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Unlike in finite dimensions, a basic feasible solution characterization of extreme points does not hold in count-
ably infinite linear programs. We develop regularity conditions under which such a characterization is possible.
Applications to infinite network flow problems and non-stationary Markov decision processes are presented.

1. Introduction

We consider linear programs with countably
many equality constraints and variables, i.e.,
Countably Infinite Linear Programs (CILPs).
CILPs subsume infinite network flow problems [4]
and non-stationary infinite horizon deterministic
and stochastic dynamic programs [3].

Recall that a vector x in a convex subset S of
a vector space is called an extreme point of S if it
cannot be expressed as a strict convex combina-
tion of two distinct vectors in S [1]. In standard
form finite-dimensional linear programs (hence-
forth LPs), a feasible solution is an extreme point
if and only if it can be obtained as the unique solu-
tion to the system of equations derived from the
equality constraints by setting a subset of vari-
ables to zero (Theorem 2.3 in [2]). This subset
consists of the so-called non-basic variables while
the remaining variables are termed basic. This
has proven critical in LPs as for example in de-
signing pivot operations that exchange a variable
from the non-basic set with a variable in the basic
set, leading to the Simplex method.

Unfortunately, although optimal solutions of
CILPs often occur at extreme points, Example 1
illustrates that the above finite dimensional char-
acterization of extreme points does not extend
to CILPs heretofore limiting research in this area.

Example 1 (modified from [4]) Consider the fol-
lowing CILP

x1 + x2 = 2, x1 − x3 =
1
4
, x2 − x4 =

1
4

x3 − x5 =
1
8
, x4 − x6 =

1
8
, x5 − x7 =

1
16

. . . . . .

xi ≥ 0, i = 1, 2 . . .

One can check that vectors u =
(3/2, 1/2, 5/4, 1/4, 9/8, 1/8, . . .)T and v =
(1/2, 3/2, 1/4, 5/4, 1/8, 9/8, . . .)T are extreme
points and yet clearly do not provide a unique
solution to the equality constraints.

Such pathological examples are common in
infinite-dimensional linear programs in abstract
vector spaces [1]. The fundamental hurdle is that
for a non-negative point x in the variable space of
the linear program, the subspace β(x) of points
whose support set is contained in that of x may
be strictly larger (with respect to inclusion) than
the subspace B(x) of bi-directions at x feasible
with respect to non-negativity [1]. The former is
intimately related to the concept of a basic solu-
tion whereas the latter an extreme point.

We attempt to reduce this crucial gap for the
case of CILPs in this paper as follows : (i) Ba-
sic and Basic Feasible Solutions (BFS) are for-
malized for CILPs showing that a BFS is an ex-
treme point but the converse is not true. (ii)
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“Strictly Positive Support” (SPS) — a regular-
ity condition under which a CILP extreme point
is its BFS is introduced. SPS requires that the
infimum of strictly positive components of an ex-
treme point be strictly positive and is thus easy to
check. (iii) The notion of a basic sequence, which
extends the finite dimensional concept of linear
independence is presented, and its relation to ex-
treme points and basic solutions is investigated
(iii) Applications from infinite network flow prob-
lems and non-stationary infinite horizon Markov
decision processes are discussed in the last sec-
tion.

2. Characterization of extreme points

Recall that R∞ is the space of sequences
{xi}∞i=1 of real numbers. Constraints in standard
form CILPs are written as:

∞∑
j=1

aijxj = bi, i = 1, 2, . . . (1)

xi ≥ 0, i = 1, 2, . . . (2)

where aij are real entries of a doubly infinite ma-
trix A, and b, x ∈ R∞. We assume that the
infinite sums are well-defined and finite. This
holds for example when x belongs to the space
of bounded sequences l∞ = {x ∈ R∞ : sup

i
|xi| <

∞} and each row ai ≡ {aij}∞j=1 of matrix A is in
l1, the space of absolutely summable sequences
{x ∈ R∞ : |x1| + |x2| + . . . < ∞}. It also holds
when x ∈ l1 and ai ∈ l∞, and when x ∈ R∞ and
A has finitely supported rows, i.e., for each i the
set J(i) = {j : aij 6= 0} is finite. For concrete-
ness, we focus on the case where x ∈ l∞, and each
row as well as column of A is in l1. We now recall
standard definitions and some notation.

