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Abstract

The problem of optimal investment in two types of assets over time is formulated

as a stochastic optimal control problem. The two assets considered are a bank

account and stock. The earnings derived from stock consist of dividends and

capital gains. The randomness in the return on stock is modeled using a standard

Brownian motion. Using a stochastic maximum principle, an explicit decision rule

of the bang-bang type is derived for optimal management of cash.
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1 Introduction

Firms need cash to manage day-to-day operations. Demand for cash can be positive

or negative. Positive demand consists of accounts payable, whereas negative demand

is known as account receivables. Cash can be held in bank account earning interest

or invested in risky securities (stocks or bonds) earning possibly a higher mean rate of

return than the bank account. For simplicity, we will refer to the securities as simply

stock. Transfer of cash from bank to stock and vice versa incurs a broker’s commission.

The problem of managing the operating cash to meet demand for cash at minimum cost

is known as the cash balance or cash management problem.

The cash balance problem has often been treated in the literature as an inventory

problem. Deterministic models of inventory type have been developed by Baumol [1]

and Tobin [21]. Sethi and Thompson [17] solved a deterministic cash balance problem

for a firm with time-varying demand for cash. They considered two kinds of assets in

their model and applied the maximum principles in discrete as well as continuous time

to maximize the terminal value of the total assets.

Works on stochastic cash balance models include Miller and Orr [15], Dallenbech [7],

Eppen and Fama [9, 10], Constantinides [4, 5], and Vickson [23]. These papers consider

an inventory approach to cash management where the stochastic nature appears in the

demand for money. There are examples of asset prices modeled as stochastic processes,

but most of these find applications in portfolio consumption setting rather than in a

cash management framework. Examples include Merton [14], Karatzas et al. [13], Davis

and Norman [8]; see also Sethi [18].

In this paper, we consider a cash management problem involving two types of assets,

namely deposits in a bank account and investments in stock. We present an extension

of the Sethi and Thompson [17] model to allow for cash dividends and uncertain capital

gains on stock. This formulation applies to a firm that wishes to control its level of

cash balance to meet its demand rate d(t) for cash over time at minimum total cost, or
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equivalently to maximize the terminal value of its cash and stock holdings. It is also

useful for a person who needs money at the rate d(t), keeps the money either in stock

or in a bank account, and wishes to maximize total holdings at his retirement age.

Sethi and Thompson [17, 19] used Pontryagin’s maximum principle to derive optimal

policies for cash management. We shall use a stochastic maximum principle to solve the

proposed extension. In Section 2, we consider first a deterministic extension by assuming

that the stock pays dividends in addition to appreciating at a certain average rate. This

is a straightforward extension of the Sethi-Thompson model. In Section 3, we allow the

rate of growth in the price of stock to be random. For analysis, we use the stochastic

maximum principle proposed by Bensoussan [3] in his unpublished lecture notes.

We should mention that most of the stochastic optimal control problems in the lit-

erature use the dynamic programming approach resulting in Hamilton-Jacobi equations

to be solved. However, there are a few exceptions where applications of the stochastic

maximum principle have resulted in elegant solutions. These applications that include

Benes [2] and Haussmann [11] are in the field of engineering or mathematics. Our use

of the stochastic maximum principle is perhaps the first such application in the areas

of management science and economics. We have accomplished this by keeping our cash

balance formulation to be quite simple, and thus our paper also serves as an introduction

of the stochastic maximum principle to researchers working in these areas.

2 Model with Dividends on Stock

In this section, we develop a deterministic model that closely resembles the Sethi-

Thompson model, by extending theirs to allow for a dividend paying stock.

Consider a firm that invests its cash in stock or in a bank account. The amount

invested in the bank account at time t is x(t) and the amount invested in stock is y(t),

t ǫ [0, T ], where T defines the length of the planning horizon. The interest rate earned on

the bank account is r1(t) and the returns derived from stock at time t takes two forms:
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capital gains rate of r2(t) and cash dividend rate r3(t). The firm has a demand rate d(t)

for cash at time t. The demand d(t) can be positive or negative.

The control variable is the sale of stock at a rate u(t) at time t, where a negative

sale represents a purchase. Moreover, the control u(t) is bounded, i.e.,

−M1(t) ≤ u(t) ≤ M2(t), where M1(t) > 0 and M2(t) > 0.

