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Abstract

Given a graph G = ([n], E) and w ∈ RE , consider the integer program maxx∈{±1}n

∑

ij∈E wijxixj and its

canonical semidefinite programming relaxation max
∑

ij∈E wijv
T
i vj , where the maximum is taken over all

unit vectors vi ∈ Rn. The integrality gap of this relaxation is known as the Grothendieck constant κ(G) of
G. We present a closed-form formula for the Grothendieck constant of K5-minor free graphs and derive that
it is at most 3/2. Moreover, we show that κ(G) ≤ κ(Kk) if the cut polytope of G is defined by inequalities
supported by at most k points. Lastly, since the Grothendieck constant of Kn grows as Θ(logn), it is
interesting to identify instances with large gap. However this is not the case for the clique-web inequalities,
a wide class of valid inequalities for the cut polytope, whose integrality ratio is shown to be bounded by 3.
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1. Introduction

Let G = ([n], E) be a (simple loopless) graph and
w = (wij) ∈ RE . Consider the integer quadratic
program over the hypercube

ip(G,w) := max
x∈{±1}n

∑

ij∈E

wijxixj , (1)

and its canonical semidefinite programming relax-
ation

sdp(G,w) := max
u1,...,un∈Rn, ‖ui‖=1

∑

ij∈E

wiju
T
i uj . (2)

Let κ(G) denote the integrality gap of relaxation
(2), defined by

κ(G) = sup
w∈RE

sdp(G,w)

ip(G,w)
. (3)

In other words, κ(G) is the smallest constantK > 0
for which sdp(G,w) ≤ K · ip(G,w), ∀w ∈ RE . Alon
et al. [1] call this graph parameter the Grothendieck
constant of G and prove that

Ω(logω(G)) = κ(G) = O(log ϑ(Ḡ)). (4)
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Here ω(G) denotes the maximum size of a clique
in G and ϑ(Ḡ) the Lovász theta function of the
complementary graph Ḡ, for which it is known that
ω(G) ≤ ϑ(Ḡ) ≤ χ(G) [16]. Hence, for the complete
graph G = Kn, κ(Kn) = Θ(logn).

The name of the constant goes back to
Grothendieck [12], who considered the case of bipar-
tite graphs and showed the existence of a constant
K > 0 for which sdp(Km,n, w) ≤ K · ip(Km,n, w)
for all m,n ∈ N and w ∈ Rmn. The smallest such
constant is known as Grothendieck’s constant and
is denoted by KG. It is a long standing open prob-
lem to compute the exact value of KG. It is known
that KG < π[2 ln(1 +

√
2)]−1 ∼ 1.782 [13, 7], and

that KG ≥ 1.6769... [20]. Recently Briët et al. [8]
show that κ(G) ≤ π

2 arcsinh((ϑ(Ḡ)−1)−1)
, which gives

the above bound 1.782 for bipartite graphs and im-
proves the upper bound in (4) when ϑ(Ḡ) is small.

In recent years, Grothendieck type inequalities
have received a significant amount of attention due
to their various applications, most notably in the
design of approximation algorithms and quantum
information theory (see, e.g., [1, 2, 7, 10, 17, 22]).

The paper is organized as follows. In Section 2 we
collect basic properties of κ(G). In Section 3 we es-
tablish a closed-form formula for the Grothendieck
constant of K5-minor free graphs in terms of their
girth and bound κ(G) in terms of the size of the
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supports of the facets of the cut polytope. In Sec-
tion 4 we show that the integrality gap achieved
by the clique-web inequalities, a wide class of valid
inequalities for the cut-polytope, is bounded by 3.