Definition 2.1. [1] A vector x feasible to (1-2) is
said to be an extreme point if it cannot be written
as x = λy + (1 − λ)z where λ ∈ (0, 1) and y 6= z
are feasible to (1-2).

Definition 2.2. [1] For 0 ≤ x ∈ l∞, the subspace
B(x) is defined as {u ∈ l∞|x + λu ≥ 0, x− λu ≥
0 for some λ > 0}.

Note that N(A), the null space of A, is given by

the set {u ∈ l∞ :
∞∑

j=1

aijuj = 0,∀i}. This leads to

an algebraic characterization of extreme points.

Proposition 2.3. [1] A vector x feasible to (1-2)
is an extreme point if and only if N(A)∩B(x) =
{0}.

Let S(x) denote the support of x, i.e., the se-
quence (or set) of indices i such that xi 6= 0. The
next two definitions are motivated by their finite-
dimensional counterparts [1,2].

Definition 2.4. For any x ∈ l∞, β(x) is the
subspace {u ∈ l∞|ui = 0 ∀i /∈ S(x)}.

Definition 2.5. We say that x ∈ l∞ is a basic
solution if it is the unique solution of (1) in β(x).
A basic solution that satisfies (2) is called a BFS.

Proposition 2.6. If x is a BFS then it is an
extreme point.

Proof. Suppose x is not an extreme point. Then ∃
two distinct y, z feasible to (1-2) and a λ ∈ (0, 1)
such that x = λy + (1 − λ)z. xi = 0 implies
yi = zi = 0, since yi ≥ 0, zi ≥ 0 ∀ i. Hence,
y, z ∈ β(x). Since, y, z satisfy (1), this contradicts
uniqueness of x, i.e., x is not basic.

Example 1 above shows that converse of Propo-
sition 2.6 is not true. We explore conditions un-
der which the converse holds (Proposition 2.9 and
Corollary 2.12). We first dispose of the trivial sit-
uation when x = 0 is feasible to (1). In that case,
S(x) = ∅ and β(x) = {0}. Thus, if x = 0 is an
extreme point, then it is trivially the unique so-
lution in β(x) to (1). Hence we focus on vectors
x 6= 0, i.e., S(x) 6= ∅, in the sequel.

Proposition 2.7. Suppose x ∈ l∞ satisfies (1).
Then x is a basic solution if and only if N(A) ∩
β(x) = {0}.

Proof. Suppose x is not basic. Then ∃ a y ∈
β(x), y 6= x such that

∑
j∈S(x)

aijyj = bi ∀i. Since

x satisfies (1),
∑

j∈S(x)

aijxj = bi for all i. Thus∑
j∈S(x)

aij(yj − xj) = 0 for all i. This implies that
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∑
j

aij(xj−yj) = 0 for all i because xj = yj = 0 for

j /∈ S(x). Thus 0 6= x− y ∈ N(A) and note that
x−y ∈ β(x). This contradicts N(A)∩β(x) = {0}.

Suppose ∃ a y 6= 0 such that y ∈ N(A) ∩ β(x).
Then x+y ∈ β(x) and

∑
j∈S(x)

aij(xj +yj) = bi for

all i. The latter follows since x satisfies (1) and∑
j∈S(x)

aijyj = 0 for all i as yj = 0 for j /∈ S(x) and

y ∈ N(A). This implies that x is not basic.

Propositions 2.3, 2.6, and 2.9 shed light on a
fundamental reason why an extreme point may
not be a BFS — subspaces β(x) and B(x) are
not necessarily equal in CILPs as illustrated in
this example.
Example 2 (from [1]) Consider x ∈ l∞, x ≥ 0
such that

x1 = 1, xi − xi+1 =
1
2i

, i = 1, 2, . . .

For x∗ = (1, 1/2, 1/4, . . .), β(x∗) = l∞, but B(x∗)
is the set of sequences with finitely many non-
zeros. Therefore B(x∗) ⊂ β(x∗).
More generally,

Lemma 2.8. B(x) ⊆ β(x) for all 0 ≤ x ∈ l∞.

