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Abstract
The purpose of this note is to give a probability bound on symmetric matrices to improve
an error bound in the Approximate S-Lemma used in establishing levels of conservatism results
for approximate robust counterparts.
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1 Introduction

The purpose of this note is to prove the following result:

Lemma 1 Let B denote a symmetric n X n matriz and & = {&1,..,&§,} € R™. If the coordinates
& of € are independently identically distributed random variables with

Pr(§ =1) = Pr(§ = —-1) =1/2 (1)
then one has ) )
Tpe < > >
Pr(¢" BE<TrB) > STTogs (0] > o (2)
The above result improves Lemma A.4 by Ben-Tal et al. [1] which stated
1
T

and where the authors conjectured that the right hand side could be improved to %. Ben-Tal et
al. [1] used Lemma A.4 to give the Approximate S-Lemma used in levels of conservatism results
for approximate robust counterparts of uncertain convex programs. Our Lemma 1 above improves

the error bound in the Approximate S-Lemma of [1] to
p = ( 2log( 4n Zle rank Ry, ) )% (3)

from

NI

p:=( 2log( 16n? Zszl rank Ry, ) )2. (4)
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2 Proof of the Main Result

Our proof, which is based on contradiction, recursively eliminates the non-zero entries of a sym-
metric matrix while the proof of [1] uses moments. We arrive at the proof of Lemma 1 after giving
three intermediate results.

First, since TrB = ¢?diagB¢ for any & € {—1,1}" it follows that

Pr(¢' B¢ < TrB) = Pr(¢' B¢ — TrB < 0) = Pr(¢7(B — diagB)¢ < 0).

This enables us to restrict ourselves to the case that the matrix under consideration is a symmetric
matrix with zero diagonal since B — diagB is a matrix with this property. Therefore, in order to
prove Lemma 1 we need to show that for any symmetric matrix B with zero diagonal, and for &
as defined in Lemma 1 we have

1
T
Pr({"BE<0) > Sogs(n) (5)

Now, we will give three intermediate results which lead to the proof of Lemma 1.
Lemma 2 Let X be a finite set. Then for any pair of subsets U and V of X, one has
unv|izUl+v]-|X].

Proof: Using the inclusion-exclusion principle we have |U| + |V|—-|UNV| = |UUV| < |X].
After rearranging the right and left sides of the inequality we get the desired result. J

Lemma 3 Let f:N — N be a function such that f(n) = [5]. If k = [logy(n)], then fE(n) =
fUfC(f(n)...) < 1.

Proof: By the definition of k& we have k — 1 < logy(n) < k, which implies n < 2¥. Since f is a
non-decreasing function, we have f¥(n) < f¥(2¥). It can be seen that f¥(2¥) = 1. Therefore the
result holds. J

In the remaining part of the paper for any ¢ € R™ such that ¢(i) € {—1,1} for any i € {1,..,n}
we denote diag(q) by Q. Here, (i) is the i"® entry of vector ¢. For any such ) and any symmetric
matrix B having zero diagonal entries we define

BY= (B +QBQ).

The matrix QB(Q is a symmetric matrix with zero diagonal. Hence, B? is a symmetric matrix
with zero diagonal. Since ¢(i)q(j) € {—1,1} and the (i,7) entry of QBQ is given by ¢(i)q(j)Bi;
we have



Lemma 4 Let £ and B defined as in Lemma 1. Moreover, let Q = diag(q), with ¢ € R" such
that g; € {—1,1} and B? as defined above. Then one has

Pr(eTBE > 0) = Pr(¢TQBQE > 0), (6)

and
Pr(¢T B¢ > 0) > 2Pr(¢T B¢ > 0) — 1. (7)

Proof: We have
(Q9)" - QBQ- Q¢ = €' Q°BQ* = €' B,
since Q? = I,,, where I,, is the n x n identity matrix. Hence
Pr(¢" B¢ > 0) = Pr((Q€)" - QBQ - Q¢ > 0).
Since & and Q¢ occur with the same probability this implies (6). To prove (7) we use the fact
Pr(¢T B¢ > 0) = Pr(¢7 (B + QBQ)¢ > 0) > Pr(¢7 B¢ > 0 & ¢TQBQE > 0).

Then using Lemma 2 we get

Pr(¢" B¢ > 0 & £"QBQE > 0) > Pr(¢7' B¢ > 0) + Pr(¢7QBQE > 0) — 1 = 2Pr(¢" B¢ > 0) — 1,
where the last equality follows from (6). Therefore we get inequality (7). J

At this point, using our result in Lemma 4, we are ready to prove Lemma 1.

