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Abstract

We show that the standard linear programming relaxation for the tree augmentation problem
in undirected graphs has an integrality ratio that approaches 3

2
. This refutes a conjecture of

Cheriyan, Jordán, and Ravi (ESA 1999) that the integrality ratio is 4

3
.
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1 Introduction

We study a standard linear programming (LP) relaxation of the Tree Augmentation problem,
defined as follows: given an undirected graph G = (V, E) with nonnegative costs on the edges, and
a spanning tree T = (V, ET ) of G, find a set F ∗ of edges, F ∗ ⊆ E \ ET , of minimum cost such
that the graph (V, ET ∪F ∗) is 2-edge connected. This is a special case of the well-known 2-Edge-

Connected Spanning Subgraph (2ECSS) problem, in which we are given an undirected graph
G = (V, E) with nonnegative costs on the edges and the goal is to find a 2-edge-connected spanning
subgraph of minimum cost, that is, find a set E∗ ⊆ E of minimum cost such that (V, E∗) is 2-edge
connected. The special case of tree augmentation arises when the edges of cost zero form a connected
spanning subgraph. The 2ECSS problem, in turn, is a special case of the Survivable Network

Design (SNDP) problem: we are given an undirected graph G = (V, E) with nonnegative costs
on the edges and an integer ri,j ≥ 0 for each unordered pair of nodes i, j, and the goal is to find
a subgraph of minimum cost that has at least ri,j edge-disjoint paths between every pair of nodes
i, j.

Consider a standard integer programming (IP) formulation of the tree augmentation problem.
There is a (nonnegative) integer variable xf for each f ∈ E \ ET . Observe that E \ ET is the set
of nontree edges of G, and each f ∈ E \ ET corresponds to a path in the tree, namely, the path in
T between the two endpoints of f ; we denote this path by p(f). We say that f ∈ E \ ET covers

an edge e ∈ T if (T \ {e}) ∪ {f} is connected, that is, if e ∈ p(f). For each edge e of T , there is a
constraint ∑

f∈E\ET :e∈p(f)

xf ≥ 1,
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where {f ∈ E \ET : e ∈ p(f)} is the set of nontree edges of G that cover e. The objective function
is to minimize

∑
f∈E\ET

cfxf , where cf denotes the cost of the nontree edge f . We obtain the
following linear program by relaxing the integrality constraints on the variables:

min
∑

f∈E\ET

cfxf (P0)

s.t.
∑

f∈E\ET :

e∈p(f)

xf ≥ 1 ∀e ∈ ET

xf ≥ 0 ∀f ∈ E \ ET .

Clearly, (P0) is solvable in polynomial time, since both the number of variables and the number
of constraints are at most |E|.

The integrality ratio of (P0) for a given instance is the ratio of the optimal cost of the integer
program (IP) to the optimal cost of (P0), assuming that the optima exist and the denominator is
nonzero. The integrality ratio (or integrality gap) IR0 of (P0) is the supremum of the integrality
ratio over all instances of the problem. We use the same term in two different senses—one refers
to an instance, the other to all instances—but the context will resolve the ambiguity. Jain’s 2-
approximation algorithm for the survivable network design problem (SNDP) [6] implies that IR0 is
at most two. As far as we know, the best lower bound known on IR0 was 4

3 : Let G be the complete
graph on four nodes, let the tree T consist of three edges incident to any one node, and let the
three nontree edges have unit cost; then an optimal integral solution consists of two nontree edges,
and an optimal solution to (P0) assigns a value of 1

2 to all three nontree edges. In fact, Cheriyan,
Jordán, and Ravi conjectured [1, 1-cover conjecture] that 4

3 was also an upper bound on IR0. Our
main contribution is a family of instances in which all edge costs are unit and the integrality ratio
approaches 3

2 ; more precisely, for each k ≥ 1, there is an instance defined by a graph Gk on 2 + 2k

nodes that has integrality ratio at least k+1
2k/3+1 .

