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a b s t r a c t

We present randomized approximation algorithms for multi-criteria traveling salesman problems (TSP),
where some objective functions should be minimized while others should be maximized. For the
symmetric multi-criteria TSP (STSP), we present an algorithm that computes (2/3, 3 + ε)-approximate
Pareto curves. Here, the first parameter is the approximation ratio for the objectives that should be
maximized, and the second parameter is the ratio for the objectives that should be minimized. For the
asymmetric multi-criteria TSP (ATSP), we obtain an approximation performance of (1/2, log2 n+ ε).

© 2011 Elsevier B.V. All rights reserved.
1. Multi-criteria TSP

The traveling salesman problem (TSP) is a basic optimization
problem. The goal is to find Hamiltonian cycles of maximum or
minimum weight. An instance of Max-TSP is a complete graph
G = (V , E) with edge weights w : E → Q+. The goal is to find a
Hamiltonian cycle (also called a tour) of maximum weight, where
the weight of a Hamiltonian cycle is the sum of its edge weights.
(The weight of an arbitrary set of edges is analogously defined.)
If G is undirected, then we speak of Max-STSP (symmetric TSP).
If G is directed, we have Max-ATSP (asymmetric TSP). Min-TSP is
similarly defined, but now the edge weights d : E → Q+ are
required to fulfill the triangle inequality: d(u, v) ≤ d(u, x)+d(x, v)
for all u, v, x ∈ V . (Without the triangle inequality, Min-TSP does
not allow for any approximation [2], and we are concerned with
approximation algorithms.) The aim is to find a Hamiltonian cycle
of minimum weight. Min-STSP is the symmetric variant, where G
is undirected, whileMin-ATSP is the asymmetric variant.

However, we often have more than one objective function: we
might want to minimize travel time, travel expenses, etc., while
maximizing, e.g., our profit along the way. This gives rise to multi-
criteria TSP. So far, multi-criteria TSP has only been considered in
the setting where either all objectives should be minimized or all
objectives should be maximized. In this paper, we consider the
general setting with both types of objectives simultaneously.

If k objectives are to be maximized and ℓ objectives are to be
minimized, then we have k-Max-ℓ-Min-ATSP and k-Max-ℓ-Min-
STSP. For ℓ = 0 or k = 0, we have k-Max-ATSP and k-Max-STSP
as well as ℓ-Min-ATSP and ℓ-Min-STSP, respectively.

Unfortunately, if we have more than one objective function,
there is no natural notion of an optimal solution. Instead, we have
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to content ourselveswith trade-off solutions. Therefore, the notion
of Pareto curves has been introduced (cf. [5]): a Pareto curve is a
set of solutions that are optimal trade-offs between the different
objective functions.

Let us describe thismore formally. An instance of k-Max-ℓ-Min-
ATSP (or k-Max-ℓ-Min-STSP) is a directed (undirected) complete
graph G = (V , E) with edge weights w1, . . . , wk : E → Q+
and d1, . . . , dℓ : E → Q+, where each di satisfies the triangle
inequality. The functions w1, . . . , wk should be maximized while
d1, . . . , dℓ should be minimized. We call w1, . . . , wk the max
objectives and d1, . . . , dℓ the min objectives. For convenience, let
w = (w1, . . . , wk) and d = (d1, . . . , dℓ). Inequalities of vectors are
meant component-wise. A Hamiltonian cycle H dominates another
Hamiltonian cycle H ′ if w(H) ≥ w(H ′) and d(H) ≤ d(H ′) and at
least one of these inequalities is strict. This means that H is strictly
preferable to H ′. A Pareto curve contains all solutions that are not
dominated by another solution. For other optimization problems,
this is defined analogously. Unfortunately, since Pareto curves for
the TSP cannot be computed efficiently (because, first, they can
be of exponential size and, second, we inherit the approximation
hardness of the TSP with a single objective function), we have to
be satisfied with approximate Pareto curves.

A set P of Hamiltonian cycles is called an (αmax, αmin)-
approximate Pareto curve for the instance (G, w, d) if the following
holds: for every Hamiltonian cycle H̃ of G, there exists a Hamil-
tonian cycle H ∈ P of G with w(H) ≥ αmaxw(H̃) and d(H) ≤

αmind(H̃). We have αmax ≤ 1, αmin ≥ 1, and a (1, 1)-approximate
Pareto curve is a Pareto curve.

An algorithm is called an (αmax, αmin)-approximation algorithm
if, given G, w, and d, it computes an (αmax, αmin)-approximate
Pareto curve. It is called a randomized (αmax, αmin)-approximation
if its success probability is at least 1/2. This success probability can
be amplified by executing the algorithm several times.
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Table 1
Known approximation ratios for TSP and the results of this paper.