For each unit of stock that is bought or sold, the firm pays a broker’s commission at

a cost of α dollars per dollar worth of stock, 0 < α < 1 . We can now write the state

equations as follows:

dx

dt
= r1(t)x(t) − d(t) + u(t) − α|u| + r3(t)y(t), x(0) = x0, (1)

dy

dt
= r2(t)y(t) − u(t), y(0) = y0. (2)

We do not impose any constraints on the state variables x(t) and y(t). This means that

overdrafts on cash and short-selling of stock are allowed.

The objective function is:

Max [x(T ) + y(T )]. (3)

This objective function is equivalent to minimizing the net cost of managing the cash

balances during the planning period [0, T ].

Next we introduce the adjoint functions p1(t) and p2(t) to define the Hamiltonian

H = p1(r1x − d + u − α|u|r3y) + p2(r2y − u), (4)

where p1(t) and p2(t) satisfy the adjoint equations

dp1

dt
= −∂H

∂x
= −p1(t)r1(t), p1(T ) = 1, (5)

dp2

dt
= −∂H

∂y
= −p2(t)r2(t) − p1(t)r3(t), p2(T ) = 1. (6)
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According to Pontryagin’s maximum principle (see, e.g., Sethi and Thompson [19]),

we solve the problem (1)-(6) by maximizing (4) with respect to u. From (5) we can solve

for p1(t):

p1(t) = e
❘

T

t
r1(s) ds, (7)

and then we can use (6) and (7) to solve for p2(t)

p2(t) = e
❘

T

t
r2(s) ds −

∫ T

t

dτ r3(τ) e(
❘

T

τ
r1(s) ds+

❘
τ

t
r2(s) ds). (8)

Remark. When there are no dividends (r3(t) = 0), our model reduces to the Sethi-

Thompson model.

The optimal policy is now derived by selecting the control variable such that the

Hamiltonian (4) is maximized. Since the Hamiltonian is a linear function of u, the

solution will be of ”bang-bang” type. We see from (4) that the only terms involving u

in the Hamiltonian are:

W = p1u − p1α|u| − p2u. (9)

For positive values of u, the right-hand side of (9) can be written as u(p1 − p1α − p2),

and for p1(1 − α) > p2 , we would make u as large as possible in order to make (9) as

large as possible. For negative values of u, the right hand side of (9) can be written as

u(p1 + p1α − p2), and if p1(1 + α) < p2, we would make u as small as possible.

We therefore obtain the following decision rule:

u(t) =







−M1 if p1(t)(1 − α) > p2(t),
0 if p1(t) (1 − α) < p2(t) < p1(t)(1 + α),

M2 if p1(t)(1 + α) < p2(t).
(10)

It is interesting to observe that the adjoint variable p1(t) denotes the marginal return

in the interval [t, T ] from a dollar invested in bank account at time t. Similarly, p2(t)

denotes the same for a dollar invested in stock at time t. Thus, the optimal policy

requires us to sell stock at the maximum rate if the future value of (1 − α) dollars in

bank account is more than that of 1 dollar in stock. Similarly, if the future value of one
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dollar in stock is more than the future value of the cash used for purchasing one dollar

of stock (1 + α), then it is optimal to buy stock at the maximum rate.

3 Model with Uncertain Capital Gains

We now introduce one main factor of randomness in the model presented in the pre-

vious section, namely, that the capital gains rate on stock is a stochastic process. To

distinguish it from r2(t) in Section 2, we denote it as R2(t) in this section. Thus, we can

modify the state equations (1) and (2) as follows:

dx

dt
= r1x − d + u − α|u| + r3y, x(0) = x0, (11)

dy

dt
= R2(t)y(t) − u(t), y(0) = y0, (12)

where R2(t) is a stochastic process. We assume that the system is fully observed, so that

at any time t, we know the realization of x(t), y(t) and R2(t). The objective function

(3) changes to

Max E [x(T ) + y(T )] . (13)

Next, we develop a model to describe the process R2(t). For this, we look into the

empirical research on the stock price variations carried by various researchers. Nearly a

century ago, Bachelier (see Cootner [6]) suggested that the first differences of the prices

should be normally distributed with zero mean. Simmons [20] tested the model

Gt = γ + β1Gt−1 + · · · + βmGt−m + ǫt, (14)

where Gt is the relative increase in the stock price in period t, γ and β are constants, and

ǫt is a random disturbance term with zero mean. He found that Gt is not independent

of the previous price changes.