2. Basic properties

We first introduce some notation. Throughout
[n] = {1, . . . , n}. Let S+

n denote the cone of pos-
itive semidefinite matrices; the notation A � 0
means that A ∈ S+

n . For matrices A,B, 〈A,B〉 =
∑

i,j AijBij stands for the usual trace inner prod-

uct. Let e denote the all ones vector and J = eeT

the all ones matrix, of the appropriate dimension.
Let En := {X ∈ S+

n | Xii = 1 ∀i ∈ [n]} and
CUTn := conv(X ∈ En | rank X = 1}. Moreover,
define E(G) := πE(En), CUT(G) := πE(CUTn),
where πE denotes the projection from Rn×n onto
the subspace RE indexed by the edge set ofG. They
are known, respectively, as the elliptope and the cut
polytope of G and satisfy CUT(G) ⊆ E(G). We
refer, e.g., to [9] and further references therein for
a detailed study of these geometric objects.
For w ∈ RE , let κ(G,w) = sdp(G,w)/ip(G,w).

2.1. A geometric reformulation for κ(G)

Clearly, the Grothendieck constant κ(G) is the
smallest dilation of CUT(G) containing E(G).

Lemma 2.1. For any graph G,

κ(G) = min{K | E(G) ⊆ K · CUT(G)}.

Proof. Directly, since ip(G,w) = max
x∈CUT(G)

wTx

and sdp(G,w) = max
x∈E(G)

wTx. ✷

As the origin lies in the interior of CUT(G), the
polytope CUT(G) has a linear inequality descrip-
tion consisting of finitely many facet-defining in-
equalities of the form wTx ≤ 1. Let us recall the
following switching operation: Given w ∈ RE , its
switching by S ⊆ [n] is the vector w(S) ∈ RE

whose (i, j)-th entry is −wij if the edge ij is cut
by the partition (S, [n] \S) and wij otherwise. It is
well known that the switching operation preserves
valid inequalities and facet defining inequalities of
the cut polytope [5, 9]. Moreover, sdp(G,w) =
sdp(G,w(S)) and ip(G,w) = ip(G,w(S)). This im-
plies the next lemma which gives a useful reformu-
lation for κ(G).

Lemma 2.2. For any graph G,

κ(G) = sup
w∈RE

κ(G,w),

where the supremum ranges over all facet defining
inequalities of CUT(G), distinct up to switching.

2.2. Connections with max-cut

The study of the cut polytope CUT(G) and of
the elliptope E(G) is largely motivated by their
relevance to the maximum cut problem in com-
binatorial optimization. Given G = ([n], E) and
w ∈ RE , the max-cut problem asks for a cut
of maximum weight. Thus we want to compute
mc(G,w) = maxx∈{±1}n

1
2

∑

ij∈E wij(1 − xixj) =

maxx∈{±1}n
1
4x

TLG,wx. Here, LG,w is the Lapla-
cian matrix, with (i, i)-th entry

∑

j wij and with
(i, j)-th entry −wij if ij ∈ E and 0 other-
wise. The canonical semidefinite programming re-
laxation of max-cut (considered e.g. in [11]) is
sdpGW(G,w) = maxX∈En

1
4 〈LG,w, X〉. Hence the

quadratic integer problem (1) and the max-cut
problem are affine transforms of each other, and
the same for their canonical semidefinite relax-
ations; namely, mc(G,w) = 1

2 (w(E) + ip(G,−w))
and sdpGW(G,w) = 1

2 (w(E) + sdp(G,−w)) .
In particular, this implies that, given w ∈ QE ,

deciding whether ip(G,w) = sdp(G,w) is an NP-
complete problem [18].
The following lemma is easy to verify.

Lemma 2.3. Let A ∈ S+
n and B =

(

0 A/2
A/2 0

)

.

Then, max
Z∈E2n

〈B,Z〉 = max
X∈En

〈A,X〉,
and max

z∈{±1}2n
zTBz = max

x∈{±1}n
xTAx.

