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Abstract

We study a dynamic pricing problem for a company that sells a single product to a group
of customers over a finite time horizon. These customers are price sensitive and the price of
today influences the group of customers of tomorrow. The objective is to set the prices over
time so as to maximize revenue. We study two customer models: a multiplicative and an
additive model.

Our main contribution is considering the case when the demand is deterministic. We give
a polynomial time algorithm for the multiplicative model, and prove that the additive model
is (weakly) NP-hard and allows a fully polynomial approximation scheme. Further, when
the choice of prices is limited we prove that the optimal solution has a specific structure.
Complementing the results for the deterministic setting, we finally provide two algorithms
when the demand is stochastic.

1 Introduction

Dynamic pricing is an increasingly active field of research. An extensive overview of achievements
in the field can be found in [4, 6, 22]. We consider a dynamic pricing problem for a company that
sells a single product to a group of customers over a finite time horizon. These customers are price
sensitive and the price of today influences the group of customers of tomorrow. The objective is
to set the prices over time so as to maximize revenue. A deterministic, as well as a stochastic
demand setting will be studied. We develop algorithms that run in polynomial time for several
natural variants of the problem. Further, we show that one specific variant is NP-hard, present a
pseudo-polynomial time algorithm, and transform this into a fully polynomial time approximation
scheme.

Problem definition. We study the following dynamic pricing problem. For a finite time horizon
of T periods, a company needs to determine prices for a single product available in unlimited
supply. Periods are indexed consecutively from 0, ..., T − 1. At each time period t, there are Ct
customers for the product and each of these customers buys a unit of the product only if the price,
denoted by πt, does not exceed the customer’s reservation price. It is assumed that reservation
prices are independent and identically distributed and that the probability distributions are given
as part of the input. Let Ft(.) denote the cumulative probability distribution of the reservation
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Figure 1: A deterministic and a randomized step function with two levels of change

price of a customer at time period t. The probability that a customer buys a unit of the product
at time period t is then given by 1− Ft(πt).

The problem is to set the prices over the time horizon so as to maximize the total expected
revenue. Formally,

max
π
{E[R(π)]} = max

π

{∑
t

πtCt (1− Ft(πt))
}
,

where R(π) : RT+ → R+ denotes the total revenue given price vector π = (π0, ..., πT−1).
We consider two customer models with elastic demand, in which the customers are price

sensitive and the price of today influences the group of customers of tomorrow. Let C0 be a given
initial number of customers. In the first model, referred to as additive model, we assume that the
number of customers at time t changes by a price-dependent additive term

Ct = Ct−1 + St−1(πt−1).

Here St(πt) : R+ → {∆1, ...,∆k} with ∆i ∈ {−C0, ..., C0} is a non-increasing step-function defined
by St(πt) = ∆i if πt ∈ Ii,t, where

Ii,t =

 [0, β1,t] if i = 1,
(βk−1,t,∞) if i = k,
(βi−1,t, βi,t] otherwise,

with given values 0 = β0,t ≤ ... ≤ βk,t = ∞. See Figure 1(a) for an illustration. By not allowing
for price levels which would bring the total number of customers below zero, we enforce Ct ≥ 0
for every t ∈ {0, ..., T}.

In the second model, referred to as multiplicative model, we assume that the number of cus-
tomers at time t changes by a multiplicative term

Ct = (1 + St−1(πt−1))Ct−1,

where St(πt) is defined as above, but with ∆1 ≥ ... ≥ ∆k > −1. In what follows, we will refer to ∆i

as level of change i in the number of customers and to βi,t as breakpoint i of step function St(πt).
Observe that the levels of change are the same for all time periods, whereas the breakpoints may
change between time periods.

In addition to the deterministic demand setting, we also consider a stochastic demand setting
in which the two customer models depend on a randomized step function. For each i ∈ {1, ..., k},
let Sit(πt) denote a random variable with discrete probability distribution, expressing the level of
change if πt ∈ Ii,t at time t. The probability mass function of the distribution is given by

Pr
[
Sit(πt) = ∆j

i

]
= pij

with 0 ≤ pij ≤ 1 for all i ∈ {1, ..., k} and j ∈ {1, ..., δi}, where δi indicates the number of sub-levels

for each level of change i. Of course it must also hold that
∑k
i=1 pij = 1 for all j. Further, ∆j

i > −1

2



in the multiplicative model and ∆j
i ∈ {−C0, ..., C0} in the additive model. Figure 1(b) presents

an illustration. Again, we enforce Ct ≥ 0 for every t by not allowing for price levels which could
possibly lead to a negative customer level.

For every i, let π∗i,t denote the price πt ∈ Ii,t that maximizes πt (1− Ft(πt)): the expected
revenue per customer at time t. We refer to this price as level price. For notational convenience,
we write π̄∗i,t = π∗i,t

(
1− Ft(π∗i,t)

)
. The maximum expected revenue per customer at time period t

over all levels of change is then denoted by π̄∗max,t = max
{
π̄∗1,t, ..., π̄

∗
k,t

}
, and we define

π̄∗max,Ct = max
{
π̄∗j,t | j ∈ {1, ..., k} s.t.Ct + ∆j ≥ 0

}
.

It is easy to see that an optimal solution to the dynamic pricing problem consists only of level prices.
Furthermore, we assume that, for each i and t, the maximum expected revenue per customer and
the corresponding level price are returned by an oracle in constant time. For this reason, we omit
the corresponding factor from the running time analysis, and count it as an elementary operation.

