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Abstract

We consider online scheduling of parallel jobs on parallel machines. For the problem with two machines and the objective of minimizing
the makespan, we show that 2 is a tight lower bound on the competitive ratio. For the problem with m machines, we derive lower bounds
using an ILP formulation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the problem of scheduling parallel jobs on
parallel machines gained considerable attention. Contrary to
classical parallel machine scheduling problems, jobs may re-
quire processing on several machines in parallel. Applications,
like computer architectures with parallel processors, motivate
the study of these type of scheduling problems. For an overview
of recent developments on this type of scheduling problems
see [4].

In this paper we study the problem of online scheduling of
parallel jobs on parallel machines. Jobs are presented one by
one to the decisionmaker, and are characterized by their pro-
cessing time and the number of machines simultaneously re-
quired for processing. As soon as a job gets known, it has to
be scheduled irrevocably (i.e. its start time has to be set) with-
out knowing the characteristics of future jobs. Preemption is
not allowed and the objective is to minimize the makespan.
Adopting the notation from [4,5], this problem is denoted by
P |online − list, mj |Cmax. In this paper we show that for the
problem with two machines no online algorithm can have com-
petitive ratio strictly less than 2. For the general problem we
derive new lower bounds using an ILP formulation.

For the evaluation of an online algorithm ON, competitive
analysis is used. For any sequence � of jobs we compare
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the makespan of the schedule generated by the online
algorithm CON(�) with the makespan of the optimal offline
solution COPT (�). An online algorithm is said to be
�-competitive if sup�CON(�)/COPT (�)��. For background
information on online algorithms, see e.g. [1,2], and on online
scheduling, see e.g. [5].

The online scheduling of parallel jobs on two machines has
previously been studied by Chan et al. [3]. They proved a lower

bound of 1 +
√

2
3 on the competitive ratio of any online algo-

rithm. On the other hand, a greedy algorithm, which schedules
the jobs upon arrival as early as possible, has a competitive
ratio of at most 2. This follows directly from the fact that never
both machines are left idle by such a greedy algorithm. For the
case where jobs arrive in non-decreasing order of processing
times, Chan et al. [3] give an optimal 3

2 -competitive algorithm.
And for the case where jobs arrive in non-increasing order of
processing times, they give a 4

3 -competitive algorithm and a
lower bound of 9

7 on the competitive ratio of any online algo-
rithm. For the general problem, with an arbitrary number of
machines, P |online − list, mj |Cmax, Johannes [4] was the first
to develop an online algorithm with constant competitive ratio.
She gave a 12-competitive online algorithm, which was later
improved by Ye and Zhang [6] to an 8-competitive algorithm.
To derive lower bounds on the competitive ratio of online algo-
rithms for Pm|online − list, mj |Cmax, an enumeration scheme
was proposed in [4]. However, this scheme has the drawback
that it only allows for integer processing times and integer
staring times of jobs. Therefore, the derived lower bounds are
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only valid for a restricted version of the problem and, as a

consequence, the lower bound of 1 +
√

2
3 for the two ma-

chine case is till now also the best known lower bound for the
m-machine case.

In Sections 2 and 3, we prove that for the problem with two
machines no online algorithm can have a competitive ratio
strictly less than 2. We construct a series of job sequences in
which jobs have an alternate machine requirement of 1 and 2,
and show that no online algorithm can have competitive ratio
strictly less than 2 for these sequences. Therefore, the greedy
algorithm is the best possible for the considered online problem
with two machines. In Section 4, we derive new lower bounds
for Pm|online − list, mj |Cmax using an ILP formulation. A
lower bound of 2.43 is obtained for the competitive ratio for
any online algorithm for P |online − list, mj |Cmax. We show
the limitation of the instance construction, by proving that no
lower bound greater than 2.5 can be obtained with that type of
instance.