For our formulation, we take as its basis a first approximation of [14], namely,

Gt − Gt−1 = γt + (βt − 1)Gt−1 + ǭt, (15)
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where ǭt is a normally distributed disturbance with zero mean and where we, further-

more, allow γt and βt to depend on time t to allow for business cycles. Thus, e.g., γt can

be negative in bearish times. By the definition of Gt = (Pt−Pt−1)
Pt−1

, where Pt is the stock

price at time t, we see that Gt is the discrete-time analog of R2(t). Thus, we express the

following differential equation in R2(t) as the continuous-time analog of (15):

dR2(t)

dt
= β(t)R2(t) + f(t) + η(t), R2(0) = R0

2, (16)

where β(t) and f(t) are known functions of time, and η(t) is a random disturbance with

zero mean and variance q(t). We assume further that η(t) is the white noise process, a

gaussian process non-correlated in time, i.e., for any t1, t2, t2 > t1, we have

Eη(t1)η(t2) = q(t1)δ(t2 − t1), (17)

where δ is the Dirac function. Equivalently, we can write the state equation (16) as

dR2(t) = (f(t) + β(t)R2(t))dt + σ(t) dW (t), R2(0) = R0
2, (18)

where W (t) is the standard Weiner process and σ2(t) = q(t).

Note that this modeling of R2(t) is very similar to the modeling of stochastic interest

rates in the literature (see, e.g., Vasicek [22] and Hull and White [12]).

3.1 A Stochastic Maximum Principle

In this section, we briefly recapitulate the stochastic maximum principle developed by

Bensoussan [3]. To formulate a general stochastic control problem, let (Ω,F, P ) be

the probability space and Ft be an increasing family of sub σ-algebras of F. Thus, Ft

represents the information up to time t. Since we have a finite horizon of length T , we

have FT ⊂ F. Let W (t) be a standard Ft Weiner process with values in R
n. Note that

W (t) is an Ft martingale.

The state equation is given by the Ito process

dx(t) = g(x(t), u(t), t)dt + σ(x(t), t)dW (t), x(0) = x0, (19)

6



where x(t) and u(t) denote the state and control variables, respectively, x0 is a deter-

ministic initial condition, g : R
n ×R

m × [0, T ] → R
n, and σ : R

n × [0, T ] → L(Rn; Rn).

We now define the cost functional as follows. Let l(x, u, t) : R
n × R

m × [0, T ] → R

be a Borel and continuously differentiable function with respect to (x, u). Let h(x) be

continuously differentiable with |h(x)| ≤ c(|x| + 1). The objective to be minimized is

defined as

J(u) = E

[
∫ T

0

l(x(t), u(t), t) dt + h(x(T ))

]

. (20)

The adjoint equations for this system can be written as the stochastic differential

equation

−dp

dt
= Φ′ g′

x Ψ′ p − Φ′ lx(x(t), u∗(t), t), p(T ) = −Φ′(T ) hx(x(T )), (21)

where Φ and Ψ satisfy the matrix stochastic differential equations

dΦ = 〈σx Φ, dW 〉 , Φ0 = I, (22)

dΨ = −〈Ψ σx, dW 〉 + 〈Ψ σx, σx〉 dt, Ψ0 = I. (23)

In this notation A′ denotes the transpose of matrix A , fx denotes the derivative of

function f with respect to x, and < ., . > denotes the matrix inner product. We define

the adjoint variable to be

Π(t) = Ψ′(t) EFt

p(t), (24)

where the conditional expectation EFt

p(t) = E[p(t)/Ft].

