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Abstract

We study the loss in objective value when an inaccurate objective is optimized instead of the
true one, and show that “on average” this loss is very small, for an arbitrary compact feasible
region.

1 Introduction

This paper is concerned with the loss in objective value incurred when an inaccurate objective, because
of either uncertainty or misspecification, is optimized instead of the true one.

Consider the following model case. Instead of the true objective wTx, the nominal objective vTx is
maximized over the unit ball in IRn, where w and v are unit vectors making an angle α. (Throughout
the paper, we assume 0 < α < π/2.) Then the computed optimal solution is x = v, attaining a
true objective value of cosα. Since the true optimal value is 1, the loss is 1− cosα, but to make the
measure scale-invariant, we divide by the range of the true objective over the feasible region, which is
2 (from −1 to +1). The scaled loss is thus (1 − cosα)/2: see Figure 1. Our main result claims that
this formula for the scaled loss holds “on average” for any compact feasible region. Since this result on
the robustness of the optimal value to misspecification of the objective holds for any feasible region,
we call it a robust robust optimization result.

Robust optimization has been much studied over the last fifteen years: see, e.g., [2, 3, 4, 5, 6].
Usually there is uncertainty in the constraints as well as the objective, and the goal is to find a decision
vector that is feasible regardless of the realization of the constraints and that achieves a guaranteed
performance regardless of the realization of the objective. Typically this leads to an optimization
problem that is harder than the deterministic version of the problem. Our concerns are appropriate
when the decision maker is oblivious to the error in the objective and does not protect against a
possible misspecification.

In Section 2 we define our setting and give a worst-case bound on the scaled loss for a class of
feasible regions. Section 3 describes two probability distributions for the true and nominal objectives
and obtains our probabilistic result; we also explain why “on average” is in quotes above. Finally, in
Section 4 we discuss the result and outline two applications.

∗Supported in part by NSF through grant DMS-0513337 and ONR through grant N00014-08-1-0036.
†School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA

1

http://arxiv.org/abs/1104.5656v1


loss

range

v

w

α

Figure 1: Scaled loss: model case. The loss is the red segment; the range the sum of the red and green
segments.

2 Definitions and Worst-Case Results

Let C ⊂ IRn be compact and nonempty. Since we are interested in maximizing linear functions over C,
we could assume without loss of generality that C is convex, by replacing it if necessary by its convex
hull. However, in Section 4 we treat optimization over a nonlinear transformation of a compact set
and over a set of binary vectors, and so we prefer not to restrict C further.

Definition 1. For v ∈ IRn, we define

max(v) := max{vTx : x ∈ C},
min(v) := min{vTx : x ∈ C}, and

range(v) := max(v)−min(v).

Now consider two objectives, the true objective wTx and the nominal objective vTx. If we maximize
vTx over C, the optimal solution set is {x ∈ C : vTx = max(v)}, and if this is not a singleton, we
might be unlucky and choose the worst x as far as the true objective is concerned. Hence we make

Definition 2. For v,w ∈ IRn, define

loss(v,w) := max(w)−min{wTx : x ∈ C, vT x = max(v)} and

scaled loss(v,w) :=
loss(v,w)

range(w)
.

Note that the scaled loss is invariant to translations or dilations of C, and even to rotations if v
and w are correspondingly rotated.

As we have seen, if C = Bn := {x ∈ IRn : ‖x‖ ≤ 1} (all norms are Euclidean), v = (0; 1; 0; . . . ; 0),
and w = (sinα; cosα; 0; . . . ; 0), then loss(v,w) = 1 − cosα and scaled loss(v,w) = (1 − cosα)/2. On
the other hand, if C is the convex hull of (−1; 0; . . . ; 0) and (+1; 0; . . . ; 0) and v and w are as above,
then loss(v,w) = range(w) = 2 sinα and the scaled loss is 1, as bad as it can be.
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Note that in this example, the optimal solution set for vTx is all of C, and in accordance with the
definition above, we choose the worst of these optimal solutions with respect to the true objective,
namely (−1; 0; . . . ; 0), in evaluating the loss.