Proof. Let u ∈ B(x). Then ∃ a λ > 0 such that
x+λu ≥ 0 and x−λu ≥ 0. Thus, each component
of x + λu and x − λu is non-negative. Consider
any i with xi = 0. Then λui ≥ 0 and −λui ≥ 0.
Since λ > 0, ui ≥ 0 and −ui ≥ 0. Therefore,
ui = 0 for i /∈ S(x). Thus, u ∈ β(x).

The above discussion leads to the following con-
verse of Proposition 2.6.

Proposition 2.9. Suppose x is an extreme point
with β(x) ⊆ B(x). Then x is a BFS.

We now provide a condition that is easy to
check and is equivalent to β(x) ⊆ B(x).

Definition 2.10. 0 ≤ x ∈ l∞ has Strictly Posi-

tive Support (SPS) if
(

inf
i∈S(x)

xi

)
> 0.

Note that when x has integer components, it
has SPS. Similarly when S(x) is finite.

Lemma 2.11. Let 0 ≤ x ∈ l∞. Then x has SPS
if and only if β(x) ⊆ B(x), i.e., β(x) = B(x).

Proof. Suppose β(x) ⊆ B(x). Define u ∈ l∞ as
follows: ui = 0 if xi = 0, and ui = 1 if xi 6= 0. u
is in β(x) and hence in B(x). Hence, ∃ a λ > 0 so
that x− λu > 0. Thus, xi > λ ∀ i ∈ S(x). Thus,
x has strictly positive support.

Now suppose x has strictly positive support

and
(

inf
i∈S(x)

xi

)
= δ > 0. Let 0 6= u ∈ β(x)

and let ||u||∞ = C(u) > 0. Then it is easy to
check that u ∈ B(x) by choosing λ = δ/2C(u).
Therefore, β(x) ⊆ B(x).

Corollary 2.12. Suppose x is an extreme point
with SPS. Then x is a BFS.

An independent proof of Corollary 2.12 is also
possible from first principles by perturbation ar-
guments as in LPs [2]. Note that SPS is not
necessary for an extreme point to be a BFS.
For instance, in Example 2, feasible solution
x∗ = (1, 1/2, 1/4, . . .) does not have SPS, but
is an extreme point as well as a BFS (because
N(A) = {0} implying N(A) ∩ β(x) = {0}).

Recall that in LPs, columns of the constraint
matrix corresponding to the support of an ex-
treme point are linearly independent (LI). In or-
der to extend this notion to CILPs, let Aj de-
note the jth column of A. Using the topology of

componentwise convergence on R∞,
∞∑

j=1

xjAj = b

provides an equivalent way to write (1). We
define AS(x) as the sequence {Ai}i∈S(x), and
say that AS(x) is the sequence of columns of A
used by x. AS(x) is said to be LI when ev-
ery finite subsequence of AS(x) is LI. To see
that LI of AS(x) is not sufficient for a feasible
x to be an extreme point, consider the vector
w = (1, 1, 3/4, 3/4, 5/8, 5/8, . . .)T in Example 1.
AS(w) = A is LI but w is not an extreme point
since w = (u + v)/2. On the other hand we have

Proposition 2.13. Suppose x is an extreme
point. Then AS(x) is LI.

Proof. Suppose AS(x) is not LI. Then ∃ some fi-
nite subsequences I of S(x) such that the set of
columns AI = {Aj : j ∈ I} is linearly dependent.
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Hence ∃ real numbers {α}I not all zero and in-
dexed by elements of I such that

∑
j∈I

αjAj = 0.

Now define a vector x(θ) ∈ l∞ as follows: xj(θ) =
xj + θαj for j ∈ I, xj(θ) = xj for j /∈ I, and

xj(θ) = 0 for j /∈ S(x). Clearly,
∞∑

j=1

xj(θ)Aj

equals
∑

j∈S(x)

xjAj + θ
∑
j∈I

αjAj = b for all real

numbers θ. Since I is a finite set, we can ensure
x(ε) and x(−ε) are feasible by choosing ε > 0
small enough. Moreover, x = (x(ε) + x(−ε))/2
implying x is not an extreme point.

We now develop the notion of a basic sequence
and argue that it is sufficient for an extreme point.

Definition 2.14. For x ∈ l∞, the set of all
y ∈ R∞ for which ∃ a u ∈ β(x) such that
y =

∑
j∈S(x)

ujAj will be called the countable span

of AS(x) and denoted
[
AS(x)

]
.