According to the maximum principle, the necessary condition for u∗ to be an optimal

control for the minimization of J(u) is

l(y(t), u∗(t), t) + Π(t) g(y(t), u∗(t), t) ≤ l(y(t), u(t), t) + Π(t) g(y(t), u(t), t), (25)

a.e. t, a.s. u, where y(.) denotes the trajectory of the state variable obtained by using

the control u∗.
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We now apply this maximum principle to our problem defined by equations (11)-(13)

and (16)-(18). The adjoint equations can be written as

−dp1

dt
= p1(t)r1(t), p1(T ) = 1, (26)

−dp2

dt
= p1(t)r3(t) + z(t)p2(t), p2(T ) = 1, (27)

−dp3

dt
= p2(t)y(t) + p3(t)β(t), p3(T ) = 0, (28)

where σ(x, t) is a (3 × 1) matrix (0, 0, σ(t))′, and thus Φ and Ψ reduce to Φ(t) =

I and Ψ(t) = I. Clearly, p1(t) is deterministic and is given by exactly the same func-

tion as in the deterministic case treated in Section 2. However, p2(t) and p3(t) are

stochastic in nature. The adjoint variables are

π1(t) = p1(t), π2(t) = EFt

p2(t), and π3(t) = EFt

p3(t).

The stochastic nature of p2(t) depends only on R2 between t and T . At time t, we

can observe the realizations of x, y and R2 on (0, t]. But x and y get their stochastic

nature only from R2 through the feedback law. In other words, for a given feedback law,

x(0, t) and y(0, t) are functions of R2(0, t). Here x(0, t), y(0, t), and R2(0, t) denote the

trajectories of x, y, and R2, respectively, from time 0 to t. Thus, if R2(0, t) is known, the

observations of x(0, t) and y(0, t) add no further information. Since p2(t) is a function

of R2(t, T ) and since the realizations of R2(t, T ) depend only on the value R2(t) at time

t, we can therefore write EFt

p2(t) = ER2(0,t)p2(t) = ER2(t)p2(t).

Thus, our optimization problem reduces to

Max[u| −M1≤u≤M2] p1(t)(u − α|u|) − u ER2(t)p2(t). (29)

The decision rule arising from the problem is of ”bang-bang” type and is similar to

the one in Section 2. It can be expressed as follows:

u(t) =























−M1 if p1(t)(1 − α) > ER2(t)p2(t),

0 if p1(t)(1 − α) < ER2(t)p2(t) < p1(t)(1 + α),

M2 if p1(t)(1 + α) < ER2(t)p2(t).

(30)
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Compared to the deterministic setting in Section 2, the only difference consists in re-

placing p2(t) by ER2(t)p2(t) and then applying the same decision rule.

By definition, the adjoint variables corresponding to x(t) and y(t) are p1(t) and

EFt

p2(t), respectively. Thus, the economic interpretation of the optimal policy is similar

to that in deterministic case, the difference being that now the expected value of investing

one dollar in stock must be considered. If the expected return by selling 1 dollar of stock

(which is same as having (1−α) dollars in bank) is more than keeping the dollar in stock

at any time t, then sell at the maximum rate at that time. Conversely, if the expected

return from buying 1 dollar worth of stock is more than keeping (1 + α) dollars in bank

at any time t, then buy stock at the maximum rate at that time.

3.2 Calculation of ER2(t)p2(t)

Let us introduce r2(t) as the solution of

dr2

dt
= βr2(t) + f(t), r2(0) = r0

2, (31)

which is thus the mean value of R2(t). Therefore, one may write R2(t) = r2(t) + ξ(t),

where ξ(t) is the solution of

dξ

dt
= β(t)ξ(t) + η(t), ξ(0) = 0. (32)

Since r2(t) is a known function, observation of R2(t) is equivalent to the observation of

ξ(t). The problem amounts to the following. Let us consider the process p2 on (t, T ] as

the solution of

−dp2

dτ
= r3(τ)p1(τ) + r2(τ)p2(τ) + ξ(τ)p2(τ), p2(T ) = 1, (33)

where ξ(τ) is the solution of

dξ

dτ
= βξ + η, τ ∈ (t, τ), ξ(t) = ξ̄t (given). (34)
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In order to calculate E ξ̄tp2(t), let us set g(t) = r3(t)p1(t). It is easy to show that p2(t) is

given by the formula p2(t) = e
❘

T

t
(r2(s)+ξ(s)) ds−

∫ T

t
dτg(τ)e

❘
T

t
(r2(s)+ξ(s)) ds. If we introduce

λ(t, τ) = e
❘

τ

t
(r2(s)+ξ(s)) ds, we can rewrite p2(t) = λ(t, T ) −

∫ T

t
dτ g(τ) λ(t, τ). Since g is

deterministic, it then follows that

E ξ̄tp2(t) = E ξ̄tλ(t, T ) −
∫ T

t

dτ g(τ) E ξ̄t λ(t, τ). (35)

Now, our problem amounts to finding the value of E ξ̄tλ(t, T ), for any pair (t, τ), τ ≥ t.