Previous work. Until a few decades ago, dynamic pricing methods were mainly considered to
be a tool within the field of revenue management. The original literature of this field is build
upon the pioneering work of [2, 3, 15, 20, 21]. Over the last few decades, dynamic pricing has
received considerable attention from other research areas, like theoretical computer science, and its
applications spread out to many other industries, see [4, 22]. According to [6], this is explained by
swift developments in information technology, e-commerce, and Internet, which enabled companies
to collect extensive amounts of customer data, and to use this to quickly update their prices if
necessary, at almost no cost. Nowadays, dynamic pricing is an active field of research, [8, 14, 19].

The problem studied in this paper is linked to the dynamic pricing field as follows. First, we
focus on a discrete time model as in [5, 13], since companies in real life are unable to change
their prices at all points in time, and therefore the continuous time model is impractical. Second,
we study price-setting companies in line with [7] and [17], that is, companies that either have
monopolistic market power, or that operate in a market with imperfect competition. Third, we
consider a single perishable product with infinite capacity. The same product setting can be found
in [16]. Finally, demand is determined by multiplying the group of potential customers by the
probability that they purchase the product, similar to [5, 17, 24]. Customers are modeled as
an autoregressive process, which constitutes a new approach in pricing problems. Models with
autoregressive demand can also be found in related research fields, see e.g. [1, 11, 23], and [8]. The
latter paper specifically states that prices tend to have lagged consequences.

In this paper, we investigate computational issues of dynamic pricing problems. Computational
analysis is a well developed area in auction theory, for surveys see [12, 18]. In the auction literature
prices are usually determined by a bidding process. The focus of the present paper is, however,
on dynamic pricing with posted prices. Here, depending on the prices customers can either decide
to buy the product or abstain from buying. Pricing problems with posted prices are considered
in the literature on Stackelberg games, see e.g. [9, 10]. All later papers consider the posted prices
statically while this paper deals with pricing over time.

Our contribution. Our main contribution is the thorough exploration of the dynamic pric-
ing problem with a deterministic additive model. We give a pseudo-polynomial time algorithm,
and prove the complementary result that the problem is weakly NP-hard. Further, we present
an fully polynomial time approximation scheme, which is a non-trivial transformation of the
pseudo-polynomial time algorithm. Our non-algorithmic result is that the optimal solution has
an interesting and nice structure in the case of stationary reservation prices and breakpoints.
We complement the aforementioned results by a polynomial time algorithm when the number of
breakpoints is constant.

We also explore the deterministic multiplicative model, for which we give a polynomial time
algorithm. We conclude our paper by extending the polynomial time algorithm for the multiplica-
tive model to the stochastic setting and developing a new algorithm for the stochastic additive
model.
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2 The deterministic additive model

In this section, we study the dynamic pricing problem with a deterministic additive customer
model.

2.1 A pseudo-polynomial time dynamic programming algorithm

Let Rt(ct) denote the maximum expected revenue obtained up to time period t, given ct ∈ Ct cus-
tomers, where Ct = {max {0, C0 − t∆max} , ..., C0 + t∆max} with ∆max = max {|∆i| | i ∈ {1, ..., k}}
for every t. The recursive formula for the update of the values Rt(ct) in the dynamic programming
algorithm reads

Rt(ct) = max
{
Rt−1(ct −∆u) + π̄∗u,t−1(ct −∆u) |u ∈ {1, ..., k} s.t. ct −∆u ≥ 0

}
(1)

for time periods t ∈ {1, ..., T − 1} and R0(c0) = 0. Then, the maximum expected revenue equals

max
{
RT−1(cT−1) + π̄∗max,cT−1cT−1 | cT−1 ∈ CT−1

}
.

This results in the following theorem.

Theorem 1. An optimal solution to the dynamic pricing problem can be found in
O(kT 2∆max) time.

Proof. We need to compute at most 2T∆max values at time period t. Further, each of these values
takes O(k) time to obtain by expression (1). Hence, the total computation time is O(kT 2∆max).

2.2 NP-hardness

In this subsection, we reduce the knapsack problem to the dynamic pricing problem with an
additive model. Note that the knapsack problem has a polynomial time algorithm when all integers
are bounded by a polynomial in the input length, as has our problem under consideration. Let
an instance of knapsack be given by items 0, ..., n− 1 with weights w0, ..., wn−1, values v0, ..., vn−1

and capacity W . The objective is to find a subset of the items with the highest sum of values
such that the sum of weights does not exceed the capacity. For notational ease, define vmax =
max {vi | i ∈ {0, ..., n− 1}} and wmax = max {wi | i ∈ {0, ..., n− 1}}.

We construct an instance of the dynamic pricing problem from an instance of knapsack as
follows. The number of time periods is set to T = n. Moreover, let N ≥ 6n + dlog vmaxe +

dlogwmaxe be a large number, and define C0 = L(n− 1) +W , where L(i) =
∑i
j=0 2j+2N+n. For

every time period t ∈ {0, ..., T − 1}, we create for every item i ∈ {0, ..., n− 1} two levels of change

∆pick
i = −2i+2N+n−wi and ∆discard

i = −2i+2N+n with corresponding level prices and breakpoints

πpick
i = βpick

i = 24i+N + vi·22N

L(i) and πdiscard
i = βdiscard

i = 24i+N . In addition, we create for every

time period a zero price π0 = 0 with ∆0 = β0 = 0, and a level of change ∆∞ = −∞ corresponding
to prices larger than πpick

n−1. Lastly, we assume that customers buy a unit of the product at every

price, i.e.,
(

1− F (πpick
i )

)
=
(
1− F (πdiscard

i )
)

= 1, for every i. It is easy to see that this instance

can be constructed in polynomial time.
Intuitively, level prices πpick

i and πdiscard
i correspond to either picking item i in the knapsack

or discarding the item. We will show below that the way we set our levels of change and level
prices forces an optimal solution to ask precisely one of the prices, πpick

i or πdiscard
i , for every item

i. First, we present two auxiliary results.