Proof of Lemma 1: Assume to the contrary that Lemma 1 is false. Then, one can see from the

derivation of inequality (5) that there exists a symmetric n X n matrix B having zero diagonal
such that

1
T
Pl“(£ Bg S 0) < 2[log2(n)] (8)
which is equivalent to
1
T

We construct a sequence of block diagonal matrices B; having zero diagonal such that
B =B, Bijy1 =Bl i=12,... k

We have k = [logy(n)], and ¢;’s are chosen according to the following process. For ¢; we take
the first [5] entries as 1’s and the remaining entries as —1’s. Let us call these two parts of ¢1 as

7

segments of ¢;. We illustrate this for n = 13 with two segments separated by the symbol “ |
qa=[1111111] -1 -1 -1 -1 -1 -1 ]

For g;y1, consider each segment of ¢;. If the length of a segment is [ we take the first [%] entries
as 1’s and the remaining entries in the segment as —1’s. Let us call these two parts segments
again. Note that if [ = 1 for a segment the process will produce only one part of length 1 out of
the segment. The resulting vector is g;11 with its segments defined as above. To illustrate it for



n = 13, we show g2 obtained from ¢;. Here, g2 has four segments separated by the symbol ¢ |

” again:

@=[11111] -1 -1 -1 ] 111/ -1 -1 -1 1.

Now, let S denote the first principal submatrix of B with size [5] x [§], and let T' denote the
last principal submatrix of B with size || x |§]|. Denote the remaining matrix at the upper
right corner of B by R, and the remaining matrix at the lower left corner of B becomes RT
since B is symmetric. Then BY is obtained from B by replacing all entries of R and RT by

zeros. In other words,

S R
RT T

S —R
-RT T

S 0

By =B=
0 T

= Q1B1Q1 = = By =B" =

where @)1 is the diagonal matrix with the vector ¢; as the diagonal. Now using Lemma 4 and (9)

we obtain
1 2

~ Seme) ~ =1 ShemeT

Note that the block matrices along the diagonal of By have sizes [5] and |5 |. Hence, the sizes

Pr(¢f'Byé > 0) > 2(1 (10)

do not exceed f(n) of Lemma 3 which was defined as f(n) = [§]. We repeat the above procedure

using g2 which was shown before. Thus we obtain Bz = BJ* which has the form

D1

D3
Dy

where D1, Dy, D3 and D4 constitute the symmetric, zero-diagonal blocks of the block diagonal
matrix Bs. These block matrices have dimensions [$[21] x [3[2]], [$[2]) x [3[27), [312]] x

(5157, L5151 x L5151, respectively.
Now, again by Lemma 4 and (10) B3 satisfies

2 22

T -1 = _

Note that the sizes of the block diagonal matrices along the diagonal of B3 can be at most [% (511

which does not exceed f2(n). We construct ¢z in the same way as before. For n = 13 this gives
=11 -1 -11]11] -1]11]|-11]11]-11].
Again by using Lemma 4 and (11) we obtain for By that

22 23

T - - _ — —_—
Pr(f By€ > 0) >2(1 oTlogy(n)] ) I=1 9flogy(n)]”

(12)

This time the sizes of the block diagonal matrices along the diagonal of By do not exceed f3(n).
Then, q4 is constructed in the same manner, and for n = 13 we have

=1 [ -1 | L[ -t [1 | -1 [ 1 }1]-1[]1]-1]1[]-1].



Hence, at the next step we get

23 24

T R Y — -
Pr(¢7Bs¢ > 0) > 2(1 — orommy) = 1= 1= o

(13)
and the sizes of the block diagonal matrices along the diagonal of Bs do not exceed f*(n). Note
that for n = 13 these block matrices all have size 1. In the general case we proceed in the same
way and after k steps we obtain

2k;

T
Pr(§" By >0) > 1 — 9log,(n)]’

(14)
and the block diagonal matrices along the diagonal of By have sizes that do not exceed f*(n).
Now Lemma 3 implies that if k¥ = [logy(n)], then f¥(n) < 1. In that case the right hand side
of (14) is equal to 0. Also, the block diagonal matrices along the diagonal of Bjyy; have sizes
at most 1. We know from the construction procedure of Byi1 that it has zero diagonal. Hence,
By.11 becomes a matrix of zeros. But then the left hand side of (14) is also equal to 0. Therefore,

we arrive at the contradiction 0 > 0. This completes the proof of Lemma 1. J

Now, it suffices to observe that equipped with the result of the previous lemma, one has to
solve Eq. (A.38) pp. 559 of [1] using the probability bound 5- to obtain the improved bound (3).

Although we were not able to prove the conjecture of Ben-Tal et al. in [1] that would help
us remove the factor n under the logarithm altogether, we offered an improvement from n? to n
under the logarithm. While this paper was under review, we learned of a recent result [2] where
it is shown that

1
Pr(¢'B¢ < TrB) > e

Our result in Lemma 1 remains better in the range 3 < n < 64.
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