When w ≥ 0, LG,w � 0 and thus Lemma 2.3 im-
plies that sdpGW(G,w) = max

Z∈E2n

〈B,Z〉, where B is

as in the lemma with A/2 := LG,w/8. By the defini-
tion of the Grothendieck constant KG, this implies
that sdpGW(G,w) ≤ KG ·mc(G,w). However, this
approximation guarantee is not interesting since we
know by [11] that sdpGW(G,w) ≤ 1.138 ·mc(G,w),
while KG ≥ 1.6.
On the other hand, the Grothendieck constant

κ(G) bounds the semidefinite approximation for
max-cut for edge weights satisfying w(E) ≥ 0.

Lemma 2.4. Let G = (V,E) be a graph and w ∈
RE with w(E) ≥ 0 and mc(G,w) > 0. Then,
sdpGW(G,w) ≤ κ(G) ·mc(G,w).
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Proof. Indeed, sdp(G,−w) ≤ κ(G) · ip(G,−w)
and w(E) ≤ κ(G) · w(E) imply

sdpGW(G,w)

mc(G,w)
=

w(E) + sdp(G,−w)

w(E) + ip(G,−w)
≤ κ(G).

✷

2.3. Behaviour under graph operations

It follows immediately from the definition that
the graph parameter κ(·) is monotone nonincreas-
ing with respect to deleting edges. That is,

Lemma 2.5. If H ⊆ G then κ(H) ≤ κ(G).

This is not true for the operation of contracting
an edge. For instance, κ(K2) = 1 < κ(C3) = 3/2,
while κ(C4) < κ(C3) = 3/2 (cf. Theorem 3.3). So
κ(G) and κ(G/e) are not comparable in general.
Given two graphs G1 = (V1, E1) and G2 =

(V2, E2) for which V1∩V2 is a clique in both G1 and
G2, the graph G = (V1 ∪V2, E1 ∪E2) is called their
clique sum, or their clique k-sum when |V1∩V2| = k.

Lemma 2.6. Assume G is the clique k-sum of G1

and G2, k ≤ 3. Then, κ(G) = max(κ(G1), κ(G2)).

Proof. Let λ := max(κ(G1), κ(G2)) and n = |V |.
The inequality κ(G) ≥ λ follows from Lemma 2.5.
For the other direction, let x ∈ E(G) and X ∈ En

such that x = πE(X); we have to show that x ∈
λ ·CUT(G). Let Xi denote the principal submatrix
of X indexed by Vi, for i = 1, 2. As E(Gi) ⊆ κ(Gi) ·
CUT(Gi) ⊆ λ·CUT(Gi), we deduce that πEi

(Xi) ∈
λ ·CUT(Gi). Since the linear inequality description
of CUT(G) is obtained by juxtaposing the linear
inequality descriptions of CUT(G1) and CUT(G2)
and identifying the variables corresponding to edges
contained in V1 ∩ V2 [4], the claim follows. ✷

3. Computing the Grothendieck constant for

some graph classes

We start this section by introducing the main ob-
jects and some fundamental results associated with
them, that form the basic ingredients of our ap-
proach.
A graph H is called a minor of a graph G, de-

noted by H 4 G, if H can be obtained from G,
through a series of edge deletions and edge contrac-
tions.

Given a graph G = ([n], E), consider the metric
polytope MET(G) ⊆ RE defined by the inequalities
−1 ≤ xe ≤ 1 for e ∈ E, and

x(C \ F )− x(F ) ≤ |C| − 2,

for every circuit C in G and F ⊆ C with |F | odd [9].
Additionally, define MET01(G) := f(MET(G)),
where f(x) = e − 2x for x ∈ RE . The cut and
metric polytopes are related as follows.

Theorem 3.1. [5] For any graph G, CUT(G) ⊆
MET(G), with equality if and only if K5 64 G.

Any matrix X ∈ En has its diagonal entries all
equal to 1. Hence all its entries lie in [−1, 1] and
can thus be parametrized as xij = cos(πyij) where
yij ∈ [0, 1]. Let cos(πMET01(G)) =

{(cos(πye))e∈E | y ∈ MET01(G)}.

