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Polynomial time algorithms for constant capacitated single-item lot sizing problem with

stepwise production cost

Ayse Akbalik∗, Christophe Rapine

LGIPM, Université de Lorraine, Ile du Saulcy, 57045 Metz, France

Abstract

This paper presents two polynomial time algorithms for the constant capacitated lot sizing problem with a batch production. We

give several optimality properties for the general problem. Assuming constant production capacity, constant batch size and Wagner-

Whitin cost structure, we derive O(T 4) and O(T 6) time algorithms respectively for the case with production capacity multiple of

the batch size and for the case with arbitrary fixed capacities.
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1. Introduction

We study an extension of the well known single-item capaci-

tated lot sizing problem (CLSP) considering fixed cost per batch

in addition to a fixed setup cost. Classical CLSP deals with

defining the optimal production quantities in order to satisfy

the customer demand while minimizing the total production and

storage costs and respecting the production capacity. Demand is

assumed to be known for each period over a finite time horizon

T , and has to be satisfied without backlogging. The production

cost function of the classical lot sizing problem is composed of

a fixed cost (setup cost), a unit production and a unit holding

cost per period. Single-item lot sizing problem arises in many

production and inventory planning problems in practical situa-

tions and is also used to solve more complex systems. Despite

the simplicity of its description, the computational complexity

of CLSP depends on many parameters (see [1] and [2]).

In this paper we consider a CLSP with a batch production,

which incurs a fixed cost per batch in addition to the setup cost.

We assume that the batch size and the production capacity does

not vary over the planning horizon. Notice that we authorize

fractional batch production contrary to different studies in the

literature assuming only full batch production (e.g. [3]). The

fixed cost per batch can be encountered quite often in practice,

for instance when a machine is to be setup for a batch produc-

tion. The same problem can also be seen as an integrated pro-

duction and transportation problem for a capacitated manufac-

turer replenishing a depot with capacitated vehicles in a serial

supply chain. If no storage activity occurs at the manufacturer

stage, fixed transportation cost per vehicle can be considered as

fixed cost per batch, with the batch size equals to the vehicle

capacity (see [4]).
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Both production setup cost and fixed cost per batch can be

aggregated, resulting in a discontinuous production cost with a

stepwise structure. In literature, such a cost structure is called

stair-case, multiple setup, stepwise or truckload discount cost.

Our problem can be stated as “Single-item capacitated lot sizing

problem with stepwise production costs”, for short CLSP-SW

(see [5] and [4]).

We provide a review of the relevant literature in Section 2. In

Section 3, we present a mathematical formulation of the prob-

lem. In Section 4 we give some optimality properties, either

arising from the literature or introduced by ourselves. In Sec-

tion 5 two polynomial time algorithms are given for the con-

stant CLSP-SW: an O(T 4) time algorithm for the case with pro-

duction capacity multiple of the batch size, and an O(T 6) time

algorithm for the general case, where production capacity is

not assumed to be a multiple of the batch size. Section 6 re-

ports some computational experiments. Finally in Section 7 we

present some concluding remarks and perspectives.

2. Relevant literature

The seminal papers [6] and [7] can be cited as the first studies

on the lot sizing problem. In [8], Florian and Klein character-

ize the extreme points of the feasible domain of the CLSP un-

der concave cost functions, which will be detailed in Section 4.

Baker et al. [9] study single-item CLSP and propose an optimal

solution property which will be stated in Section 4. This prop-

erty has been extended to the CLSP with non-increasing unit

production cost in [2]. In the following, we present relevant

studies on the single-item lot sizing problem, with piecewise (or

stepwise) costs and/or limited capacity, focusing on exact poly-

nomial time approaches. This part is split into three categories:

Uncapacitated case with stepwise cost (see Table 1); Constant

capacitated case without stepwise cost (see Table 2) and Capac-

itated case with stepwise cost (see Table 3). Our contribution in

the literature is clearly stated compared with those studies.
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As far as we know, one of the first studies on the integration

of fixed transportation costs into the inventory control policy

is performed by Lippman [10]. The author proposes an O(T 5)

algorithm for the single-item uncapacitated lot sizing problem

with multiple-batch size production and without backlogging.