Definition 2.15. We say that AS(x) is a basic
sequence (for

[
AS(x)

]
) when every y ∈

[
AS(x)

]
can be uniquely written as y =

∑
j∈S(x)

ujAj using

some u ∈ β(x).

If AS(x) is a basic sequence then AS(x) is LI. In
Example 1, columns of A are LI, however, they
do not form a basic sequence since b ∈ [A] and
u and v both use all columns of A to construct
b, implying that the notion of LI is weaker than
that of a basic sequence.

It is easy to see that an x ∈ l∞ that satisfies
(1) is a basic solution if and only if AS(x) is a
basic sequence. This implies that if x is feasible
to (1)-(2) and AS(x) is a basic sequence then x is
an extreme point. Moreover, if x is an extreme
point and β(x) ⊆ B(x), i.e., x has SPS, then
AS(x) is a basic sequence.

3. Applications

Results in Section 2 are now applied to infinite
network flow and Markov decision problems.

3.1. Infinite network flow problems
Let G = (N,E) be a directed network consist-

ing of a countable set N = {1, 2, 3, . . .} of nodes

and a set E ⊆ N ×N of directed arcs. For each
node i ∈ N , we define I(i) and O(i) as the sets of
incoming and outgoing arcs at node i respectively.
We assume that in degree and out degree of each
node is finite, i.e., |I(i)| < ∞ and |O(i)| < ∞ for
each i ∈ N and further that the total degree of
any node is uniformly bounded above. For each
node i ∈ N , let d(i) ∈ R be the net demand
at node i. Then the flow balance constraints of
a typical infinite network flow (henceforth INF)
problem are written as follows:∑
(j,i)∈I(i)

x(j, i)−
∑

(i,j)∈O(i)

x(i, j) = d(i) ∀i ∈ N

x(i, j) ≥ 0 ∀(i, j) ∈ E.

We restrict our attention to the case where the
flow in every arc is bounded, i.e., x ∈ l∞. A
flow vector x ∈ l∞ is said to be feasible for the
above problem if it satisfies the demand as well as
the non-negativity constraints. Romeijn et al. [4]
showed that extreme points of the set of feasible
flows can be characterized using the concepts of
paths and cycles in graph G. We now show that
their results are special cases of our work.

Following Romeijn et al. [4] we define a path
in graph G to be a (finite or infinite) sequence
of nodes i1, i2, i3, . . . such that no node is re-
peated in the sequence and for each node ij , ei-
ther (ij , ij+1) ∈ A (forward arc) or (ij+1, ij) ∈ A
(backward arc). Note that this path is not di-
rected. A cycle in graph G is defined as a finite
path i1, i2, . . . , ik with an additional arc (i1, ik) or
(ik, i1). We say that two nodes i, j ∈ N are con-
nected if there exists a finite path i1, i2, . . . , ik in
G with i1 = i and ik = j. Graph G is connected
if every pair of nodes in G is connected. We as-
sume that G is connected. For a feasible flow x,
we define E(x) = {(i, j) ∈ E : x(i, j) > 0} as the
set of free arcs, and G(x) = (N,E(x)) as the free
arc graph. Observe that the set of free arcs E(x)
is a special case of support S(x) defined earlier
for CILPs. Moreover, the set β(x) now becomes
the set of flows u such that u(i, j) = 0 for all arcs
(i, j) /∈ E(x).

Lemma 3.1. Let flow x be feasible to INF. Then
x is a BFS (in the sense of Definition 2.5) if and
only if (i) G(x) has no cycles and (ii) for any
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node i ∈ N there exists at most one infinite path
i, i1, i2, . . . in G(x).