Theorem 3.2. [14] E(G) ⊆ cos(πMET01(G)),
with equality if and only if K4 64 G.

Thus, equality holds when G = Cn. Moreover,

Lemma 3.1. [6] For p even, we have ceT ∈ E(Cp)
for all c ∈ [−1, 1]. For p odd, we have ceT ∈ E(Cp)
if and only if − cos π

p ≤ c ≤ 1.

3.1. The case of circuits

Using the parametrizations of MET(Cn) and
E(Cn) given by Theorems 3.1 and 3.2, respectively,
we are able to compute κ(Cn). Specifically,

Theorem 3.3. The Grothendieck constant of a
circuit Cn of length n ≥ 3 is equal to

κ(Cn) =
n

n− 2
cos

(π

n

)

.

Proof. By Lemma 2.2 it suffices to compute
κ(Cn, w) for facet defining inequalities of CUT(Cn).
By Theorem 3.1, they correspond to the circuit in-
equalities and, since they are all switching equiv-
alent, it suffices to consider one of them; for in-
stance, we can choose wTx = −x(E) for odd n,
and wTx = xe − x(E \ {e}) for even n. In both
cases, we find that ip(Cn, w) = n− 2. Thus it now
suffices to show that sdp(Cn, w) = n cos(π/n) as
this will give the desired value for κ(Cn, w).
For n odd, it is known that sdpGW(Cn, e) =

n
4

(

2 + 2 cos π
n

)

(see [19]), which implies that
sdp(Cn,−e) = 2 sdpGW(Cn, e) − n = n cos(π/n).

3



This can also be easily verified using the
parametrization of E(Cn) from Theorem 3.2.
One can also compute sdp(Cn, w) for n even and

w = (−1, 1, . . . , 1) using Theorem 3.2; it turns out
that this has also been computed in [22] in the con-
text of quantum information theory. ✷

3.2. The case of K5-minor free graphs

Since K5-minor free graphs are 4-colorable [21],
we deduce from (4) that their Grothendieck con-
stant κ(G) is bounded. Here we give a closed-form
formula for κ(G) in terms of the girth of G.

Theorem 3.4. If G is a graph with no K5 minor
(and G is not a forest), then

κ(G) =
g

g − 2
cos

(

π

g

)

,

where g is the minimum length of a circuit in G.

Proof. Directly from Theorem 3.3 using the facts
that all facets of G are supported by circuits (Theo-
rem 3.1) and that the function n

n−2 cos(
π
n ) is mono-

tone nonincreasing in n. ✷

As a direct application we recover the values
κ(K2,n) = κ(K3,n) =

√
2, for n ≥ 3 [10].

3.3. Graphs whose cut polytope is defined by in-
equalities supported by at most k points

We show here that the Grothendieck constant can
be bounded in terms of the size of the supports of
the inequalities defining facets of the cut polytope.
The support graph of an inequality wTx ≤ 1 is the
graph H = (W,F ), where F = {ij ∈ E | wij 6=
0} and W is the set of nodes covered by F . We
say that wTx ≤ 1 is supported by at most k points
when |W | ≤ k. For instance, a triangle inequality
is supported by three points.
Fix an integer k ≥ 2. Let Rk(Kn) ⊆ REn be

the polyhedron defined by all valid inequalities for
CUTn supported by at most k points. For G =
([n], E), let Rk(G) := πE(Rk(Kn)). For instance,
R3(Kn) = MET(Kn), and thus R3(G) = MET(G).
Clearly, CUT(G) ⊆ Rk(G). Define the class Gk

of all graphs G for which CUT(G) = Rk(G). For
instance, G2 consists of all forests (thus the K3-
minor free graphs) and G3 of the K5-minor free
graphs. Thus both are closed under taking minors;
this holds for any Gk.

Theorem 3.5. The class Gk is closed under taking
minors.