For the same problem, Pochet and Wolsey [11] proposes an

O(T 2 min(T, P)) algorithm, with B the batch size, improving

that of [10]. Lee [12] studies a similar structure, but, in addition

to the fixed cost per batch (or freight), the author considers also

a setup cost for production. Observe that we consider in this

paper the capacitated version of this problem. Several authors

consider the so-called Wagner-Whitin (WW) cost structure. Re-

call that under WW cost structure, producing and storing one

unit in period t costs more than producing it later. Assuming

WW cost structure, Lee [12] gives an O(T 4) algorithm which

is improved by Lee et al. [13] to O(T 3) for a more general

case with two-echelon structure and backlogging. For the latter

problem with backlogging, Li et al. [3] proposes an O(T 3) al-

gorithm, using Monge matrices. The same authors extend their

algorithm to a more general structure with concave cost func-

tions and propose an O(T 3log(T )) algorithm. Under stochastic

environment the reader is referred to [14] where a O(T B3) time

algorithm is developed for the stepwise lot sizing problem with

stochastic lead times.

Table 1: Results for uncapacitated problem with stepwise cost. In the assump-

tions column, p
f
t refers to the setup production cost, pb

t to the fixed cost per

batch, B to the constant batch size and WW to the Wagner-Whitin cost struc-

ture.
Assumptions Uncapacitated, Stepwise

no setup cost, pb
t [10], O(T 5)

No Backlog no setup cost, pb
t [11], O(T 2 min(T, B))

p
f
t , pb

t , WW [12], O(T 4)

Backlog p
f
t ,pb

t , WW [3] and [13], O(T 3)

p
f
t , pb

t [3], O(T 3log(T ))

All previous results consider the uncapacitated version of the

problem. When dealing with the capacitated version, most of

the authors assume a constant production capacity. For CLSP

with constant production capacity, without backlogging and

without multiple setup cost (i.e. without fixed cost per batch),

Florian and Klein [8] give anO(T 4) time algorithm which is im-

proved by van Hoesel and Wagelmans [15] to O(T 3) for more

general concave production costs. For the same constant ca-

pacitated case without multiple setup, Pochet and Wolsey [11]

solve also the problem in O(T 3) time under linear cost assump-

tions. The reader can refer to [16] for a detailed presentation

on the mixed integer programming approach to solve different

extensions of CLSP.

Table 2: Results for constant capacitated case without stepwise cost and without

backlogging.

Assumptions Constant capacity, No stepwise

Concave production cost [8], O(T 4)

Concave production cost [15], O(T 3)

Linear costs [11], O(T 3)

For the more general case studied in this paper, with both a

limitation on the production capacity and a stepwise cost struc-

ture, we have only found the study of Van Vyve [5] in the lit-

erature. In [5], the author proposes an O(T 3) algorithm for the

single-item CLSP with multiple setups and backlogging. The

author makes linear cost assumptions for each cost component.

For the case without backlogging, an O(T 2log(T )) algorithm is

proposed. Observe that in a sense his model is more general, for

he considers time dependent production capacity expressed as

the maximum number of installable batches per period, while

we restrict to a constant production capacity. However there are

other significant differences between our assumptions and those

made in [5]. We point them below and outline the contributions

of our paper:

1. We assume both classical setup cost of production and

fixed cost per batch in our model, while Van Vyve [5]

assumes only the fixed cost per batch. Observe that in-

troducing setup costs to the model of Van Vyve renders

the problem NP-hard. The reduction is immediate from

the result of Florian et al. [1] considering null fixed cost

per batch. The result still holds even for instances with

unitary setup cost, no holding cost and stationary demands

over time.

2. While the time dependency of the maximum number of

installable batches makes the problem with setup cost NP-

hard, we prove in this paper that the problem becomes

polynomial for a constant production capacity.

3. In [5], the maximum numbers of installable batches are

non negative integers. For our model, this is equiva-

lent to assume that production capacity P is a multiple of

batch size B. In this paper both cases are considered: P

mod B = 0 (for which an algorithm in O(T 4) is given) and

P mod B , 0 (for which an algorithm in O(T 6) is given).

As a consequence, our result establishes that the CLSP-SW

with constant production capacity and constant batch size is

polynomially solvable with the addition of a setup cost even for

the case with P mod B , 0. We propose two polynomial time

algorithms which are both original and represent a new con-

tribution in the literature. To derive these algorithms we also

assume linear costs with WW cost structure as in [5]. Table 3

is given to compare the complexity results of both paper.

Table 3: Results for capacitated case with stepwise costs, linear costs and con-

stant batch size B.
Other assumptions Capacitated, Stepwise

No Backlog no setup cost, pb
t , WW, Pt mod B = 0 [5], O(T 2log(T ))

No Backlog constant capacity, p
f
t , pb

t , WW, P mod B = 0 Our study, O(T 4)

No Backlog constant capacity, p
f
t , pb

t , WW Our study, O(T 6)

Backlog no setup cost, pb
t , WW, Pt mod B = 0 [5], O(T 3)

3. Notation, Problem formulation

In this section a general description of the problem is given.