Proof. Suppose (i) does not hold and let
i1, . . . , ik, i1 be a cycle in G(x) with F ⊆ E(x)
and B ⊆ E(x) the sets of forward and back-
ward arcs respectively in this cycle. Construct
a new flow y in β(x) by setting y(i, j) = x(i, j)
for (i, j) ∈ {E(x)\[F ∪B]}, y(i, j) = x(i, j)+1 for
(i, j) ∈ F , y(i, j) = x(i, j) − 1 for (i, j) ∈ B and
y(i, j) = 0 for (i, j) /∈ E(x). Then y is feasible
to equality constraints contradicting uniqueness
of x. Now suppose (ii) does not hold. Then ∃
a node i∗ ∈ N such that there are at least two
paths i∗, i1, i2, . . . and i∗, j1, j2, . . . to infinity in
G(x). Let I1 ⊆ E(x) and I2 ⊆ E(x) denote the
sets of arcs in these two paths respectively. Let
F1 ∈ I1, B1 ∈ I1, F2 ∈ I2, B2 ∈ I2 denote the
forward and backward arcs in these two paths re-
spectively. Construct a new flow y in β(x) by set-
ting y(i, j) = x(i, j) for (i, j) ∈ {E(x) \ [I1 ∪ I2]},
y(i, j) = x(i, j) + 1 for (i, j) ∈ F1, y(i, j) =
x(i, j) − 1 for (i, j) ∈ B1, y(i, j) = x(i, j) − 1 for
(i, j) ∈ F2, y(i, j) = x(i, j)+1 for (i, j) ∈ B2, and
y(i, j) = 0 for (i, j) /∈ E(x). Then y is feasible
to equality constraints contradicting uniqueness
of x. This proves the “only if” part.

For the “if” part, suppose x and y are two
distinct solutions in β(x) to the equality con-
straints. Then x − y 6= 0 is feasible to network
G(x) with with zero demand or supply on every
node. Hence, either (i) or (ii) must not hold.

A basic solution for network flow problems was
defined in [4] as a flow that satisfies conditions
(i) and (ii) in Lemma 3.1. The Lemma shows
that this concrete definition in [4] is a special case
of our general notion of a basic solution. This
Lemma and the results of Section 2 lead to a
characterization of extreme points of INF as in
[4]. Specifically, if x is feasible to INF such that
(i) G(x) has no cycles and (ii) For any node i ∈ N
there exists at most one infinite path i, i1, i2, . . .
in G(x) then x is an extreme point of INF. If x has
SPS and is an extreme point of INF then (i) G(X)
has no cycles and (ii) for any node i ∈ N there
exists at most one infinite path i1, i2, . . . ∈ G(X).
Finally, as in finite network flow problems [2], if

x is an extreme point of INF then G(x) has no
cycles.

3.2. Markov decision processes
Consider a dynamic system observed by a de-

cision maker at the beginning of periods n =
1, 2, . . . to be in a period-indexed state sn from
a finite set Sn. The initial state is s1. The deci-
sion maker chooses an action an from a finite set
An(sn) 6= ∅ of feasible actions in state sn. Given
that an action an ∈ An(sn) was chosen in state
sn, the system transforms into state sn+1 ∈ Sn+1

with probability pn(sn+1|sn, an), incurring non-
negative cost cn(sn, an; sn+1) ≤ c < ∞. This pro-
cedure continues ad infinitum. The term Marko-
vian policy denotes a rule that dictates choice of
action in every state (irrespective of the earlier
states visited or actions taken). The goal is to
find a Markovian policy that minimizes total in-
finite horizon discounted expected cost when the
discount factor is 0 < α < 1.

Note that the state-space S = {S1∪S2 . . .} and

the action-space

( ⋃
n=1,2,...

( ⋃
sn∈Sn

An(sn)

))
are

both countable unions of finite sets and therefore
countable. We consider the most common situa-
tion in applications where cardinality |Sn| is (or
uniformly bounded above by) a constant integer
M independent of n. This often happens in prac-
tice, for example, when the finite sets of possible
states are identical in every period in all respects
other than the period-index. Then the total num-
ber of states up to period n is at most linear in
n. Similarly, we focus on the typical situation
in practice where the cardinalities |An(sn)| are
uniformly bounded above by an integer B inde-
pendent of n and sn.