2. Lower bound on the competitive ratio for two machines

To prove a lower bound of 2 on the competitive ratio of
any online algorithm for P 2|online − list, mj |Cmax, we are
going to construct a series of job sequences and argue that no
online algorithm can have a makespan strictly less than twice
the makespan of the optimal offline solution. In the following
we assume ON to be an online algorithm with competitive ratio
2 − �, with � a small positive value, and we show that such an
algorithm cannot exist. By COPT (�) and CON(�) we denote
the makespan of the optimal offline schedule and the makespan
of the schedule constructed by the online algorithm ON on the
job sequence �, respectively.

We define �n as the sequence of jobs (p0, q1, p1, q2,

p2, . . . , qn, pn), where pi (qi) denotes a job with processing
time pi (qi) and a machine requirement of 1 (2). The job
lengths are defined as

p0 = 1,

p1 = x0 + p0 + y1 + �,

pi = 2 · pi−1 ∀i�2,

q1 = x0 + �,

qi = max{yi−1, qi−1, xi−1} + � ∀i�2,

where xi and yi are values given by delays the online algorithm
has used for placing earlier jobs, and � is a small positive value.
This means that the job lengths are depending on the online
algorithm ON. The concrete definition of these values is given
in the next paragraph.

We prove that any online algorithm with competitive ratio
strictly less than 2 has to schedule the jobs in the same order
as they appear in the sequence �n. As a consequence, Fig. 1
illustrates the structure of the online schedule. Therefore, the
only remaining decision for the online algorithm ON is to decide
how long it delays the start of a job, i.e. how much time is left
between the start of the current job and the completion of the
previous job. We denote by xi (yi) the delay incurred by ON

on job pi (qi), completing thereby also the definition of the
processing times.

To simplify the notation for the remaining, we let Qn =∑n
i=1 qi denote the sum of processing times of the q-jobs and

let Dn =x0 +∑n
i=1(yi +xi) denote the total delay on the jobs.

Using the fact that the jobs are scheduled in the same order as
they appear in �n, the makespan of the online schedule for �n

is given by

CON(�n) = x0 + p0 +
n∑

i=1

(yi + qi + xi + pi)

=
n∑

i=0

pi + Qn + Dn.

An optimal schedule for �n is obtained by scheduling the jobs
p0, . . . , pn−1 parallel to job pn after a block containing the
jobs q1, . . . , qn (see Fig. 2). Therefore, the makespan of the
optimal schedule is given by

COPT (�n) =
n∑

i=1

qi + pn = Qn + pn.

Using these makespans for the job sequence �n, we can cal-
culate the competitive ratio of the online algorithm ON on this
particular instance. Note that pn = 2n−1 · p1 and

∑n
i=1 pi =

(2n − 1) · p1:

CON(�n)

COPT (�n)
=

∑n
i=0pi + Qn + Dn

Qn + pn

= p0 + (2n − 1) · p1 + Qn + Dn

Qn + 2n−1 · p1

= 2 − Qn − Dn − p0 + p1

Qn + 2n−1 · p1
.

In Lemma 1 we prove that for an online algorithm ON with com-
petitive ratio 2−� we have Qi +qi+1 < pi and xi +yi+1 < pi .
This last inequality implies that the online algorithm ON sched-
ules the jobs in the order as they appear in �n. This can be seen
as follows. By definition of the length of job qi there is no gap in
the schedule before pi−1 in which job qi can be scheduled. The
same holds for p1. When considering job pi , the largest gap for
a job with machine requirement of 1 has size xi−1 +yi +pi−1.
Due to the inequality xi + yi+1 < pi , this gap is smaller than
2 · pi−1 = pi . Thus, pi can only be scheduled after qi .

In Lemma 2 we prove that for an online algorithm ON with
competitive ratio 2 − �
Qn − Dn − p0 + p1

Qn + 2n−1 · p1
→ 0

as n goes to infinity. However, this is a contradiction with the
competitive ratio being strictly less than 2. As a result, we have
proven our main theorem:

Theorem 1. No online algorithm for P 2|online−list, mj |Cmax
has a competitive ratio strictly less than 2.

To complete the proof, in the following section the proof of
the two lemmata are given.
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Fig. 1. Structure of the online schedule for �2.
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Fig. 2. Structure of the optimal offline schedule for �2.