Proof. It follows directly from the definition that
Gk is closed under edge deletion. It remains to ver-
ify that it is closed under edge contraction. Let
G = (V,E) and G′ := G/e = (V ′, E′), where
e = (1, 2) and V

′

= {2, . . . , n}.
Given y ∈ RE′

, define its extension ỹ ∈ RE by
ỹ12 = 1, ỹ1i = y2i if 1i ∈ E with i ≥ 3, ỹ2i = y2i
if 2i ∈ E with i ≥ 3, and ỹij = yij if ij ∈ E with
i, j ≥ 3. One can easily verify that ỹ ∈ CUT(G) iff
y ∈ CUT(G/e).
We now verify that if y ∈ Rk(Kn−1), then ỹ ∈

Rk(Kn). Indeed, say wTx ≤ 1 is a valid inequality
for CUTn supported by at most k points. Define
the inequality on x = (xij)2≤i<j≤n:

bTx :=
n
∑

i=3

(w1i+w2i)x2i+
∑

3≤i<j≤n

wijxij ≤ 1−w12.

Obviously it is supported by at most k points and
it is valid for CUTn−1. Hence b

T y ≤ 1−w12, which
implies wT ỹ ≤ 1.
Assume G ∈ Gk, i.e., CUT(G) = πE(Rk(Kn))

and let z ∈ πE′(Rk(Kn−1)); we show that z ∈
CUT(G/e). Say z = πE′(y) where y ∈ Rk(Kn−1).
By the discussion above, the extension ỹ of y be-
longs to Rk(Kn) and thus πE(y) ∈ πE(Rk(Kn)) =
CUT(G). This in turn implies that z ∈ CUT(G/e)
since πE(y) is the extension of z. ✷

Clearly, for G ∈ G2, κ(G) = κ(K2) = 1. More-
over, Theorem 3.4 implies that κ(G) ≤ κ(K3) =
3/2 for G ∈ G3. This pattern extends to any k.

Theorem 3.6. If G ∈ Gk then κ(G) ≤ κ(Kk).
Moreover, this bound is tight since Kk ∈ Gk.

Proof. It is enough to show that for any graph
G, E(G) ⊆ κ(Kk) · Rk(G). Moreover, it suffices to
consider only G = Kn, as the general result follows
by taking projections.
Let y ∈ E(Kn) and let wTx ≤ 1 be a valid

inequality for CUTn with support H = (W,F )
where |W | ≤ k. Then, wT y = πF (w)

T πF (y) ≤
sdp(H, πF (w)) ≤ κ(H) · ip(H, πF (w)) ≤ κ(Kk),
where we use the facts that κ(H) ≤ κ(Kk) and
ip(H, πF (w)) ≤ 1 for the right most inequality. ✷

One can verify that κ(K7) = 3/2 (see [15]).
Hence, κ(G) ≤ 3/2 for all G ∈ G7.

4. Integrality gap of clique-web inequalities

We have already seen that κ(Kn) = Θ(logn) and
it is an interesting question to identify explicit in-
stances that achieve this integrality gap. This was
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posed as an open question in [1] and instances with
large gap are given in [3]. In this section we show
that the gap is bounded by 3 for clique-web inequal-
ities, a wide class of valid inequalities for CUTn.
Given integers p and r with p ≥ 2r+3, the anti-

web graph AWr
p is the graph with vertex set [p], and

with edges (i, i + 1), . . . , (i, i+ r) for i ∈ [p], where
the indices are taken modulo p. The web graph Wr

p

is defined as the complement of AWr
p in Kp. Call

the set of edges (i, i + s) for i ∈ [p] (indices taken
modulo p) the s-th band, so that AWr

p consists of
the first r bands and Wr

p consists of the last ⌈q/2⌉
bands in Kp.
Let p, q, r, n be integers satisfying p− q = 2r+1,

q ≥ 2, n = p + q. The (pure) clique-web inequality
with parameters n, p, q, r is the inequality