Also, for n = 2, we will usually view the nominal objective v as pointing vertically up as in this
example. Observe that there is a subtle bias in this viewpoint. While the decision maker only sees
v, and therefore thinks of v as fixed and w (if she thinks of it at all) as a perturbation of v, a more
appropriate perspective would regard the true objective w as being generated in some suitable way,
and then v arising as a perturbation of w.

In the rest of this section, we obtain a worst-case bound on the scaled loss when C is restricted to
avoid the situation above.

Theorem 1. Assume that C is contained in Bn and contains rBn for some 0 < r < 1. Let v and

w be two nonzero vectors making an angle α, where sinα ≤ r ≤ cosα. Then, with ρ :=
√
1− r2, we

have

scaled loss(v,w) ≤ 2ρ sinα

r(1 + cosα) + ρ sinα
,

and this bound is tight.

Proof. First we show that the right-hand side above can be attained. Let n = 2 and choose C to be
the convex hull of (−ρ; r), (ρ; r), and rB2. Let v = (0; 1) and w = (sinα; cosα). Then the set of
optimal solutions for vTx is the convex hull of (−ρ; r) and (ρ; r), with the former being worst for wTx.
With our assumption that r ≤ cosα, the optimal solution for wTx is (ρ; r), while r ≥ sinα implies
that wTx is minimized at −rw. Hence the loss is 2ρ sinα and the range r(1 + cosα) + ρ sinα, giving
the scaled loss as indicated. See Figure 2.

Now we need to prove the bound. Given any C, v, and w, we can project C into the plane
spanned by v and w, and the projected C will lie in B2 and contain rB2. Hence we can assume that
n = 2. By rotating if necessary, we can assume that v and w are as above (note that the scale of
these vectors is immaterial). Let s := max{vTx : x ∈ C} ≥ r ≥ sinα, and let σ :=

√
1− s2. Then

min{wTx : x ∈ C, vT x = max(v)} ≥ −σ sinα+ s cosα ≥ 0 and min(w) ≤ −r, and so

scaled loss(v,w) ≤ max(w) + σ sinα− s cosα

max(w) + r
;

note that the right-hand side is monotonically increasing in max(w), so substituting an upper bound
for the latter provides a valid upper bound on the scaled loss.

If s ≤ cosα, then max(w) ≤ σ sinα+ s cosα, and we deduce

scaled loss(v,w) ≤ 2σ sinα

σ sinα+ s cosα+ r
≤ 2ρ sinα

ρ sinα+ r cosα+ r
,

as desired.
On the other hand, if s > cosα so that σ < sinα, then max(w) ≤ 1 and so

scaled loss(v,w) ≤ 1 + σ sinα− s cosα

1 + r
≤ 1 + sin2 α− cos2 α

1 + r
=

2 sin2 α

1 + r
≤ 2ρ sinα

r cosα+ ρ sinα+ r
,

since sinα ≤ ρ and 1 ≥ r cosα+ ρ sinα. Hence the bound is established in either case.
⊓⊔

Since ρ < cosα, the right-hand side above is at most sinα/r, and it approaches this value for small
r and very small α. This bound is of order α/r, and hence much larger than (1 − cosα)/2 ≈ α2/4,
the value in the model case.
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v w

Figure 2: Scaled loss: worst case. The feasible region is the convex hull of the horizontal line segment
and the smaller circle. Again, the loss is the red segment; the range the sum of the red and green
segments.

3 Probabilistic Analysis

Now we examine how the scaled loss behaves when v and w are generated randomly. We examine two
different probability distributions. We call v ∈ IRn a standard Gaussian vector if its components are
independent standard Gaussian random variables, or equivalently if v ∼ N(0, I).

Definition 3. We say (w, v) is generated according to Probability Distribution 1 if w and u are

independent standard Gaussian vectors in IRn, and v := w cosα+u sinα. Expectations with respect to

this distribution are indicated by E1.

We say a random variable ξ depending on n concentrates around a positive constant β if, for every
positive δ, the probability that ξ lies between (1− δ)β and (1 + δ)β converges to 1 as n → ∞.

Proposition 1. The angle between v and w generated according to Probability Distribution 1 concen-

trates around α as n → ∞.

