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1. Introduction

The problem of sampling from a partially spec-
ified multivariate distribution arises in many dif-
ferent areas. The work presented here was moti-
vated by stochastic programming based optimiza-
tion models in operations research, in which the
key computational challenge is to generate sce-
narios from a distribution of the underlying ran-
dom variables. For a large number of random
variables, the scenario generation can be compu-
tationally very challenging. The distribution to
be sampled may not be available in closed form
and it may instead be characterized by moments
obtained from empirical data. Even if the dis-
tribution is available in closed form, it may be
very difficult to sample and an approximation
may be necessary. Various heuristic methods ex-
ist for dealing with generation of scenarios under
partially specified distributions. The literature
on sampling from such probability distributions
is too large to review here and we restrict our at-
tention to the approaches only used in operations
research and finance. These approaches can be
roughly divided into two main classes:

e Under the first approach, the statistical
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properties of the joint distribution are spec-
ified in terms of moments, usually including
the covariance matrix. In [7], cubic trans-
formation of univariate, standard normal
random variables and Cholesky factoriza-
tion of covariance matrix are used to pro-
duce a multivariate distribution which ap-
proximately matches a given set of marginal
central moments and the covariance matrix.
Similar moment matching approach is em-
ployed to generate probability weights and
support points using non-convex optimiza-
tion in [4]. In [14], entropy maximization
method is used to generate a discrete ap-
proximation to a given continuous distribu-
tion.

e In the second approach, specified (paramet-
ric) marginal distributions are sampled in-
dependently and the samples are then used
along with Cholesky factorization of the co-
variance matrix to generate the necessary
multivariate distribution. An iterative pro-
cedure of this type in described in [11].

Other approaches to scenario generation with
specific emphasis on operations research appli-
cations include principal component analysis-
based simulation [15] and stochastic approxima-
tion based on transportation metrics ([13], [5]).



A detailed survey of different scenario generation
methods appears in [10].

Despite the successes of the approaches de-
scribed above in the practical applications of
stochastic optimization, the procedures involved
in the approaches of drawing samples from a par-
tially specified multivariate distribution when the
distribution is specified in terms of moments have
certain limitations as detailed below:

1. All the moment-matching procedures in the
above mentioned papers use non-convex
optimization to generate scenarios which
match a specified set of statistical proper-
ties, in addition to a needed factorization
of the covariance matrix. Given a univari-
ate random variable with known first 12
central moments, the approach used in [7]
and [8] finds a cubic polynomial function of
this random variable which has the required
four central moments. This requires a non-
convex optimization in terms of the coeffi-
cients of the polynomial. The procedure has
to be repeated iteratively for each marginal
distribution. Similarly, the algorithm in [11]
requires a non-convex optimization over the
space of lower triangular matrices.

2. The achieved moments of the generated
samples match the target moments only ap-
proximately. There are two sources of error
in these moment matching methods: one
is due to the fact that only local optima
are found for the non-convex optimization
problem and the other is the inexact start-
ing moments of samples of univariate ran-
dom variables. Since these procedures em-
ploy samples from a known, “simple” uni-
variate distribution, the achieved moments
usually depend on the sample moments of
univariate random variables used.

The primary objective of this technical note is to
develop an algorithm based on convex optimiza-
tion which matches exactly the mean, covariance
matrix and marginal (zero) skewness of a sym-
metric distribution and also matches the marginal
fourth moments approximately (by minimizing
the worst case error between the achieved and

the target marginal fourth moments). An ana-
lytic solution to this optimization is known in the
scalar case, as illustrated in section 2.3.

This algorithm may be used as a scenario gen-
erator on its own or its scalar version may be
adopted to produce an initial guess for the opti-
mization routines proposed by other authors. Be-
ing able to match a small set of statistical prop-
erties exactly, possibly with a very small set of
scenarios, may be preferable to generating a very
large number of scenarios to model the entire dis-
tribution. This is especially true when the sce-
narios are to be used in stochastic optimization
procedures.