− x(Kq)−
∑

1≤i≤q

q+1≤j≤n

xij − x(Wr
p) ≤ q(r + 1). (5)

The support graph of (5), denoted by CWr
p, consists

of a clique on the first q nodes, a web on the last p
ones, and a complete bipartite graph between them.
It is known that clique-web inequalities define facets
of CUTn. Note that hypermetric and bicycle odd
wheel inequalities arise as special cases of (5), for
r = 0 and r = n−5

2 , respectively (see [9]).
Since the left-hand side of (5) is equal to

−x(Kp+q) + x(AWr
p), one easily obtains that

sdp(CWr
p,−e) ≤ (p+ q)/2 + pr = q(r + 1) + (2r +

1)2/2, which implies that κ(CWr
p,−e) ≤ 1+ (2r+1)2

q(2r+2) .

This directly implies the following:

Lemma 4.1. The integrality gap of a clique-web
inequality with q ≥ 2r + 1 is upper bounded by 2.

We now consider the case when q ≤ 2r.

Theorem 4.1. The integrality gap of a clique-web
inequality with q ≤ 2r is upper bounded by 3.

Proof. We can rewrite sdp(CWr
p,−e) as

max
X∈En

−
∑

ij∈Kq

Xij −
∑

1≤i≤q

q+1≤j≤n

Xij −
∑

ij∈Wr
p

Xij . (6)

Notice that the program (6) is invariant under the
action of the full symmetric group Sq acting on the
row/column indices in [q]. Moreover, (6) is invari-
ant under the action of the group of cyclic permu-
tations in Sp acting on the row/column indices in
{q + 1, .., n}. Thus, we can restrict without loss of

generality the matrix X in (6) to satisfy the follow-
ing invariance conditions:

Xij = a for 1 ≤ i 6= j ≤ q,
Xij = b for 1 ≤ i ≤ q < j ≤ n,
Xij = c|j−i mod p| for q + 1 ≤ i 6= j ≤ n

for some scalars a, b, c1, . . . , c⌈q/2⌉. Hence X has

the form X :=

(

aJq,q + (1− a)Iq bJq,p

bJp,q Xp

)

, where

Xp denotes the principal submatrix of X indexed
by {q+1, . . . , n}. One can easily verify that X � 0

if and only if Y :=

(

β beT

be Xp

)

� 0, after setting

β := (q−1)a+1
q .

Consider first the case when q is even; so p is
odd, all bands in Wr

p have size p, and the objective
function in (6) reads

q

2
(1− qβ)− pqb− p(c1 + . . .+ cq/2). (7)

If β = 0, then b = 0 and Lemma 3.1 implies
that cs ≥ − cos(π/p) for all s. Indeed each band
of Wr

p is a circuit or a disjoint union of circuits

(e.g. the first band of W2
9 is a union of three tri-

angles). As p is odd, at least one of these circuits
is an odd circuit of size p′ ≤ p, so that Lemma 3.1
implies that the entries on the band are at least
− cos(π/p′) ≥ − cos(π/p). Now the objective value
is equal to q

2 − p(c1 + . . . + cq/2) ≤ q
2 (pγ + 1) ≤

q
2 (p + 1) = q

2 (q + 2r + 2) ≤ 2 q(r + 1) (as q ≤ 2r),
setting γ := cos(π/p).
Assume now β > 0. Taking the Schur comple-

ment in the above matrix Y with respect to the
entry β, we can rewrite the condition Y � 0 as

Xp − b2

β J � 0. If β = b2, then cs = 1 for all s

and the maximum of q
2 (1 − qb2) − pqb − pq/2 for

b ∈ [−1, 1] is easily verified to be equal to q(r + 1),
attained at b = −1. Now let β > b2 and X � 0

is equivalent to Z := β
β−b2Xp − b2

β−b2J ∈ Ep. As
above, Lemma 3.1 permits to bound the entries of

Z as follows: β
β−b2 cs − b2

β−b2 ≥ −γ for 1 ≤ s ≤ q/2.