Proof. Because w and u are standard Gaussian random vectors, so is v, and both wTw and vT v are
chi-squared random variables with n degrees of freedom, both concentrated around their means, n.
Also, vTw = cosαwTw+sinαuTw, and since wTw is concentrated around n and uTw has mean zero
and variance O(n), this is concentrated around cosαn. Hence, using a union bound, we find that with
probability approaching 1, vTw/(vT v wTw)1/2 lies between (1−ǫ) cos α/(1+ǫ) and (1+ǫ) cosα/(1−ǫ)
for any positive ǫ. This implies the result. ⊓⊔

We now define our second model:

Definition 4. We say (w, v) is generated by Probability Distribution 2 if w̄ and ū are independent

standard Gaussian vectors in IRn, û = (I − w̄w̄T /w̄T w̄)ū, w = w̄/‖w̄‖, u = û/‖û‖, and v = w cosα+
u sinα. Expectations with respect to this distribution are indicated by E2.
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Note that all the vectors are well-defined with probability one, with w and u orthogonal vectors
having unit norm, so that w and v are unit vectors making an angle α with probability one.

In both distributions, w is generated according to some distribution, and v is generated as a
perturbation of w. This fits with our interpretation of w as the true objective and v as a nearby
inaccurate objective. However, as we now show, we can alternatively regard v as being generated first
and then w as a perturbation of v. This is very useful in our analysis.

Proposition 2. In both Probability Distribution 1 and Probability Distribution 2, (v,w) ∼ (w, v).

Proof. Consider first Probability Distribution 1. Since the matrix
[

cosα sinα
sinα − cosα

]

is orthogonal, (v, z) := (w cosα+u sinα,w sinα−u cosα) ∼ (w, u). Then, since (v,w) is derived from
the first pair exactly as (w, v) is derived from the second, we see that (v,w) ∼ (w, v).

Next assume (w, v) is generated according to Probability Distribution 2. Then w lies on the unit
(n− 1)-dimensional sphere Sn−1 := {x ∈ IRn : ‖x‖ = 1}, and v = w cosα+ u sinα, where u lies on the
unit (n− 2)-dimensional sphere Sn−2

w := {x ∈ IRn : wTx = 0, ‖x‖ = 1}.
Let Q be any orthogonal matrix. Since (Qw̄,Qū) ∼ (w̄, ū), and Qw̄/‖Qw̄‖ = Qw, we see that

the distribution of Qw coincides with that of w, so that w is uniformly distributed on Sn−1. Also,
(I −Qw̄w̄TQT /(Qw̄)T (Qw̄))Qū = Q(I − w̄w̄T /w̄T w̄)ū = Qû, so that (Qw̄,Qū) gives rise to Qw and
Qu and hence Qv = (Qw) cosα+ (Qu) sinα). It follows that v is also distributed uniformly on Sn−1.

Moreover, even if Q is taken to be an orthogonal matrix that fixes w, so that Q depends on w, we
still have Qw̄ = w̄ a standard Gaussian vector in IRn and Qū a standard Gaussian vector independent
of w. Hence, proceeding as above, we see that (w = Qw̄,Qū) gives rise to Qû and hence Qu, so since
(w̄,Qū) ∼ (w̄, ū), we find Qu ∼ u, from which, conditioned on w, u is uniformly distributed on Sn−2

w .
Finally, we show that (v, z) := (w cosα + u sinα,w sinα − u cosα) ∼ (w, u). Since w = v cosα +

z sinα, this will show that (v,w) ∼ (w, v) as desired. We have already shown that v, the first member
of the pair, is distributed uniformly on Sn−1. We now consider all pairs (w̄, ū) that give rise to a given
v. If Q is an orthogonal matrix that fixes v, then (Qw̄,Qū) also gives rise to the same v. Since Q is
orthogonal, the distribution of (w̄, ū), conditional on this fixed v, is invariant under pre-multiplication
of each vector by such a Q. As we have seen, under this transformation w is transformed to Qw and
u to Qu, and hence z := w sinα−u cosα is transformed to Qz. It follows that z, which has unit norm
and is orthogonal to v, is uniformly distributed on Sn−2

v . This concludes the proof. ⊓⊔

We are now ready to analyze the behavior of the scaled loss “on average” for our two models. First
we investigate the range function:

Lemma 1. For i = 1, 2, we have

Eimax(v) = Eimax(w), Ei range(w) = 2Ei max(w).