The rest of the paper is organized as follows.
The next section introduces the notation. We de-
velop in sections 2.2-2.3 the main sampling algo-
rithm of this paper and provide a discussion of its
properties. Section 3 presents a numerical study
demonstrating the utility and efficiency of the al-
gorithm. Finally section 4 concludes and outlines
the directions of further research.

2. The sampling algorithm

2.1. Notation
We first outline here the notation used in our
development of the algorithm.

number of random variables

3

number of scenarios

it" random variable

target mean vector for X

= I

target covariance matrix for X

ki  target marginal 4'" central moment for

the it" random variable X;

L;; entry in the i row and j'* column of
a matrix L

P(A) probability of an event A

E[)Y] expected value of a random variable )

1, denotes s-dimensional vector with all entries
1. diag(z;)® denotes a diagonal matrix with
T1,T3,...,Ts on the diagonal. For a symmetric
matrix P, P > 0 indicates that the matrix is

discrete n-dimensional random variable



positive semi-definite, i.e. has all non-negative
eigenvalues.

To re-iterate our objective, we aim to gener-
ate samples from a symmetric distribution with
a specified mean vector ® and a specified (pos-
itive definite) covariance matrix R. These tar-
get moments will usually be obtained from the
data. If the covariance matrix obtained from the
data is not positive definite, an adjustment may
be necessary, such as the one suggested in [11]. In
addition, we wish to minimize the worst case mis-
match between the achieved marginal fourth mo-
ments and the target marginal fourth moments.
We will describe the algorithm from an optimiza-
tion point of view first and then provide the
closed-form solution in the scalar case. The ra-
tionale behind the key steps in the algorithm will
become clear from the proofs of subsequent re-
sults and accompanying discussion.

2.2. Algorithm for moment matching sce-
nario generation
(i) Find a symmetric positive definite matrix L
such that R = LLT. For a symmetric pos-
itive definite R, L is unique. If R has dis-
tinct eigenvalues, this may be found using
singular value decomposition; see, e.g. [6]
and the references therein for methods of
finding L. This matrix L is usually referred
to as the square root of the matrix R.

(ii) Solve the following optimization problem:

min € (1)
€,41,92,--,qs
subject to
€ L/JZ .
> = e
I EUR SRS
diag(qx)'¥ > 0, (3)
1 1) }
¢ 5 >0, 4
{13 +diag(gy)® (4)
where ¢; = 75 > LY qe — iy i =
1,2,...,n. Note that this is a convex prob-

lem with a linear objective and affine ma-
trix inequality (AMI) constraints. These

problems can be solved in polynomial time
using interior point methods and extensive
software packages are available to imple-
ment interior point methods for solving con-
vex problems of this type (which are also
called semidefinite programming problems);
see [2], [12] and [16]. Let gi, k = 1,2,...,s
and € be the arguments which solve the
above problem within a specified degree of
accuracy.

(iii) Set p; = qi i=1,2,...,sand p,i; =1 —
S
2n2pi.
i=1

(iv) Define a discrete n-dimensional random
variable X over a support of 2ns + 1 points
as follows:

1
P(X=d+—L; | =p,,
( \/2sp; J) p

j:1a25"'an7i:1727"'a3a

P(X = @) = pes1- (5)

where L; denotes the ;" column of a matrix
L.

Steps (i)-(iv) constitute the entire set of proce-
dures needed to construct the required samples.
Before we prove that it has the required mo-
ment properties, we need to show that p;,¢ =
1,2,...,s5+ 1 defines a probability measure over
the chosen 2ns + 1 support points. Since §; sat-
isfy (3), ¢ = é > 0Vi. It remains to be shown
that ps41 =1—2nY ;_, p; is non-negative. This
is demonstrated in the following lemma:

Lemma 1 For qi defined as above,

2”2?:1 qul S L.

Proof: The proof depends on the well-known
property of positive definite block matrices:

C D
< A-BD'C>o0.

M .= {A B} >0and D >0

The block matrix A — BD~1C is called the Schur
complement of D in M; see, e.g. [2] for details.