Lemma 1. Let (π∗0 , ..., π
∗
T−1) be an optimal solution to the dynamic pricing problem instance.

Then, π∗t ≥ π∗s > 0 for all t < s < T − 1 with π∗v = 0 for all v ∈ {t+ 1, ..., s− 1}.
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Proof. In case a zero price is present in a solution to the dynamic pricing problem, it is clear that
the total revenue is independent of the time at which the zero price is chosen. Therefore, zero
prices can be moved to the end of the time horizon, thereby always satisfying the lemma. From
this it follows that we can consider an s such that s = t+ 1.

Next, suppose for a contradiction that π∗t < π∗t+1 for some t, where neither π∗t nor π∗t+1 is equal
to the zero price. Let ∆∗t and ∆∗t+1 be the levels of change corresponding to the prices π∗t and
π∗t+1. Then, the total revenue obtained at times t and t+ 1 is

Ctπ
∗
t + (Ct + ∆∗t )π

∗
t+1 = Ctπ

∗
t + Ctπ

∗
t+1 + ∆∗tπ

∗
t+1.

By exchanging prices π∗t and π∗t+1, we instead obtain a total revenue of

Ctπ
∗
t+1 + (Ct + ∆∗t+1)π∗t = Ctπ

∗
t+1 + Ctπ

∗
t + ∆∗t+1π

∗
t .

Note that the number of customers at time t+ 2 is not affected by the exchange.
By construction, we know that for some integers 0 ≤ τ1 < τ2

24τ1+N ≤ π∗t ≤ 24τ1+N +
vmax · 22N

L(τ1)
, (2)

−2τ1+2N+n ≥ ∆∗t ≥ −2τ1+2N+n − wmax, (3)

and

24τ2+N ≤ π∗t+1 ≤ 24τ2+N +
vmax · 22N

L(τ2)
, (4)

−2τ2+2N+n ≥ ∆∗t+1 ≥ −2τ2+2N+n − wmax. (5)

Combining (3) and (4) gives an upper bound for ∆∗tπ
∗
t+1

∆∗tπ
∗
t+1 ≤ −2τ1+2N+n · 24τ2+N = −2τ1+4τ2+3N+n. (6)

Further, a lower bound for ∆∗t+1π
∗
t is obtained by combining (2) and (5)

∆∗t+1π
∗
t ≥

(
−2τ2+2N+n − wmax

)(
24τ1+N +

vmax · 22N

L(τ2)

)
> −2τ2+2N+n+1

(
24τ1+N +

vmax · 22N

L(τ2)

)
> −2τ2+2N+n+1

(
24τ1+N + 1

)
= −24τ1+τ2+3N+n+1 − 2τ2+2N+n+1

> −24τ1+τ2+3N+n+2, (7)

where the third inequality follows from the definition of L(i).
Finally, combining (6) and (7) brings us to

∆∗tπ
∗
t+1 ≤ −2τ1+4τ2+3N+n < −24τ1+τ2+3N+n+2 ≤ ∆∗t+1π

∗
t

such that
Ctπ

∗
t + Ctπ

∗
t+1 + ∆∗tπ

∗
t+1 < Ctπ

∗
t+1 + Ctπ

∗
t + ∆∗t+1π

∗
t .

This contradicts the fact that (π∗0 , ..., π
∗
T−1) is optimal, and proves the lemma.

Lemma 2. Let (π∗0 , ..., π
∗
T−1) be an optimal solution to the dynamic pricing problem instance.

Then, for all t ∈ {0, ..., T − 2} there does not exist an integer τ ∈ {0, ..., T − 2} such that

24τ+N ≤ π∗t+1 ≤ π∗t ≤ 24τ+N +
vmax · 22N

L(τ)
.

5



Proof. Suppose for a contradiction that 24τ+N ≤ π∗t+1 ≤ π∗t ≤ 24τ+N + vmax·22N

L(τ) for some τ ∈
{0, ..., T − 2}. By construction, we know that for s ∈ {t, t+ 1}

24τ+N ≤ π∗s ≤ 24τ+N +
vmax · 22N

L(τ)

and
−2τ+2N+n ≥ ∆∗s ≥ −2τ+2N+n − wmax.

Then, the total revenue obtained at times t and t+ 1 is at most

Ct · 24τ+N vmax · 22N

L(τ)
+ (Ct + ∆∗t )2

4τ+N vmax · 22N

L(τ)
< 2Ct · 24τ+N .

However, the total revenue obtained by replacing the price at time t by πdiscard
τ+1 and asking a zero

price at time t+ 1 is at least

Ct · 24(τ+1)+N = 2Ct · 24τ+N+3,

which is strictly larger than 2Ct · 24τ+N , the total revenue obtained before the replacement. In
addition, the change in the number of customers is

∆∗t + ∆∗t+1 ≤ −2τ+2N+n · 2

before the replacement, and −2τ+2N+n+1 afterwards. That is, by replacing the prices we always
end up with at least as many customers as before. This all contradicts the fact that (π∗0 , ..., π

∗
T−1)

is optimal, and proves the lemma.