3. Proof of the lemmata

Lemma 1. If an online algorithm ON has a competitive ratio
of 2 − �, then

Qi + qi+1 < pi (1)

and

xi + yi+1 < pi . (2)

Proof. We prove (1) and (2) simultaneously by induction on i.
If � is chosen sufficiently small then the following inequalities
follow from the (2 − �)-competitiveness of algorithm ON:

• x0 < p0: After scheduling job p0 we have x0+p0 �(2−�)·p0.
• y1 < p0: After scheduling job q1 we have x0 + p0 + y1 +

q1 �(2−�)·(q1+p0), or equivalently x0+y1 �(1−�)·(q1+
p0). Using q1 = x0 + � and � small enough, the inequality
follows.

• x1 < x0: After scheduling job p1 we have x0 +p0 +y1 +q1 +
x1 + p1 �(2 − �) · (q1 + p1), or equivalently x0 + p0 + y1 +
x1 �(1−�) · (q1 +p1). Using p1 =x0 +p0 +y1, q1 =x0 + �
and � small enough, the inequality follows.

By definition q2 = max{x0, y1, x1}. Combining this with the
above, we get q2 < p0. Thus, q1 + q2 < x0 + p0 �p1 and (1)
holds for i = 1.

To prove that (1) holds for i�2 we assume that both (1) and
(2) hold up to i − 1. Since (2) holds up to i − 1, the jobs up to
job qi+1 are scheduled in the order as they are in �n up to qi+1.
Since ON is 2−�-competitive, after scheduling job pi we have

p0 + (2i − 1) · p1 + Qi + Di

Qi + 2i−1 · p1
�2 − �

which implies that

Di − x0 − y1 < Qi . (3)

(This inequality is also used in the proof of Lemma 2.) By
definition of the length of qi+1 we have either qi+1 = qi �Qi

or qi+1 = max{xi, yi}�Di − x0 − y1 < Qi since i�2.
Combining this with the induction hypothesis we have

Qi + qi+1 < 2 · Qi < 2 · pi−1 = pi

and (1) also holds for i.
To prove that (2) holds for i we assume that (1) holds up to

i. Since ON is 2 − �-competitive after scheduling job qi+1 we
have

p0 + (2i − 1) · p1 + Qi + qi+1 + Di + yi+1

Qi + qi+1 + 2i−1 · p1
�2 − �

which implies that

Di + yi+1 − x0 − y1 < Qi + qi+1. (4)

(This inequality is also used in the proof of Lemma 2.)
Combining this with (1), we have

xi + yi+1 �Di + yi+1 − x0 − y1 < Qi + qi+1 < pi

and (2) also holds for i. �

Lemma 2. If an online algorithm ON has a competitive ratio
of 2 − �, then

Qn − Dn − p0 + p1

Qn + 2n−1 · p1
→ 0 (5)

if n → ∞.

Proof. We prove that (5) holds by bounding the asymptotic
growth of Qn, i.e. by showing that Qn ∈ O(1.8n). Since the
denominator of (5) is in �(2n), this proves the lemma.

We claim that either Qi+1 �1.8·Qi or Qi+2 �3.2·Qi . Com-
bining this with the fact that Qn is monotone and 1.82 > 3.2,
we have that Qn ∈ O(1.8n).

To prove the claim, assume that Qi+1 > 1.8·Qi . This implies
that qi+1 > 0.8 · Qi by definition of Qi+1, and that Di − x0 −
y1 > 0.8 · Qi since the value of qi+1 is attained by one of the
delays.

Now consider qi+2. If qi+2 > qi+1, then by using (3)

qi+2 �yi+1 + xi+1 = Di+1 − Di �Qi+1 − 0.8 · Qi
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and by using (4)

Qi+2 = Qi+1 + qi+2 �2 · Qi+1 − 0.8 · Qi

�(4 − 0.8) · Qi .

On the other hand, if qi+2 = qi+1, we get Qi+2 = Qi + 2 ·
qi+1 �3 · Qi , since qi+1 �Qi .