In the present case, let Q = :~diag(g)(*). Since

L

i, k=1,2,...,s satlsﬁes (3)- ( ), we have
11
s| > . NORES
[15 Q} > 0 and diag(gx)'® > 0

1-1/Q "1, >0,

from which the result follows. m

Next, we establish a relationship between the
optimal argument € (which also equals the opti-
mal cost in (2)) and the target fourth marginal
moments K;.

Lemma 2 For X defined as above,
max |k; — E(X; — @) | < & (6)

Proof: Note that

4 [( Zpk k52 Z
= (qu> % > L
k=1

j=1
Let ¢ = 55 > e L 25—y G — i The result
then follows by observing that gy, € satisfy con-

straint (2) and

[151 qg[:]>0<:>e—1/; [ |

Lastly, we collect together all the moment
matching properties of X' in the following result:

Theorem 1 The distribution defined in (5) sat-
1sfies the following properties:

E[X] = @, (7)
E[(X -—®)(X-2)" | =R, (8)
E[(X—®;)°] =0 (9)
max|r; —E (X; - )" < e (10)

Proof: Equations (7) and (9) are immediate due
to the symmetry of the support points around

the target mean vector ® and (10) was proven in
lemma 2. Equation (8) follows by noting that

B s D; n |
T = 2; oy ;L]L;—r

Several remarks concerning the above results are
in order.

(a) Note that the optimization problem (2)-(4)
finds the smallest ¢ and the corresponding
gr such that (10) holds. In other words,
the algorithm minimizes an upper bound
on the worst case error in matching the
fourth marginal moment. A small value of
¢ indicates that the fourth moment is ap-
proximately matched (with the maximum
approximation error being €). This upper
bound can be made zero in the scalar case,
as will be seen in the next section.

(b) Even if the chosen gj are not optimal, (7)-
(9) will still hold provided g¢x’s satisfy the
condition in lemma 1 to define a probabil-
ity measure. If we are not concerned with
matching the fourth marginal moment, we
may choose not to solve the optimization
problem and choose any qi such that the
condition in lemma 2 holds, e.g., we can
choose qr > 2ns, Vk which automatically
satisfies the required condition. The ac-
tual choice of gi subject to the lower bound
2ns can be made using any deterministic or
stochastic algorithm. This provides s ad-
ditional degrees of freedom, which may, in
principle, be used to match other statisti-
cal properties (e.g. certain quantiles of in-
terest). We have restricted our attention
to matching fourth marginal moment only
since matching these moments is relevant
from a practical point of view and the as-
sociated optimization, being convex, is nu-
merically tractable.

(c) The downside, of course is that the algo-
rithm is limited to symmetric distributions.



However, even in cases when the underlying
distribution is known to be asymmetric, the
proposed algorithm may still have a useful
role to play. In computation or optimiza-
tion of risk of a financial portfolio, the lep-
tokurtic behavior of the loss distribution is
often far more important than the asymme-
try and a symmetric approximation which
captures the tail behavior of loss distribu-
tion correctly may be admissible.

(d) In a rather unrelated field, similar sam-
ple point generation methods are also em-
ployed in the development of sigma point
filters (also called unscented filters) widely
adopted in engineering; see [9] and the ref-
erences therein. These methods have be-
come quite popular as a computationally
cheaper alternative to particle filters for
state estimation problems in nonlinear sys-
tems. However, the sampling methods in
existing sigma point filtering techniques do
not guarantee that the weights assigned
to each sample point will always be non-
negative. Our proposed algorithm for sam-
pling distributions avoids this problem and
its application in sigma point filtering has
now been reported in [3].

2.3. Closed-form solution in the scalar case

Having shown that finding positive ¢ satisfy-
ing 2n ZZ=1 q,?l < 1 and minimizing the worst
case error in matching the fourth marginal mo-
ment is a convex optimization problem, a natural
question to ask is whether it is possible to find
a closed-form solution to this problem in spe-
cific instances. As mentioned earlier, choosing
qr > 2nsV k will automatically satisfy the neces-
sary constraint on the sum of qlzl. At this stage,
it still remains to be seen whether we can choose
qx > 2ns which will also satisfy the condition for
matching the fourth moment, i.e., whether we can
choose qj, such that x; = E (X — ®)* holds. The
answer is affirmative in the scalar case, i.e., when
n = 1, as shown in the next result.