Lemma 3. Let (π∗0 , ..., π
∗
T−1) be an optimal solution to the dynamic pricing instance. Then, π∗t

is equal to either πdiscard
n−t−1 or πpick

n−t−1 for all t ∈ {0, ..., T − 1}.

Proof. It follows from Lemma 1 that prices in the optimal solution are monotone decreasing,
therefore if πpick

i and π`1i , with `1 ∈ {pick,discard}, or two times πdiscard
i are asked, they are

subsequent. However, Lemma 2 states that π`1i and π`2i with `1, `2 ∈ {pick,discard} are never

asked subsequently, for all i ∈ {0, ..., n− 2}. Further, we cannot ask price πdiscard
n−1 or πpick

n−1 twice,
nor any combination of the two, because 2 · 2n−1+2N+n > C0. This proves the lemma in case
there are no zero prices in the optimal solution. If zero prices are indeed asked, there exists an
index i such that neither πpick

i nor πdiscard
i is chosen. We will show below that this results in a

contradiction.
Let us adjust the optimal solution by replacing any πpick

j by πdiscard
j for all possible j. Thereby,

we will lose at most

nC0 max{(πpick
l − πdiscard

l ) | l < n} = n(L(n− 1) +W )
vmax · 22N

L(0)

≤ n(L(n− 1) +W ) (8)

of the total revenue. Clearly, by construction there exists a feasible solution consisting of picking
all discard prices.

Next, we ask price πdiscard
i instead of a zero price, and adjust the order of the prices asked in

the optimal solution accordingly (Lemma 1). Then, the number of customers drops by
∣∣∆discard

i

∣∣
for the remaining time steps, which results in a total loss of revenue of at most

∣∣∆discard
i

∣∣ · i−1∑
j=0

πdiscard
j = 2i+2N+n ·

i−1∑
j=0

24j+N < 2i+2N+n · 24i+N−3 = 25i+3N+n−3. (9)

6



By the adjustments to the optimal solution proposed above, we further gain at leastC0 +

n−1∑
j=i+1

∆discard
i

πdiscard
i ≥

L(n− 1)−
n−1∑
j=i+1

2j+2N+n

πdiscard
i

= L(i) · πdiscard
i = L(i) · 24i+N ≥ 25i+3N+n (10)

revenue.
Combining (8) and (9) and comparing to (10), we finally find that the gain of the adjustments

is larger than the loss

n · (L(n− 1) +W ) + 25i+3N+n−3 ≤ 2n · 22N+2n + 25i+3N+n−3 < 2 · 25i+3N+n−3 < 25i+3N+n.

This is a contradiction to the fact that (π∗0 , ..., π
∗
T−1) is optimal. Hence, no zero prices are

asked in an optimal solution, and at each moment of time t we pick at most one price from{
πpick
n−t−1, π

discard
n−t−1

}
.

This brings us to the following theorem.

Theorem 2. The dynamic pricing problem with an additive model is NP-hard.

Proof. We construct a dynamic pricing instance from the knapsack instance as described in the
beginning of the section. It is obvious by construction that every valid knapsack solution has a
corresponding valid solution to the dynamic pricing problem. Furthermore, we show below that
an optimal dynamic pricing solution has a corresponding optimal knapsack solution.

It follows from Lemma 3 that at time period t we ask price πpick
n−t−1 or πdiscard

n−t−1 . Let xi denote

a binary variable indicating if price πpick
i or πdiscard

i is chosen for all i ∈ {0, ..., n− 1}. That is,

xi = 1 if we choose πpick
i , and xi = 0 otherwise. Note that (xn−1, ..., x0) is also a solution to the

knapsack problem. Further, let ρn−t−1 = W −∑n−1
j=n−t−1 xjwj . Then, the number of customers

at time period t is

Ct = C0 −
n−1∑

j=n−t−1

22N+j+n −
n−1∑

j=n−t−1

xjwj

= L(n− t− 1) +W −
n−1∑

j=n−t−1

xjwj = L(n− t− 1) + ρn−t−1,

and the total revenue is given by

E [R(π0, ..., πT−1) ] =

T−1∑
t=0

πT−t−1CT−t−1

=

n−1∑
i=0

(
xi

(
24i+N +

vi · 22N

L(i)

)
+ (1− xi)

(
24i+N

))
· (L(i) + ρi)

=

n−1∑
i=0

24i+NL(i) +

n−1∑
i=0

24i+Nρi +

n−1∑
i=0

xivi2
2N +

n−1∑
i=0

xi
ρi · vi · 22N

L(i)
.

Intuitively, we are interested in
∑n
i=1 xivi2

2N , which is the total value of the knapsack instance,
shifted 2N bits to the left. Note that

∑n
i=1 24i+NL(i) is independent of the prices chosen such

that we can subtract this from E [R(π0, ..., πT−1) ] to obtain E [R′(π0, ..., πT−1) ]. Furthermore,∑n−1
i=0 24i+Nρi and

∑n−1
i=0 xi

ρi·vi·22N

L(i) are dominated by
∑n−1
i=0 xivi2

2N . This follows from the fact

that the latter number is at least 22N and the first two numbers are at most n24n+N and n,
respectively, with N ≥ 6n+ dlog vmaxe+ dlogwmaxe. By removing the first 2N bits from the right
of E [R′(π0, ..., πT−1) ], we obtain the total value of the knapsack instance.
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2.3 A fully polynomial time approximation scheme

In this subsection, we transform the pseudo-polynomial time dynamic programming algorithm of
Section 2.1 into a fully polynomial time approximation scheme (FPTAS), that is, for any ε > 0,
we have an algorithm that computes a solution with total expected revenue at least (1− ε) times
the optimal total expected revenue, in time polynomial in the input and 1/ε. First, we introduce
some useful notation.