So in both cases the claim is true, and we have proven the
lemma. �

4. Parallel jobs on m machines

In the previous sections we have given job sequences which
result in a tight lower bound of 2 for the competitive ratio in the
two machine case. In this section we extend this construction
to the m-machine case. Besides some concrete lower bounds,
we also show that by constructing job sequences similar to
the ones used in [4] and in the previous sections, no lower
bound greater than 2.5 can be obtained. Since the currently
best upper bound on the competitive ratio is 8 (see [6]) and
the best lower bound is 2 (from the previous section), the gap
between the lower and upper bound for the m-machine case can
only be closed by either considering completely different job
sequences to yield better lower bounds or by developing much
better online algorithms.

We define �m−1 as the sequence of jobs (p0, q1, p1,
q2, p2, . . . , qm−1, pm−1), where pi (qi) denotes a job with
processing time pi (qi) and a machine requirement of 1 (m).
The job lengths of p0, p1 and all jobs qi are as in Section 2.
For jobs pi we have

pi = xi−1 + pi−1 + yi + � ∀2� i�m − 1.

Again xi and yi are values given by delays the online algorithm
has used for placing jobs pi and qi , respectively. By definition
of the job lengths, the jobs can only be scheduled in the order
of the sequence �m−1. As a consequence, Fig. 3 illustrates the
structure of the online schedule. An optimal schedule for �m−1
is obtained by scheduling the jobs p0, . . . , pm−1 parallel to
each other on the m different machines, after a block containing
the jobs q1, . . . , qm−1. To simplify notation for the remaining,
we let � go to zero and omit it from the rest of the analysis.

If an online algorithm is �-competitive for �m−1, the follow-
ing linear inequalities have to be fulfilled:

x0 + p0 �� · p0, (6)

x0 + p0 +
i∑

j=1

(yj + qj + xj + pj )

�� ·
⎛
⎝

i∑
j=1

qj + pi

⎞
⎠ ∀1� i�m − 1, (7)

i∑
j=1

(yj + qj + xj−1 + pj−1)

�� ·
⎛
⎝

i∑
j=1

qj + pi−1

⎞
⎠ ∀1� i�m − 1. (8)

Inequalities (6) and (7) state that the online solution is within
a factor of � of the optimal, after scheduling job pi . Inequality
(8) states the same after scheduling job qi . This construction
is somehow similar to the construction in [4]. The main dif-
ference is that in [4] only integer delays, processing times and
starting times are considered, leading to a different definition of
the processing times pi and qi , i.e. the additive term +� is re-
placed by +1. As a consequence, the lower bound derived in [4]
(a bound of 2.25) is not a valid lower bound for the general
case of arbitrary processing times.

To derive an ILP formulation in order to check whether a
given value for � is a lower bound on the competitive ratio
based on the job sequence �m−1, we have to add to (6)–(8)
constraints guaranteeing that the processing time pi and qi are
chosen properly. Constraints (9)–(11) model the job lengths of
the p-jobs and q1. To model the lengths of the q-jobs we em-
ploy a parameter M and a set of binary variables �y

i , �q
i and

�x
i , where �y

i = 0 implies that qi = yi−1, �q
i = 0 that qi = qi−1

and �x
i = 0 that qi = xi−1. Constraints (12)–(14) guarantee that

qi � max{yi−1, qi−1, xi−1} holds. Constraint (15) states that ex-
actly one of �y

i , �q
i and �x

i equals 0 for all i. Together with
constraints (16)–(18) the equation qi = max{yi−1, qi−1, xi−1}
is guaranteed. Note that M should be large enough:

p0 = 1, (9)

pi = xi−1 + pi−1 + yi ∀1� i�m − 1, (10)

q1 = x0, (11)

yi−1 �qi ∀2� i�m − 1, (12)

qi−1 �qi ∀2� i�m − 1, (13)

xi−1 �qi ∀2� i�m − 1, (14)

�y
i + �q

i + �x
i = 2 ∀2� i�m − 1, (15)

qi �yi−1 + M · �y
i ∀2� i�m − 1, (16)

qi �qi−1 + M · �q
i ∀2� i�m − 1, (17)

qi �xi−1 + M · �x
i ∀2� i�m − 1. (18)

The variables yi, qi, xi, pi are nonnegative and �y
i , �q

i and �x
i

are binary variables.