For this, we decompose ξ(s) as ξ(s) = ξ1(s) + ξ2(s), where ξ1(s) is the solution of

dξ1(s)

ds
= β ξ1(s), s ∈ (t, T ], ξ1(t) = ξ̄t, (36)

and ξ2(s) is the solution of

dξ2(s)

ds
= η(s), s ∈ (t, T ], ξ2(t) = 0. (37)

Moreover, ξ2(s), s ≥ t, is independent of ξ̄t, since η(s), s ≥ t, is indeed independent of

ξ̄t. Thus, going back to the definition of λ(t, τ), we get

E ξ̄tλ(t, τ) = E ξ̄t e
❘

τ

t
r2(s) ds e

❘
τ

t
ξ1(s) ds e

❘
τ

t
ξ2(s) ds. (38)

Now in (38), e
❘

τ

t
ξ1(s)ds and e

❘
τ

t
ξ2(s)ds are two independent variables and e

❘
τ

t
ξ1(s)ds is a

function of ξ̄t. Thus, we get

E ξ̄tλ(t, τ) = e
❘

τ

t
(r2(s)+ξ1(s))ds E e

❘
τ

t
ξ2(s)ds. (39)

Let us compute E e
❘

τ

t
ξ2(s)ds. First we solve (37) to obtain

ξ2(s) =

∫ s

t

dσ η(σ) exp

∫ s

σ

β(θ) dθ.

Then, we set X =
∫ τ

t
ξ2(s)ds and obtain

X =

∫ τ

t

ds

∫ s

t

dσ η(σ) exp

∫ s

σ

β(θ) dθ =

∫ τ

t

d(σ) η(σ)

∫ t

σ

ds exp

∫ s

σ

β(θ) dθ. (40)

10



By setting

h(σ, τ) =

∫ τ

σ

ds exp

∫ s

σ

β(θ)dθ,

we get X =
∫ τ

t
dσ η(σ)h(σ, τ). Note that X is a Gaussian variable with mean 0 and

variance equal to

EX2 =

∫ τ

t

dσ q(σ)h2(σ, τ).

Thus, we obtain

E eX =
1√

2πEX2

∫ +∞

−∞

ex e−
x
2

2EX2 dx = e
EX

2

2

1√
2πEX2

∫ +∞

−∞

e−
1

2EX2 (x − EX2)2dx

= e
EX

2

2 .

We thus get the formula

E ξ̄tλ(t, τ) = e[
❘

τ

t
(r2(s)+ξ1(s))ds+ 1

2

❘
τ

t
h2(s,τ)q(s) ds]. (41)

Finally, from (35), we obtain

E ξ̄tp2(t) = e
❘

T

t
(r2(s)+ξ1(s)+ 1

2
h2(s,T )q(s))ds −

∫ T

t

dτ g(τ) e
❘

τ

t
(r2(s)+ξ1(s)+ 1

2
h2(s,τ)q(s))ds. (42)

Note that the corresponding deterministic formula is

e
❘

T

t
r2(s)ds −

∫ T

t

dτ g(τ) e
❘

τ

t
r2(s)ds, (43)

which can be compared with (42).

The functions g, r2, ξ1 and h are relatively easy to calculate when f(t) and β(t) are

known. Furthermore, since q, the variance of η, is known, (42) is completely determined.

4 Conclusion

In this paper, we have extended the Sethi and Thompson [17] cash balance model to

the case when there are dividends and uncertain capital gains arising from investing in

stock. We use a stochastic maximum principle to obtain an explicit optimal decision

rule when the rate of return on the stock is modeled by a diffusion process.
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The respective adjoint variables resulting from the application of the maximum prin-

ciple at any given time represent the value (expected value in the stochastic case) at the

terminal time of having a dollar in a bank account and stock, at that time, respectively.

Finally, the paper serves as an introduction of the stochastic maximum principle for ad-

dressing stochastic control problems in the areas of management science and economics.
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