For a given solution π = (π0, ..., πT−1), let ηi,t(π) indicate the number of times level of change
∆i is obtained up to time period t. Then, in the additive model the customer level at time period
t is given by

Ct(π) = C0 +

t−1∑
s=0

Ss(πs) = C0 +

k∑
i=1

ηi,t(π)∆i.

In case π is clear from the context, we write ηi,t and Ct.

Theorem 3. The dynamic pricing problem with an additive model admits an FPTAS.

Proof. Given ε > 0, we apply the dynamic programming algorithm of Section 2.1 to a rounded
instance in which the initial customer level and each level of change i is scaled by Λ > 0 as follows:
C̃0 =

⌊
C0

Λ

⌋
and ∆̃i =

⌊
∆i

Λ

⌋
. Λ will be defined later. Then, C̃t =

⌊
C0

Λ

⌋
+
∑k
i=1 ηi,t

⌊
∆i

Λ

⌋
is a

customer level on the rounded instance.
Let π =

{
π∗i0,0, ..., π

∗
iT−1,T−1

}
be an optimal solution to the original instance I and π′ an

optimal solution to the rounded instance Ĩ. We show that

E[RI(π′)] ≥ ΛE[RĨ(π′)] ≥ ΛE[RĨ(π)] ≥ (1− ε)E[RI(π)],

where E[RI(·)] and E[RĨ(·)] denote the total expected revenue on the original instance I and the
rounded instance Ĩ, respectively.

For the first inequality, we find

E[RI(π′)] =

T−1∑
t=0

π̄′tCt = Λ

T−1∑
t=0

π̄′t
Ct
Λ

= Λ

T−1∑
t=0

π̄′t
C0 +

∑k
i=1 ηi,t(π

′)∆i

Λ

≥ Λ

T−1∑
t=0

π̄′t

(⌊
C0

Λ

⌋
+

k∑
i=1

ηi,t(π
′)

⌊
∆i

Λ

⌋)
= ΛE[RĨ(π′)],

where π̄′t = π′t (1− F (π′t)). Further, the second inequality follows trivially from the optimality of
solution π′ on the rounded instance Ĩ.

To prove the third inequality, we have

ΛE[RĨ(π)] =

T−1∑
t=0

π̄∗it,t

(
ΛC̃0 +

k∑
i=1

ηi,t(π)Λ∆̃i,t

)

≥
T−1∑
t=0

π̄∗it,t

(
C0 − Λ +

k∑
i=1

ηi,t(π)(∆i,t − Λ)

)

= E[RI(π)]−
T−1∑
t=0

π̄∗it,tΛ(t+ 1)

≥ E[RI(π)]−
T−1∑
t=0

π̄∗max,CtΛ(t+ 1)

≥ E[RI(π)]− ΛT max
t≤T−1

{
π̄∗max,Ct(t+ 1)

}
. (11)

Next, we distinguish between two cases in order to bound the number of customer levels at
each time period t. Let ∆+

max = max {∆i | i ∈ {1, ..., k}} and ∆−max = −min {∆i | i ∈ {1, ..., k}}.
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First, assume that ∆+
max ≥ ∆−max or C0 ≤ T∆+

max ≤ T∆−max and let Λ =
ε∆+

max

T . From (11), we
then have

ΛE[RĨ(π)] ≥ E[RI(π)]− ΛT max
t≤T−1

{
π̄∗max,Ct(t+ 1)

}
= E[RI(π)]− ε max

t≤T−1

{
π̄∗max,Ct(t+ 1)

}
∆+

max

≥ E[RI(π)]− εE[RI(π)] = (1− ε)E[RI(π)],

where the last inequality follows from the lower bound

E[RI(π)] ≥ max
t≤T−1

{
π̄∗max,t(C0 + t∆+

max)
}
≥ max
t≤T−1

{
π̄∗max,t(t+ 1)

}
∆+

max,

which holds since |∆i| ≤ C0 for all i, and from the fact that π̄∗max,Ct
≤ π̄∗max,t for all t.

In this first case, the number of customer levels is at most 2T∆+
max. Scaling each customer

level by Λ results in at most 2T ∆̃+
max ≤ 2T T

ε customer levels. Hence, the computation time of the
dynamic program on the rounded instance is polynomial in the input size and 1

ε , as required.

Second, assume that ∆+
max < ∆−max and C0 > T∆+

max. Let Λ = εC0

T 2 . Then,

ΛE[RĨ(π)] ≥ E[RI(π)]− ΛT max
t≤T−1

{
π̄∗max,Ct(t+ 1)

}
≥ E[RI(π)]− ΛT 2 max

t≤T−1

{
π̄∗max,Ct

}
= E[RI(π)]− εC0 max

t≤T−1

{
π̄∗max,Ct

}
≥ E[RI(π)]− εE[RI(π)] = (1− ε)E[RI(π)],

where the last inequality follows from the trivial lower bound

E[RI(π)] ≥ max
t≤T−1

{
π̄∗max,t(C0 + t∆+

max)
}
≥ max
t≤T−1

{
C0π̄

∗
max,t

}
,

and again from the fact that π̄∗max,Ct
≤ π̄∗max,t for all t.