Proof. The first equation follows from Proposition 2 above, since v and w have the same distribution.
For the second equation, note that

Ei range(w) = Eimax(w)− Eimin(w) = Ei max(w) + Ei max(−w),

and that Ei max(−w) = Ei max(w) since under both probabilistic models, w has a symmetric distri-
bution. ⊓⊔
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Next we examine the loss:

Lemma 2. For i = 1, 2, we have

Ei loss(v,w) = (1− cosα)Ei max(w).

Proof. First note that, since C is compact, the convex function max(v) is finite everywhere, and
hence is differentiable almost everywhere, with respect to Lebesgue measure and hence with respect
to Probability Distribution 1. But max(v) is differentiable at v exactly when the maximum of vTx
over C is attained at a single x, which we denote by xv. Since this property is invariant under positive
scalings of v, we see that it holds also for almost all v under Probability Distribution 2 also.

Hence with probability one,

loss(v,w) = max(w) − wTxv = max(w) − (v cosα+ z sinα)Txv,

where, as in the proof of Proposition 2, we let z := w sinα − u cosα. Now in either model, z has a
symmetric distribution conditional on v, and since with probability one xv depends only on v, zTxv
has mean zero. Hence

Ei loss(v,w) = Ei max(w)− cosαEimax(v)− 0,

and the result follows from Lemma 1. ⊓⊔

From Lemmas 1 and 2, we immediately deduce

Theorem 2. For i = 1, 2, we have

Ei loss(v,w)

Ei range(w)
=

1− cosα

2
.

⊓⊔
Note that we do not have a result on the expected scaled loss, which would be an expectation of

the ratio of the loss to the range, but only on the ratio of the expectations, which is why we have put
“on average” in quotes above.

4 Discussion and applications

It seems at first that the theorem of the last section would hold under much weaker probabilistic
assumptions, merely requiring that w and u have symmetric distributions. Unfortunately, there are
two problems with this. First, what we really need is that v and z have symmetric distributions,
but putting restrictions on v and z conflicts with the natural interpretation that the true objective w
should be generated first, and then v as a perturbation of w. Second, it is crucial that max(v) and
max(w) have the same expectation, and this appears hard to ensure under weaker assumptions: the
fact that (v,w) and (w, v) have the same distribution under our two models is key in our development.

One way in which the result can be generalized is in allowing a random choice of α. Our two
models yield vectors v and w making an angle that either concentrates around α or is exactly α.
Instead, we can consider probability distributions on the triple (α,w, v) as follows: first α is generated
according to an arbitrary distribution supported on (0, π/2); then, conditional on α, w and v are
generated according to Probability Distribution 1 or 2. It is easy to see that all our arguments can

6



be extended by first conditioning on α, and the expected loss divided by the expected range will be
(1− E(cosα))/2, where the expectation is taken with respect to the distribution on α.

Another generalization allows very general distributions, but changes the way the objective vector
is perturbed. Let fj be a symmetric probability density on IR for j = 1, . . . , n. For each j, draw wj

and uj independently from fj, and then let vj be wj with probability cosα and uj with probability
1 − cosα, with all the choices independent. Let t ∈ IRn be defined by tj = +1 if vj = wj , tj = −1
if vj = uj , so each tj is +1 with probability cosα and −1 with probability 1 − cosα. Then it is
clear how (w, v) arises as a function of the triple (w, u, t). But if we define z := w + u − v, then in
each component, z agrees with w (u) exactly when v agrees with u (w). It follows that (v, z, t) has
the same distribution as (w, u, t), and (v,w) arises from (v, z, t) as does (w, v) from (w, u, t). Hence
(v,w) and (w, v) have the same distribution. Moreover, the arguments of the previous section can be
duplicated, and again lead to the result that the expected loss divided by the expected range is exactly
(1 − cosα)/2. Under mild conditions on the fj’s, the angle between v and w concentrates around α.
Note that, in this model, a small fraction of the components are changed a possibly large amount,
while in the previous models, each component is changed a small amount.