Variant Single-criterion Multi-criteria Combined

Max-STSP 7/9 [13] 2/3 [7]
(2/3, 3+ ε)Min-STSP 3/2 [2] 2+ ε [12]

Max-ATSP 2/3 [8] 1/2 [7]
(1/2, log2 n+ε)

Min-ATSP O


log n
log log n


[1] log2 n+ ε [10]

A fully polynomial time approximation scheme (FPTAS) for a
multi-criteria optimization problem computes (1 − ε, 1 + ε)-
approximate Pareto curves in time polynomial in the size of the
instance and 1/ε for all ε > 0. Multi-criteria matching (computing
a perfect of minimum or maximum weight or computing a
maximum-weight matching that is not necessarily perfect) admits
a randomized FPTAS [14], i. e., the algorithm succeeds in computing
a (1− ε, 1+ ε)-approximate Pareto curve with a probability of at
least 1/2. A cycle cover of a graph is a set of vertex-disjoint cycles
such that every vertex is part of exactly one cycle. The randomized
FPTAS for matching yields also a randomized FPTAS for the multi-
criteria cycle cover problem [12]. A path cover of a graph is a set of
vertex-disjoint paths such that every vertex is part of exactly one
path.
Known results. ℓ-Min-STSP admits a (2 + ε)-approximation
algorithm [12]. For the special case of ℓ = 2, there even is a 2
approximation [6]. ℓ-Min-ATSP can be approximated with a factor
of log2 n + ε [9]. k-Max-ATSP and k-Max-STSP have first been
studied by Bläser et al. [4], who have achieved approximation
ratios of 1

k+1−ε and 1
k−ε, respectively. This has subsequently been

improved to 1/2 and 2/3, respectively [7]. Table 1 summarizes
the known results and compares them to the approximation ratios
obtained for single-criterion TSP.

As far as we are aware, nothing is known yet about the
approximability of multi-criteria TSP with both min and max
objectives. In fact, with only a few exceptions [3,14], little is known
about the approximability of any multi-criteria optimization
problem with both min and max objectives.
New results. We present a generic algorithm for computing
approximate Pareto curves for k-Max-ℓ-Min-ATSP and k-Max-
ℓ-Min-STSP. Our algorithm achieves approximation ratios of
(1/2, log2 n+ ε) and (2/3, 3+ ε), respectively. (See also Table 1.)
The running-time of our algorithms is polynomial for any fixed
ℓ, k, and ε. Note that an exponential dependence on k and ℓ is
unavoidable, as the size of even approximate Pareto curves can
increase exponentially with the number of objective functions.

The main idea of our algorithms is to first find a collection of
paths that have sufficient weight for the max objectives. This is
basically done using a (slightlymodified) approximation algorithm
for multi-criteria Max-TSP, while we have to take into account
that these paths are not too heavy with respect to d. After
that, we connect these paths to get Hamiltonian cycles using an
approximation algorithm formulti-criteriaMin-TSP. In this second
step, we only pay attention to the min objectives; we already have
enough weight for the max objectives, and adding further edges
does not decrease the weight. (A preliminary version of this paper
has been presented at the 7th Int. Workshop on Approximation
andOnlineAlgorithms [11]. The present paper improves the results
presented there and simplifies the proofs.)

2. Approximation algorithm for min and max

Nowwe present and analyze our framework for approximation
algorithms for multi-criteria TSP that will yield the results
mentioned above. The framework will be for both STSP and ATSP.

For our framework to work, we need the concept of a canonical
algorithm. An algorithm is called an (α, ε)-canonical algorithm if
PTSP ← TSP-Approx(G, w, d, ε)
input: (un)directed complete graph G = (V , E), w : E → Qk

+
,

d : E → Qℓ
+
, ε > 0

output: (α, rn/2 + 1 + ε)-approximate Pareto curve with
probability at least 1/2

1: Ppaths ← GRW-Approx(G, w, d, ε/2)
2: for all P ∈ Ppaths do
3: let V ′ be the start-points of paths of P
4: PTSP

′
← MinTSP-Approx(V ′, d, ε/2)

5: for all H ′ ∈ PTSP
′ do

6: construct a tour H from P ∪ H ′ as in the proof of
Theorem 1

7: add H to PTSP

Algorithm1:Approximation algorithm for k-Max-ℓ-Min-ATSP and
k-Max-ℓ-Min-STSP.

it has the following property: on input (G = (V , E), d, w), it
computes a set of path covers such that for each Hamiltonian cycle
H̃ of G it outputs a path cover P of Gwith the following properties.
First, by adding an edge from the end-point of each path in P to its
corresponding start-point, one obtains a cycle cover C ⊇ P such
that d(C) ≤ (1 + ε) · d(H̃). Second, w(P) ≥ αw(H̃). Third, (V , P)
consist of at most n/2 paths.