In this second case, the number of customer levels is at most 2C0. Scaling each customer level

by Λ results in at most 2C̃0 ≤ 2T
2

ε customer levels. Hence, also for this case the computation time
of the dynamic program on the rounded instance is polynomial in the input size and 1

ε .

Note that despite its apparent simplicity, we need to distinguish between several different cases
for the correctness of this FPTAS, resulting in two different lower bounds on the optimal expected
total revenue on the original instance. Reason for this is the fact that the number of customer
levels can differ between these cases and that each customer level has to be rounded to obtain a
computation time that is polynomial in the input size and 1

ε .

2.4 Structure of an optimal solution

In this subsection, we investigate the structure of an optimal solution, assuming that the reserva-
tion price distributions and breakpoints stay constant over time, i.e., Ft(.) = F (.) and βi,t = βi
for all i and t. In what follows, the time indices of the prices can thus be dropped. We start by
observing that the prices of an optimal solution can be arranged in a specific order.

Lemma 4. Let π∗j be a level price. If there exists another level price, say π∗i , with πi < πj and
π̄∗j ≤ π̄∗i , then π∗j will never be chosen.

Proof. At every time period t, the expected revenue is given by πt (1− F (πt))Ct. Since π̄∗j ≤ π̄∗i ,
choosing πt = π∗i instead of πt = π∗j does not decrease the expected revenue at time period t. In
addition, we have ∆i ≥ ∆j and thus πt = π∗i also results in the same or a higher customer level
at time period t+ 1. Hence, π∗j will never be chosen at time period t.

9



We call the level prices that are never chosen recessive prices. Let Π∗ ⊆ {π∗1 , ..., π∗k} denote
the set all non-recessive prices. This brings us to an ordering � of the level prices in Π∗ based on
the following definition.

Definition 1. Let π∗i , π
∗
j ∈ Π∗. Then, the order � is defined as follows: π∗i � π∗j if and only if

π̄∗j∆i > π̄∗i ∆j.

Lemma 5. The relation � is transitive: let π∗i , π
∗
j , π
∗
k ∈ Π∗. If π∗i � π∗j and π∗j � π∗k, then

π∗i � π∗k.

Proof. Let π∗i � π∗j and π∗j � π∗k. Further, assume that π∗k � π∗i , that is, π̄∗i ∆k > π̄∗k∆i. Then,
∆k > π̄∗k∆i/π̄

∗
i . Next, we have that π̄∗k∆j > π̄∗j∆k, so ∆k < π̄∗k∆j/π̄

∗
j . Combining, we obtain

π̄∗k∆i/π̄
∗
i < π̄∗k∆j/π̄

∗
j , which results in π̄∗j∆i < π̄∗i ∆j . This contradicts the assumption that

π∗i � π∗j , thereby proving the lemma.

In the theorem below, we show that an optimal pricing follows the above defined ordering.

Theorem 4. The level prices of an optimal solution to the dynamic pricing problem follow the
ordering � defined on Π∗.

Proof. Let π∗i , π
∗
j ∈ Π∗ be two level prices for which π∗i � π∗j . Further, let π = (π0, ..., πT−1) and

π′ = (π′0, ..., π
′
T−1) denote two solutions with πt′ = π′t′+1 = π∗j , πt′+1 = π′t′ = π∗i for a certain time

period t′, and πs = π′s for all s 6= t′, t′ + 1. Note that Cs = C ′s for all s 6= t′, t′ + 1. Then,

E [R(π′) ]− E [R(π) ] =
∑
t

π̄′tC
′
t −
∑
t

π̄tCt

= π̄′t′C
′
t′ + π̄′t′+1C

′
t′+1 − π̄t′Ct′ − π̄t′+1Ct′+1

= π̄∗i (C ′t′ − Ct′+1) + π̄∗j
(
C ′t′+1 − Ct′

)
= π̄∗i (−∆j) + π̄∗j (∆i)

= π̄∗j∆i − π̄∗i ∆j > 0,

where the inequality follows from Definition 1. Hence, E [R(π′) ]− E [R(π) ] > 0.

We remark that an optimal solution to the dynamic pricing problem can be found in O(kT k)
time, by considering all different orderings. Further, an obvious consequence of Lemma 4 is that
for every π∗i , π

∗
j ∈ Π∗ with i < j and at least one of both corresponding levels of change positive,

we have that
π̄∗j∆i > π̄∗i ∆j .

Intuitively, Theorem 4 thus shows that over time we first choose prices such that the corresponding
level of change is positive, i.e., we increase the number of customers. After this, we choose prices
with smaller or even negative levels of change to increase the revenue.

2.5 Low number of breakpoints

In contrast to the previous section, let us assume that the reservation price distributions and
breakpoints vary over time. For a given solution π, let Ht(π) = (η1,t(π), ..., ηk,t(π)) denote a

k-tuple of ηi,t(π)’s. Note that
∑k
i=1 ηi,t(π) = t. We write Ht in case π follows from the context.