We argued in the introduction that the scaled loss provided a good measure of how much is lost
in objective value when implementing the optimal solution for a misspecified objective. However, the
result of the previous section is concerned with the ratio of the expectations of the loss and the range,
rather than the more meaningful expectation of the ratio. We therefore conducted some experiments
with two NETLIB [9] problems, AGG and BOEING1, to see how much the results differ. The first
has 489 rows and 163 columns, the second 351 rows and 384 columns. Figures 3 and 4, which give
graphs of the expectation of the ratio and of the ratio of the expectations as functions of the angle
α in degrees, show that our results should be applicable to the more meaningful measure also. In
both figures, each data point is obtained using at least 10,000 pairs (v,w) generated from Probability
Distribution 1.
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Figure 3: Ratio of expectations versus expectation
of ratios for AGG.
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Figure 4: Ratio of expectations versus expectation
of ratios for BOEING1.

Our result is limited to clarifying what happens when linear objective functions are perturbed.
In general, little can be said for nonlinear functions, partially because it is not clear how random
nonlinear objective functions and their perturbations should be defined. However, our analysis can
be applied to one case where objective functions are nonlinear. Suppose there are several continuous
objective functions, fi(x) for i = 1, . . . , k. The decision maker is interested in high values of all of
these objectives, so we are in the realm of multi-criteria optimization; see, for instance, [7, 8]. Often,
a linear combination

∑

i wifi(x) of the objectives is maximized, and indeed, any such optimal solution
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for a positive w is an efficient or Pareto-optimal solution. (The converse is true when all fi’s are
concave, and in this case the optimization problem is convex, but this restriction is not needed for our
discussion.) However, since the different function fi may be hard to compare, it is difficult to decide
on appropriate weights w. Our theorem indicates in some sense that the choice may not matter too
much.

Let Y := {y = (f1(x); . . . , fk(x)) : x ∈ X}. SinceX is nonempty and compact, so is Y , and trivially
max{∑iwifi(x) : x ∈ X} = max{wT y : y ∈ Y }. Theorem 2 shows that the latter is insensitive in some
precise sense to the specification of the objective w, and this translates directly into the insensitivity
of the original problem’s optimal value to the specification of the weights. Of course, there is a large
caveat here: the result requires v and w to be randomly chosen from symmetric distributions, and
hence their components are as likely to be negative as positive, while in the multi-criteria setting, the
weights are always positive. Nevertheless, we believe our theorem gives some credence to the hope
that incorrect choices of weights should not hurt much.

Our second application is to the complexity of combinatorial optimization problems. Beier and
Vöcking [1] and Röglin and Teng [10] have uncovered a fascinating connection between binary opti-
mization problems that can be solved in randomized pseudo-polynomial time, that is, in randomized
polynomial time if the data are encoded in unary, and smoothed complexity. In particular, Röglin and
Teng show that such a problem can be solved in expected time polynomial in the input size and 1/σ,
where the adversarily chosen objective function coefficients are perturbed by independent Gaussians
with mean zero and variance σ2 (there are slight technical subleties; see Sections 2 and 6 of [10]).
This is normally interpreted as saying that arbitrarily close to any potentially hard instance there
are polynomially solvable instances. This gives support to the belief that one would be unlucky to
choose a bad instance, in a rather precise and strong sense. Our result provides another avenue to
solving such problems. One can explicitly make a small random perturbation of the objective function
coefficients, thereby obtaining a problem with provably expected polynomial-time complexity. (Note
that w + z, where z has independent zero-mean Gaussian components with standard deviation σ, is
proportional to w cosα+u sinα, where u is a Gaussian random vector and α := arctan σ.) Solving this
perturbed problem gives a feasible solution to the original problem, and Theorem 2 gives credence
to the hope that this solution will be close to optimal for the true objective function. (For some
models of generating w, renormalizing might give a distribution on α, rather than a fixed value, but
the extension mentioned at the beginning of this section allows for this possibility.) Of course, our
result only proves this “on average,” so one would be unlucky to have an objective function where the
loss is large, in a certain sense. We believe this viewpoint provides further insight into the notion of
smoothed complexity, at least when only the objective function is perturbed.
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