at the upper

right corner of B by R , and the remaining matrix at the lower left corner of B becomes RT

since B is symmetric. Then Bq1 is obtained from B by replacing all entries of R and RT by
zeros. In other words,

B1 = B =

[
S R

RT T

]
⇒ Q1B1Q1 =

[
S −R

−RT T

]
⇒ B2 = Bq1 =

[
S 0
0 T

]

where Q1 is the diagonal matrix with the vector q1 as the diagonal. Now using Lemma 4 and (9)
we obtain

Pr(ξT B2ξ > 0) > 2(1− 1
2dlog2(n)e )− 1 = 1− 2

2dlog2(n)e . (10)

Note that the block matrices along the diagonal of B2 have sizes dn
2 e and bn

2 c . Hence, the sizes
do not exceed f(n) of Lemma 3 which was defined as f(n) = dn

2 e . We repeat the above procedure
using q2 which was shown before. Thus we obtain B3 = Bq2

2 which has the form

B3 =


D1

D2

D3

D4


where D1, D2, D3 and D4 constitute the symmetric, zero-diagonal blocks of the block diagonal
matrix B3 . These block matrices have dimensions d1

2d
n
2 ee×d1

2d
n
2 ee , b

1
2d

n
2 ec×b1

2d
n
2 ec , d

1
2b

n
2 ce×

d1
2b

n
2 ce , b

1
2b

n
2 cc × b1

2b
n
2 cc , respectively.

Now, again by Lemma 4 and (10) B3 satisfies

Pr(ξT B3ξ > 0) > 2(1− 2
2dlog2(n)e )− 1 = 1− 22

2dlog2(n)e . (11)

Note that the sizes of the block diagonal matrices along the diagonal of B3 can be at most d1
2d

n
2 ee

which does not exceed f2(n). We construct q3 in the same way as before. For n = 13 this gives

q3 = [ 1 1 | −1 −1 | 1 1 | −1 | 1 1 | −1 | 1 1 | −1 ] .

Again by using Lemma 4 and (11) we obtain for B4 that

Pr(ξT B4ξ > 0) > 2(1− 22

2dlog2(n)e )− 1 = 1− 23

2dlog2(n)e . (12)

This time the sizes of the block diagonal matrices along the diagonal of B4 do not exceed f3(n).
Then, q4 is constructed in the same manner, and for n = 13 we have

q4 = [ 1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 ] .
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Hence, at the next step we get

Pr(ξT B5ξ > 0) > 2(1− 23

2dlog2(n)e )− 1 = 1− 24

2dlog2(n)e , (13)

and the sizes of the block diagonal matrices along the diagonal of B5 do not exceed f4(n). Note
that for n = 13 these block matrices all have size 1. In the general case we proceed in the same
way and after k steps we obtain

Pr(ξT Bk+1ξ > 0) > 1− 2k

2dlog2(n)e , (14)

and the block diagonal matrices along the diagonal of Bk+1 have sizes that do not exceed fk(n).
Now Lemma 3 implies that if k = dlog2(n)e , then fk(n) ≤ 1. In that case the right hand side
of (14) is equal to 0. Also, the block diagonal matrices along the diagonal of Bk+1 have sizes
at most 1. We know from the construction procedure of Bk+1 that it has zero diagonal. Hence,
Bk+1 becomes a matrix of zeros. But then the left hand side of (14) is also equal to 0. Therefore,
we arrive at the contradiction 0 > 0. This completes the proof of Lemma 1.

Now, it suffices to observe that equipped with the result of the previous lemma, one has to
solve Eq. (A.38) pp. 559 of [1] using the probability bound 1

2n to obtain the improved bound (3).
Although we were not able to prove the conjecture of Ben-Tal et al. in [1] that would help

us remove the factor n under the logarithm altogether, we offered an improvement from n2 to n

under the logarithm. While this paper was under review, we learned of a recent result [2] where
it is shown that

Pr(ξT Bξ ≤ TrB) ≥ 1
87

.

Our result in Lemma 1 remains better in the range 3 ≤ n ≤ 64.
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