Further, we call a tuple Ht+1 = (η1,t+1, ..., ηk,t+1) reachable from tuple Ht = (η1,t, ..., ηk,t) if Ht+1

differs from Ht in exactly one element by one.
To obtain an optimal solution for the dynamic pricing problem, we model it as a longest path

problem in a directed acyclic graph Dk(V,A), hereafter referred to by Dk. The node set V is as
follows. For each non-negative customer level Ct defined by a tuple Ht at time period t, we have a
node vt,Ht . In addition, we have a sink node vT,∅ and we define node v0,H0

to be the source node.
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The arc set A consists of arcs (vt,Ht , vt+1,Ht+1
), where Ht+1 is reachable from Ht, and additional

arcs connecting nodes vT−1,HT−1
to the sink node. Each arc (vt,Ht , vt+1,Ht+1) has length

l(vt,Ht , vt+1,Ht+1
) = π̄∗u,tCt(Ht),

where u denotes the index of the element in which Ht and Ht+1 differ, and each of the arcs
(vT−1,HT−1

, vT,∅) has length 0.
It is easy to see that any solution with level prices to the dynamic pricing problem corresponds

to a path in the graph Dk with the same length and vice versa. We therefore complete this
subsection by estimating the running time of the longest path computation in Dk.

Theorem 5. An optimal solution to the dynamic pricing problem can be found in O(kT k) time.

Proof. The number of distinct non-negative customer levels at time period t is equal to
(
k+t−1
t

)
∈

O(tk−1). By construction, we therefore have |V | ∈ O(T k) and |A| ∈ O(kT k). Next, the customer
levels can be calculated in O(k) time and the arc lengths in constant time. Hence, the directed
acyclic graph Dk is created in O(kT k) time. Further, it is well known that the longest path
problem in Dk can be solved in O(|A|) ∈ O(kT k) time. This brings us to a total time complexity
of O(kT k).

3 The deterministic multiplicative model

In this section, we study the dynamic pricing problem with a deterministic multiplicative model.
In order to solve the problem to optimality, we propose a dynamic programming algorithm based
on the maximum expected revenue obtained between time periods t and T per customer present
at time t. Let RCt denote this value, i.e.,

RCt = max
π

{∑T−1
s=t Csπs (1− Fs(πs))

Ct

}
.

To calculate the values of RCt , note that for each customer at time t, there will be (1 + ∆i)
customers at time t + 1 when price π∗i,t is chosen. Therefore, we have the following recursive
formula

RCt = max
{
π̄∗u,t + (1 + ∆u)RCt+1 |u ∈ {1, ..., k}

}
for time periods t = T−1, . . . , 1, 0, and RCT = 0. Hence, the maximum expected revenue equals the
maximum expected revenue per customer at time 0 multiplied by the initial number of customers,
that is, RC0 × C0.

Theorem 6. An optimal solution to the dynamic pricing problem can be found in O(kT ) time.

Proof. From the above considerations, we know that the dynamic programming algorithm com-
putes an optimal solution. For the running time, notice that for each time period t = T−1, . . . , 1, 0
we need to compute a maximum of k values. Each of these values takes constant time to obtain,
and hence the total computation time is O(kT ).

4 The stochastic customer models

In this section, we adjust the constructed dynamic programming algorithms to solve the problem
with a stochastic demand setting. Let ηji,t(π) indicate the number of times each sub-level ∆j

i ,

j ∈ {1, ..., δi}, is realized up to time period t. Notice that for each i and t
∑δi
j=1 η

j
i,t = ηi,t, and let

Hi,t(π) = (η1
i,t(π), ..., ηδii,t(π)) denote the tuple containing these values for each i and t. Abusing

notation, define Ht(π) = (H1,t(π), ...,Hk,t(π)) with
∑k
i=1

∑δi
j=1 η

j
i,t(π) = t. In case π is known

from the context, we will write ηi,t, η
δi
i,t, Hi,t, and Ht. We call tuple Ht+1 reachable from tuple

Ht if Ht+1 differs in exactly one element from Ht.
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4.1 Additive model

In the additive model, we say that Ct is a reachable customer level at time period t if there exists
a tuple Ht such that

Ct(Ht) = C0 +

k∑
i=1

δi∑
j=1

ηji,t∆
j
i .

To each of reachable customer level at time period t, we assign in the stochastic setting a probability
pt(Ht), defined by

pt(Ht) =

k∏
i=1

 ηi,t!∏δi
j=1 η

j
i,t!

δi∏
j=1

p
ηji,t
ij

 ,

which follows from the fact that given ηi,t with ηji,t realizations of level ∆j
i , the same customer

level with probability
∏δi
j=1 p

ηji,t
ij can be obtained in

ηi,t!∏δi
j=1 η

j
i,t!

possible ways.

For the case with a low and fixed k and δmax, we develop an algorithm that finds the optimal
solution in polynomial time. Let R(Ht) denote the maximum total expected revenue up to time
period t, given tuple Ht. Further, let Ct,k,Ht denote the set of reachable customer levels Ct(Ht)
and let PHt denote the set of corresponding probabilities. Then, the maximum expected revenue
equals maxHt {R(HT )}, where the values R(Ht) for time periods t ∈ {1, ..., T − 1} are computed
by

R(Ht) = max {R(Ht−1) + E [Gu(Ht−1) ] |u ∈ {1, ..., k} s.t. ηu,t ≥ 1} (12)

and R(H0) = 0. Here, E [Gu(Ht−1) ] denotes the expected gain obtained from choosing a price at
time t− 1 in between breakpoints βu−1,t−1 and βu,t−1, i.e.,

E [Gu(Ht−1) ] =
∑

j∈{1,...,|Ct−1,k,Ht−1 |}
π̄∗u,t−1cjpj .

with cj ∈ Ct−1,k,Ht−1
and pj ∈ PHt−1

. Note that u is the index of the element in which Ht and
Ht−1 differ.

Theorem 7. An optimal solution to the dynamic pricing problem in a stochastic setting can be
found in O(T 2(δmaxk−1)k3δ2

max) time.