Lemma 3 Suppose thatn = 1 and that I’:”i > 1.
11
Let ¢; € [2sn,¢], i=1,2,...,5s—1 be s — 1 real

numbers, where the constant ¥ is given by

b= 252K, 2s
(s—DLY,  s-—1’
2 2 s—1
and let G = =42 =3 g, (11)

— -
Ly i=1

Finally, let X as in (5), with n = 1. Then the
random variable X satisfies the properties (7)-
(9). In addition, k1 = E (X — ®)* holds.

Proof: Verifying that X satisfies (7)-(9) is
straightforward. To verify that r; = E (X — ®)*

holds, first note that ¢ < ¢¥,i = 1,2,...5s — 1
ensures that g5 > 2ns and

ol (- VL
*ng282* > 252

k=1

The result then follows due to definition of g

in(11). =

Remark 1 Note that the condition I’ji > 1 is
11

not particularly restrictive, and is in fact satis-

fied by all elliptic distributions including Gaus-

sian distribution and t-distribution; see [1].

The above result gives an optimization-free
methodology of matching the first four moments
of a symmetric scalar random variable. This fact
is quite important in itself and our algorithm as
proposed above can be used as an efficient alter-
native to cubic transformation-based approaches
for generating random samples which match a
given set of four central moments. Furthermore,
there is a lot of extra freedom in the choice of
@; which may be utilized to match further higher
moments. Alternatively, ¢; may be generated us-
ing any random number generator or using an
appropriate deterministic algorithm.

3. Numerical experiments

To test the computational efficiency of the op-
timization procedure, we used LMI toolbox of
MATLAB (version 6.5), running on a desktop
with a 3 GHz Pentium processor. To derive a co-
variance matrix and marginal kurtosis, which is



guaranteed to correspond to a feasible distribu-
tion, we used MATLAB’s random number gen-
erator for t-distribution with 10 degrees of free-
dom. The sample covariance matrix of the re-
sulting random samples was used as a target co-
variance matrix and the sample marginal kurtosis
values were used as the target kurtosis in our op-
timization. We ran the numerical experiments for
various combinations of number of variables (n),
scenarios (2ns + 1) and kurtosis values. Some of
the results are reported in Table 1 with € defined
in theorem 1. We have reported only the mean
target kurtosis, rather than the individual kurto-
sis values, for brevity. Note that the mean vector,
the covariance matrix and the zero skewness are
exactly matched in all cases. The specific choice
of these first three moments has very little impact
on the matching of the fourth marginal moment.
It can be seen that it took less than 15 seconds
to generate 7201 samples for 60 random variables.
The worst kurtosis matching error over the sce-
narios and dimensions under consideration was
around 15%. The average error between the tar-
get and the achieved kurtosis values over n di-
mensions was significantly smaller and was under
5% in all cases. The computation times can eas-
ily be improved by employing a higher specifica-
tion machine and a purpose-written optimization
code, e.g. which exploits the sparsity in (4).

Table 1 : Results of numerical

experiments.
nl s [ LYk € time in seconds
2 | 20| 5.6118 | 0.3037 0.16
4 15 6.1847 | 0.4875 0.03
10 | 2 6.3868 | 0.6344 0.04
50 | 50 | 6.0837 | 0.8347 8.01
60 | 60 | 6.2017 | 0.7547 14.21

4. Future research

Our proposed method deals only with single
stage scenarios. An extension of this algorithm
to generation of scenario trees for multi-stage
decision problems and an implementation of a
large scale stochastic programming model demon-
strating the use of this method in financial opti-

mization are topics of ongoing research. From
a theoretical point of view, the relationship be-
tween the proposed optimization procedure and
the semi-definite optimization procedures to de-
termine whether a given vector of moments is fea-
sible (e.g., as discussed in chapter 16 of [16]) is
worth investigating.
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