Lemma 3. If for a given m there exists no solution satisfying
constraints (6)–(18), � is a lower bound on the competitive
ratio of any online algorithm for Pm|online − list, mj |Cmax.

Proof. Suppose there exists a �-competitive online algorithm.
This algorithm will yield for the job sequence �m−1 values of
xi and yi such that constraints (6)–(18) are satisfied. �

Based on Lemma 3, we obtain new lower bound on the
competitive ratio by checking infeasibility of the constraint set
(6)–(18) for a given � and m. Given an m and �, we check
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Fig. 3. Structure of the online schedule with m machines.

Table 1
Lower bounds on the competitive ratio

# Machines 2 3 4 5 6 7 8 9 10 20 30

LB 1.707 1.999 2.119 2.201 2.254 2.295 2.323 2.340 2.354 2.413 2.43

with an ILP solver (e.g. CPLEX) whether � is a lower bound
by trying to find a feasible setting of the xi’s and yi’s with
respect to (6)–(18). Employing binary search on � we get
the new lower bounds displayed in Table 1. Note that a
lower bound obtained for the m-machine case is also a lower
bound for the m + 1-machine case. As a result, the following
theorem holds.

Theorem 2. No online algorithm for P |online − list, mj |Cmax
can have competitive ratio less than 2.43.

Since �m−1 contains exactly m jobs with a machine require-
ment of 1, these jobs can be scheduled parallel to each other
on the m different machines in the offline solution. Let �n be a
job sequence defined as the same as �m−1, but now with n�m.
With more than m p-jobs, one might expect a more efficient
packing in the optimal offline solution. The ILP formulation
for such longer sequences becomes much more involved while
the lower bound increases only slightly. The following theorem
explains why there is only such a slight increase.

Theorem 3. With job sequence �n, no lower bound on the
competitive ratio larger than 2.5 can be proven for Pm|online−
list, mj |Cmax.

Proof. Consider an online algorithm which chooses xi = pi

and yi = 0 for all i. As a consequence, pi = 2 · pi−1 and qi =
xi−1 = pi−1. This results in an online schedule with makespan

2 ·
i∑

j=0

pj +
i∑

j=1

qj = 3 ·
i−1∑
j=0

pj + 2 · pi

= 5 ·
i−1∑
j=0

pj + 2

after scheduling job pi , and a makespan of

2 ·
i−1∑
j=0

pj +
i∑

j=1

qj = 3 ·
i−1∑
j=0

pj = 6 ·
i−2∑
j=0

pj + 3

after scheduling job qi .
Since the p-jobs grow with a factor of 2, the makespan

of the optimal offline schedule equals
∑i

j=1qj + pi = 2 ·∑i−1
j=0pj + 1 after job pi and

∑i
j=1qj + pi−1 = ∑i−1

j=0pj +
pi−1 = 3 · ∑i−2

j=0pj + 2 after job qi .
Both after scheduling pi and qi the competitive ratio is less

than or equal to 2.5. So, with this type of job sequence no lower
bound on the competitive ratio larger than 2.5 can be proven
for Pm|online − list, mj |Cmax. �

Note that even when the length of the p-jobs is defined such
that pi �xi−1 + pi−1 + yi , Theorem 3 holds.

5. Concluding remarks

Although greedy is the best possible in the two machine
case, it is certainly not for the case with m machines. With m
machines a greedy algorithm has competitive ratio m, while the
best known upper bound on the competitive ratio for an arbitrary
number of machines is 8, see [6]. For the case with m > 2 we
have derived lower bounds using an ILP formulation. However,
the instance construction used cannot give lower bounds larger
than 2.5. Thus, there is still a large gap between the lower and
upper bounds for the problem with m machines. We conjecture
that neither the lower bound nor the upper bound is tight. So,
for future research it would be interesting to improve both the
lower and the upper bounds of the competitive ratio for this
problem.
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