Let K(sn, an) ⊆ Sn+1 denote the set of
states sn+1 ∈ Sn+1 such that pn(sn+1|sn, an) >
0. Let cn(sn, an) denote the expected cost
incurred on choosing actions an ∈ An(sn)
in state sn ∈ Sn. That is, cn(sn, an) =∑
sn+1∈K(sn,an)

pn(sn+1|sn, an)cn(sn, an; sn+1). Fi-

nally, for any state sn ∈ Sn, let L(sn) de-
note the set of states zn−1 ∈ Sn−1 such that
there exists an action an−1 ∈ An−1(zn−1) with
pn−1(sn|zn−1, an−1) > 0. For each zn−1 in L(sn),
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we use Λ(zn−1, sn) to denote the set of actions
an−1 ∈ An−1(zn−1) with pn−1(sn|zn−1, an−1) >
0. Let {δ(sn)} be a sequence of positive num-
bers indexed by states sn ∈ Sn for all periods n

such that
∞∑

n=1

∑
sn∈Sn

δ(sn) < ∞. Then the infinite

horizon decision problem is equivalent to solving
a CILP whose constraints are given by (see [3]):∑

a∈An(s)

x(s, a)−

∑
z∈L(sn)

∑
b∈Λ(z,s)

αpn−1(s|z, b)x(z, b)

= δ(s),
∀s ∈ Sn, n = 1, 2, . . .

x(s, a) ≥ 0, ∀s ∈ Sn, a ∈ An(s), n = 1, 2, . . .

Simple algebra shows that the decision vector x
belongs to l∞, each row as well as column of
the equality constraint matrix is in l1, and the
above system has a feasible solution. Also, in
every feasible solution x, for every n and every
s ∈ Sn, x(s, a) > 0 for at least one a ∈ An(s).
Following [3], we define the probability of choos-
ing an action an ∈ An(sn) in state sn ∈ Sn

as Psn(an) = x(sn, an)
/ ∑

bn∈An(sn)

x(sn, bn), for

a feasible x. A deterministic policy is a policy
where ∀n and ∀sn ∈ Sn, Psn

(an) is 1 for ex-
actly one an ∈ An(sn) and 0 for all other fea-
sible actions in sn. That is, deterministic policies
are characterized by feasible solutions x where
∀ n and ∀s ∈ Sn, x(s, a) > 0 for exactly one
a ∈ An(s) and x(s, a) = 0 for all other a ∈ An(s).

Lemma 3.2. Let x be feasible to PMDP. Then x
is a BFS if and only if it defines a deterministic
policy.

Proof. (Sketch) Suppose x defines a determinis-
tic policy. For simplicity, we number the states
1, 2, . . . such that if i < j then i ∈ Sm and j ∈ Sn

for some m ≤ n. In particular, for every state i,
the feasible action a for which x(i, a) > 0 is de-
noted ai. Every y in β(x) is such that x(i, a) = 0
⇒ y(i, a) = 0. If such a y satisfies the equal-
ity constraints, then y(1, a1) = δ(1) = x(1, a1),
y(2, a2) = δ(2) + αp(2|1, a1)δ(1) = x(2, a2). Con-

tinuing inductively, we see that y = x, i.e., x is a
BFS.

Suppose x defines a randomized policy, i.e.,
there exist states s for which x(s, a) > 0 for
more than one feasible action a. Then one can
construct a solution y in β(x) distinct from x
that satisfies the equality constraints (this can
be achieved for example by decreasing x(s, a) to
zero for all feasible actions a except for one for
each state s inductively to ensure that equality
constraints are satisfied). Hence x is not a basic
solution.

Lemma 3.2 and Proposition 2.6 imply that if a
feasible x defines a deterministic policy then it
is an extreme point. Interestingly, the converse is
also true in spite of the fact that feasible solutions
do not have SPS (providing another example that
SPS is not necessary for Corollary 2.12), however
it requires a more direct proof that we omit here.

Acknowledgments

Research supported in part by the NSF under
grant DMI-0322114. The first author thanks the
University of Washington for summer support.

REFERENCES

1. Anderson, E. J., and Nash, P., Linear
Programming in infinite-dimensional spaces:
Theory and applications, John Wiley and
Sons, Chichester, Great Britain, 1987.

2. Bertsimas, D., and Tsitsiklis, J. N., Introduc-
tion to linear optimization, Athena Scientific,
Belmont, Massachusetts, USA, 1997.

3. Puterman, M. L., Markov decision processes
: Discrete stochastic dynamic programming,
John Wiley and Sons, New York, 1994.

4. Romeijn, H. E., Sharma, D., and Smith, R.
L., Extreme point solutions for infinite net-
work flow problems, Networks, 48 (4), 209-
222, 2006.