Proof. The number of distinct reachable customer levels at time period t is at most
(
δmaxk+t−1

t

)
in both customer models. We therefore compute expression (12) over at most O(T δmaxk−1) tuples
at time period t. The computation time of (12) is estimated by k times the time to sum over at
most O(T δmaxk−1) multiplications of prices, customer levels and corresponding probabilities. By
the fact that the computation times of a customer level and of a probability are both O(kδmax),
each multiplication can be done in O(k2δ2

max) time. Combining all the above, we arrive at a total
computation time of O(T 2(δmaxk−1)k3δ2

max).

4.2 Multiplicative model

The stochastic dynamic pricing problem with a multiplicative model can be solved to optimality
by adjusting the dynamic programming algorithm of Section 3. For every time period t, let RCt
again denote the maximum expected revenue from t to T , divided by the number of customers.
The recursive formula for the update of the values RCt is then given by

RCt = max

π̄∗u,t +

 δu∑
j=1

(1 + ∆j
u)puj

RCt+1 |u ∈ {1, ..., k}


for time periods t ∈ {0, ..., T − 1} and RCT = 0. Hence, the maximum expected revenue equals
RC0 · C0, and the following theorem is obtained.
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Theorem 8. An optimal solution to the dynamic pricing problem in a stochastic setting can be
found in O(kTδmax) time, where δmax = maxi {δi}.

Proof. We need to compute at most k values at time period t. Further, each of these values takes
at most δmax times constant time to obtain. Hence, the total computation time is O(kTδmax).

References

[1] L.C. Alwan, J.J. Liu, and D. Yao. Stochastic characterization of upstream demand processes
in a supply chain. IIE Transactions, 35(3):207–219, 2003.

[2] P. Belobaba. Airline yield management: an overview of seat inventory control. Transportation
Science, 21(2):63–73, 1987.

[3] P. Belobaba. Application of a probabilistic decision model to airline seat inventory control.
Operations Research, 37(2):183–197, 1989.

[4] G. Bitran and R. Caldentey. An overview of pricing models for revenue management. Man-
ufacturing Service Operations Management, 5(3):203–229, 2002.

[5] G.R. Bitran and H.K. Wadhwa. Some structural properties of the seasonal product pricing
problem. Working paper #3897-96, M.I.T. Sloan School of Management, Cambridge, MA,
USA, 1996.

[6] L.M.A. Chan, Z.J. Shen, D. Simchi-Levi, and J.L. Swann. Handbook of quantitative supply
chain analysis: Modeling in the e-business era, chapter 9, pages 335–382. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2004.

[7] L.M.A. Chan, D. Simchi-Levi, and J. Swann. Pricing, production, and inventory policies for
manufacturing with stochastic demand and discretionary sales. Manufacturing and Service
Operations Management, 8(2):149–168, 2006.

[8] W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventory consid-
erations: Research overview, current practices, and future directions. Management Science,
49(10):1287 –1309, 2003.

[9] A. Grigoriev, J. Van Loon, M. Sviridenko, M. Uetz, and T. Vredeveld. Optimal bundle pricing
with monotonicity constraint. Operations Research Letters, 36(5):609 –614, 2008.

[10] V. Guruswami, J.D. Hartline, A.R. Karlin, and D. Kempe. On profit-maximizing envy-free
pricing. In SODA ’05: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1164–1173, Philadelphia, PA, USA, 2005.

[11] T. Hosoda and S.M. Disney. The governing dynamics of supply chains: The impact of
altruistic behaviour. Automatica, 42(8):1301 – 1309, 2006.

[12] P. Klemperer. Auction theory: a guide to the literature. Journal of Economic Surveys,
13(3):227–286, 1999.

[13] P.K. Kopalle, A.G. Rao, and J.L. Assuncao. Asymmetric reference price effects and dynamic
pricing policies. Marketing Science, 15(1):60–85, 1996.

[14] Yuri Levin, Jeff McGill, and Mikhail Nediak. Dynamic pricing in the presence of strategic
consumers and oligopolistic competition. Management Science, 55(1):32–46, 2009.

[15] K. Littlewood. Forecasting and control of passenger bookings. In AGIFORS: the 12th Annual
Symposium Proceedings, pages 95–128, Nathanya, Israel, 1972.

13



[16] M.S. Lobo and S. Boyd. Pricing and learning with uncertain demand. Working paper, Duke
University, Durham, NC, USA, 2003.

[17] C. Maglaras and J. Meissner. Dynamic pricing strategies for multi-product revenue manage-
ment problems. Manufacturing and Service Operations Management, 8(2):136–148, 2006.

[18] R.P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic Literature,
25(2):699–738, 1987.

[19] Ioana Popescu and Yaozhong Wu. Dynamic pricing strategies with reference effects. Opera-
tions Research, 55(3):413–429, 2007.

[20] M. Rothstein. An airline overbooking model. Transportation Science, 5(2):180–192, 1971.

[21] M. Rothstein. Hotel overbooking as a markovian sequential decision process. Decision Sci-
ences, 5(3):389–404, 1974.

[22] L.R. Weatherford and S. Bodily. A taxonomy and research overview of perishable-asset
revenue management: Yield management, overbooking, and pricing. Operations Research,
40(5):831–844, 1992.

[23] X. Zhang. The impact of forecasting methods on the bullwhip effect. International Journal
of Production Economics, 88(1):15–27, 2004.

[24] W. Zhao and Y.-S. Zheng. Optimal dynamic pricing for perishable assets with nonhomoge-
neous demand. Management Science, 46(3):375–388, 2000.

14