Let us now describe how the algorithm of Glaßer et al. [7] for
k-Max-STSP and k-Max-ATSP can be turned into an (2/3, ε) and
(1/2, ε)-canonical algorithm, respectively, for any ε > 0 for the
symmetric and asymmetric variant. First, instead of computing
1− 1

n


-approximate Pareto curves of cycle covers with respect

to w (Glaßer et al. compute edge-fixed cycle covers, but this does
not make a difference: we can fix some edges by removing them
and the corresponding vertices from the graph), we compute
1− 1

n , 1+ ε

-approximate Pareto curves of cycle covers with

respect to both w and d (using Papadimitriou and Yannakakis’
randomized FPTAS [14]). We proceed with the original algorithm,
ignoring d. From every such cycle cover C , the algorithm constructs
a path cover P by removing exactly one edge from each cycle. If
C is a cycle cover with w(C) ≥


1− 1

n


· w(H̃) for some tour H̃

and C contains the right collection of fixed edges, then w(P) ≥
2
3 · w(H̃) (in the symmetric case) or w(P) ≥ 1

2 · w(H̃) (in the
asymmetric case). (In order to find such a cycle cover C , we have
to fix the heavy edges of the cycle cover in advance. Since there
are always only a few heavy edges, their algorithm iterates over
all possibilities while maintaining polynomial running-time. Thus,
we are guaranteed to find the right collection.) Furthermore, as
we compute


1− 1

n , 1+ ε

-approximate Pareto curves of cycle

covers, we can achieve d(C) ≤ (1 + ε) · d(H̃). The graph (V , P)
consists of at most n/2 paths. Finally, we remove the last line of
the algorithm [7], where the paths are connected to a Hamiltonian
cycle in an arbitrary way and simply output the path cover. We
denote the canonical algorithm obtained from the algorithm by
Glaßer et al. by GRW-Approx.

Theorem 1. Assume that there is an (α, ε)-canonical randomized
polynomial-time algorithm for k-Max-ℓ-Min-ATSP or k-Max-ℓ-Min-
STSP for any ε > 0. Assume further that ℓ-Min-ATSP or ℓ-Min-
STSP can be approximated with an approximation ratio of rn (for n
vertices) by a randomized polynomial-time algorithm.

Then TSP-Approx (Algorithm 1) is a randomized polynomial-time
(α, rn/2+1+ ε)-approximation algorithm for k-Max-ℓ-Min-ATSP or
k-Max-ℓ-Min-STSP.

Proof. Let us analyze the approximation ratio first. To do this,
we assume that all randomized computations are successful. After
that, we analyze success probability and running-time. Let H̃ be an
arbitrary Hamiltonian cycle. Let GRW-Approx be (α, ε)-canonical.
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We have to show that there exists a Hamiltonian cycle H ∈ PTSP

with w(H) ≥ α · w(H̃) and d(H) ≤ (rn/2 + 1+ ε) · d(H̃).
The set Ppaths contains a path cover P ⊆ E with d(P) ≤ (1+ ε) ·

d(H̃) and w(P) ≥ αw(H̃). Even stronger, by assumption, there is a
cycle cover C ⊇ P with d(C) ≤ (1+ ε) · d(H̃).

By construction, all paths of the path cover P consist of at least
one edge, i.e., (V , P) does not contain isolated vertices. Thus, we
have |V ′| ≤ |V |/2. This implies that PTSP

′ (in the corresponding
iteration) contains a tour H ′ with d(H ′) ≤ rn/2d(H̃). We obtain
the Hamiltonian cycle H from P and H ′ as follows: assume that
P contains a path from u to v and H ′ contains an edge from u to
x. Then we add the path from u to v plus the edge (v, x) to H .
We do this for all paths of P . The triangle inequality guarantees
d(v, x) ≤ d(v, u)+ d(u, x). Note that the edge (v, u) is part of the
corresponding cycle (that contains u and v) that is missing in P but
is contained in C . This together yields

d(H) ≤ d(H ′)+ d(C) ≤ (rn/2 + 1+ ε) · d(H̃).

Furthermore, by construction, we have H ⊇ P . Thus, we have
w(H) ≥ w(P) ≥ αw(H̃).

The error probabilities of the randomized computations in
lines 1 and 4 can be chosen small enough such that they sum
up to at most 1/2. This yields that the probability that one of
the computations fails is at most 1/2. The running-time follows
because the running-times of MinATSP-Approx and GRW-Approx
are polynomial if k and ℓ are fixed. �

Immediate consequences of the theorem above are the follow-
ing two corollaries.

Corollary 2. For every fixed k, ℓ ∈ N and every ε > 0, there is a
(2/3, 3 + ε)-approximation algorithm for k-Max-ℓ-Min-STSP. Its
running-time is polynomial in the input size and 1/ε.

Proof. By using rn = 2+ε andα = 2/3, we obtain a (2/3, 3+2ε)-
approximation from Theorem 1 for every ε > 0, which proves the
assertion. �

Corollary 3. For every fixed k, ℓ ∈ N and every ε > 0, there is a
(1/2, log2 n + ε)-approximation algorithm for k-Max-ℓ-Min-ATSP.
Its running-time is polynomial in the input size and 1/ε.
Proof. We use rn = log2 n + ε and α = 1/2. Then we obtain an
approximation ratio of (1/2, log2(n/2)+ε+1+ε) = (1/2, log2 n+
2ε) for every ε > 0. �
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