Therefore, the program (6) is upper bounded by

max
b,c,β

q
2 (1− qβ) − pqb− cpq/2

s.t. β(c+ γ) ≥ b2(γ + 1)
b2 < β ≤ 1, −1 ≤ b, c ≤ 1.

(8)

At optimality, equality β(c + γ) = b2(γ + 1) holds.
This permits to express c in terms of b, β and to
rewrite the objective function of (8) as q

2 (1− qβ)−
5



pq
2 (b2 γ+1

β + 2b − γ). For fixed β, the maximum
of this quadratic function in b is attained at b =
− β

γ+1 ∈ [−1, 1] and is equal to q
2 (1−qβ)+ pq

2 ( β
γ+1+

γ) = q
2 (β(

p
γ+1 − q) + pγ + 1). As q ≤ 2r, we have

p
γ+1 ≤ q and thus the latter quantity is maximized

when β = 1, so that the maximum of (8) is equal

to pq
2 (γ + 1

γ+1 ) −
q(q−1)

2 . Hence, using q ≤ 2r and

γ+ 1
γ+1 ≤ 3

2 , we deduce that this maximum is upper

bounded by 3q(r+1). This concludes the proof that
the integrality gap of the clique-web inequality is at
most 3 when q is even.
Consider now the case when q is odd. Then p is

even and Wr
p consists of (q − 1)/2 bands of size p

and one band of size p/2. The treatment is analo-
gous to the case q even, except we must replace the
objective function in (7) by

q

2
(1− qβ)− pqb− p(c1 + . . .+ c q−1

2

)− p

2
c q+1

2

(9)

and, as p is even, the values on the bands can only
be claimed to lie in [−1, 1] by Lemma 3.1 (which
amounts to setting γ = 1 in the above argument).
Specifically, if β = 0 we can upper bound the ob-
jective function (9) by 2q(r + 1) and, if β = b2,
we can upper bound (9) by q(r + 1). Finally, if
β > b2, as above we do a Schur complement and

obtain β
β−b2 cs − b2

β−b2 ≥ −1, so that (9) is upper

bounded by the program (8) setting there γ = 1.
Hence the integrality gap of the clique-web inequal-
ity is also bounded by 3 for q odd. ✷

We conclude with several remarks.
• We just showed: (i) κ(CWp

r ,−e) ≤ 1 + (2r+1)2

q(2r+2) ,

and (ii) κ(CWp
r ,−e) ≤ q+6r+5

4(r+1) when q ≤ 2r. There-

fore, asymptotically, the integrality gap tends to 1
as q → ∞ and r is fixed (by (i)), and it tends to
3/2 as r → ∞ and q is fixed (by (ii)).
• Our analysis is tight for q = 2, the case of bicycle
odd wheel inequalities (since then the program (8)
is equivalent to (6)); that is, sdp(CWr

2r+3,−e) =
−1+p(cos(π/p)+ 1

cos(π/p)+1 ) (as mentioned in [19]).

This explains why in the proof of Theorem 4.1 we
use the precise estimate − cos π

p ≤ c, as opposed to
the trivial bound −1 ≤ c, which was equally good
for the our asymptotic analysis.
• Pitowsky [17] shows the asymptotic lower bound
4/π ∼ 1.27 for the integrality gap of the clique-web
inequality with q = 2r and r → ∞.
• Given b ∈ Zn with

∑

i bi = 1, the hypermetric in-

equality wTx := −
∑

1≤i<j≤n

bibjxij ≤ (
∑

i

b2i − 1)/2

satisfies sdp(Kn, w) ≤ ∑

i b
2
i /2; thus its integral-

ity gap is at most 3/2, with equality if and only if
b = (1, 1,−1, 0, . . . , 0) (the case of triangle inequal-
ities).
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