The construction presented in this paper easily extends to several generalizations of the tree
augmentation problem. Consider for example the following two linear programming formulations
for the 2ECSS and SNDP problems, respectively. For a set ∅ 6= S ⊂ V , we let δ(S) denote the set
of edges with exactly one endpoint in S, and we use r̂(S) for max{rij | i ∈ S, j 6∈ S}.

min
∑

e∈E

cexe (P1)

s.t.
∑

e∈δ(S)

xe ≥ 2 ∀∅ 6= S ⊂ V

0 ≤ xe ≤ 1 ∀e ∈ E

min
∑

e∈E

cexe (P2)

s.t.
∑

e∈δ(S)

xe ≥ r̂(S) ∀∅ 6= S ⊂ V

0 ≤ xe ≤ 1 ∀e ∈ E

A slight adaptation of the instance family presented in this paper gives a lower-bound of 3
2 on

the integrality ratio of (P1). It is well-known that (P2) has an integrality ratio of 2 for SNDP;
however, this lower-bound does not apply to the special case of SNDP where rij ∈ {0, 2} for all i, j.
In this case, our construction implies that (P2) has an integrality ratio of 3

2 .
We note that the above relaxation for 2ECSS coincides with the well-known Held-Karp relax-

ation [4, 5] of the traveling salesman problem whenever edge-costs satisfy the triangle inequality
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Figure 1: The integrality ratio example Gk for k = 5. The solid edges represent the

tree edges and the dotted edges represent the nontree edges. All the nontree edges have

unit cost. The fractions represent a feasible solution to (P0) with cost 2k

3
+ 1 while the

integral optimal solution has cost k + 1.

(see [3, 7]). Our family of 2ECSS instances are not metric, however, and our results have no direct
implication for the integrality ratio of the Held-Karp relaxation.

2 The Construction

Let k ≥ 1 be any integer. We present an instance of the tree augmentation problem that has
integrality ratio at least k+1

2k/3+1 . The graph Gk used in this instance has 2k + 2 nodes v0, . . . , vk+1,
and u1, . . . , uk. The edge set of Gk has tree and nontree edges. The set of tree edges is given by

{{vi, vi+1} | 0 ≤ i ≤ k} ∪ {{ui, vi} | 1 ≤ i ≤ k},

and we use Tk to denote the spanning tree of Gk induced by these edges. The nontree edges are
{v0, u1}, {v0, v2}; {ui, vi+2} for 1 ≤ i ≤ k − 1; {ui, ui+1} for 1 ≤ i ≤ k − 1; and {uk, vk+1}. Each
nontree edge has unit cost.

Consider the fractional solution xk depicted in Figure 1. It assigns a value of 2
3 to {v0, v2} and

{uk, vk+1} and a value of 1
3 to all the other nontree edges. The cost of xk is 2k

3 + 1. To see that
this solution is feasible for (P0), it suffices to show that each tree edge is covered to an extent of
at least one. This is true for edges {ui, vi} for 1 ≤ i ≤ k − 1 as ui is incident to three nontree
edges. Similarly, for all 2 ≤ i ≤ k − 1, a tree edge {vi, vi+1} is covered by the three nontree edges
{ui−1, vi+1}, {ui, vi+2}, and {ui, ui+1}. The constraints for the remaining four tree edges are easily
verified.

Proposition 1. The cost of the optimal integral solution in Gk is k + 1.

Proof. The proof is by induction on k. It is easy to see that the cost of an optimal solution in G1

is 2. We now consider the case where k ≥ 2.
We first argue that there is an integral optimal solution Ik in Gk that contains the edge

{uk, vk+1}. Any solution that does not contain this edge, must contain both {uk−1, uk} and
{uk−1, vk+1} in order to cover {uk, vk} and {vk, vk+1}, respectively. In such a case, we can re-
place edge {uk−1, vk+1} with {uk, vk+1} in Ik and obtain another feasible solution with the same
(optimal) cost.
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Assume now that Ik is an optimum solution to Gk that contains edge {uk, vk+1}. Contracting the
edges along the cycle 〈uk, vk, vk+1, uk〉 creates the instance Gk−1. It can be seen that Ik\{{uk, vk+1}}
is a feasible solution for Gk−1.

By the inductive hypothesis, any feasible integral solution in Gk−1 has cost at least k. Hence,
Ik \ {{uk, vk+1}} has cardinality at least k, and this implies that Ik has at least k + 1 edges.

Finally, the feasible integral solution {{v0, u1}, {u1, u2}, . . . , {uk−1, uk}, {uk, vk+1}} has cost k+
1. Thus the proof is complete.

Thus the integrality ratio of the instance Gk is at least k+1
2k/3+1 . Since this ratio approaches 3

2 as

k approaches infinity, it follows that IR0 is at least 3
2 . The fractional solution xk is neither optimal

nor basic for (P0), but our asymptotic bound of 3
2 on the integrality ratio is tight for the family

{Gk | k ≥ 1} of instances.
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