Later in the paper restrictive assumptions will be made on costs

and capacities in order to derive polynomial time algorithms.
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Recall that the problem consists in planning a single-item pro-

duction to meet discrete and deterministic demand dt over a

finite time horizon t ∈ {1, . . . , T }. We consider a production ca-

pacity Pt in period t at the plant, where a batch production takes

place. The batch size is denoted by Bt for each period t. The aim

is to propose a feasible production planning (respecting capac-

ity limits) which satisfies demand without backlogging, such

that the total cost of production and storage is minimized.

A production plan x is a vector of size T corresponding to the

amount xt to produce each period. Hence a plan x is feasible iff

(i) 0 ≤ xt ≤ Pt and (ii)
∑t

u=1 xu ≥
∑t

u=1 du for all t ∈ {1, . . . , T }.

We consider the following cost structures:

Production. Production cost pt(a) of producing the amount

a at period t includes a discrete and a continuous part. The

discrete part is composed of a setup cost p
f
t paid whatever the

amount a > 0 and of a fixed cost per batch pb
t paid for each

batch produced. We call variable production cost the contin-

uous part pu
t of the production cost, which is assumed to be

concave with a. We have the following expression of the pro-

duction cost:

pt(a) = 1{a>0} p
f
t + pb

t ⌈
a

Bt

⌉ + pu
t (a)

Notice that pt appears as a function on [0, Bt] repeated with

a vertical step of pb
t every Bt units. The resulting function is

not concave even if pu
t is, but stepwise concave, possibly with

discontinuity every Bt units. When the variable production cost

pu
t is linear, pt is said to be stepwise linear. We also assume

that Bt is lower than production capacity Pt. For the case with

constant production capacity and constant batch size, if B ≥ P,

the problem is known to be polynomial (see [1]).

In what follows, we first restrict our attention to concave

costs to use some optimality properties proposed in the liter-

ature. Then, we restrict further to stepwise linear costs in order

to derive polynomial time algorithms.

Storage. To a plan x, one can associate the auxiliary vec-

tor s = (s1, . . . , sT ) where st denotes the inventory level at the

beginning of period t. The classical material balance equation

writes down as st+1 = st + xt − dt. We consider wlog that initial

and final inventory levels are zero (s1 = sT+1 = 0). Thus, con-

dition (ii) can be replaced by (ii’) st ≥ 0. There is no capacity

limit on the inventory level. The cost to keep quantity s in stock

from period t − 1 to t is ht(s). We assume ht ≥ 0.

The problem is then to find a production plan (x1, . . . , xT )

minimizing:
T∑

t=1

pt(xt) + ht(st)

respecting the production capacity :

0 ≤ xt ≤ Pt ∀t = 1, . . . ,T

and the classical inventory flow conservation :

st+1 = st + xt − dt ∀t = 1, . . . , T

s1 = sT+1 = 0

st ≥ 0 ∀t = 1, . . . , T

We will now introduce some dominance properties for the pur-

pose of developing polynomial time algorithms under various

assumptions.

4. Optimality properties

Dynamic programming approaches for lot sizing are based

on decomposition properties on the inventory level in order to

apply the sub-optimality principle of Bellman. Indeed, if in a

certain optimal production schedule the inventory level has a

value of s in period t, the problem can be decomposed into two

parts: Finding the best planning between 1 and t with a final

inventory level s, and finding the best planning between t and

T with an initial inventory level s. In this setting, regeneration

points introduced in [17] play a central part (see this definition

in [8]). For a given planning, a period t is said to be a regen-

eration point if its initial inventory is zero, i.e. st = 0. Florian

and Klein [8] define a subplan as a sub-sequence of production

between two consecutive regeneration points.

Definition 1 (Subplan, [8]). Given a planning, a sub-

sequence of production on periods u, . . . , v − 1 is a sub-

plan, denoted S (uv), if su = sv = 0, and st > 0 for all

t = u + 1, . . . , v − 1.

Notice that at least 2 regeneration points exist in any plan-

ning, since s1 = sT+1 = 0. In [8], the authors use the notion

of subplans to decompose the time horizon into sub-sequences

which start and end with zero stock. The optimum can then be

computed inO(T 2) as a shortest path problem, given the costs of

theO(T 2) possible subplans. To efficiently compute the optimal

planning on a subplan, the following definition is introduced in

[8]:

Definition 2 (Capacity constrained subplan, [8]). A subplan

is capacity constrained if it contains at most one period with a

production neither null nor at production capacity.

Assuming concave unit production costs, the following char-

acterization property is proven in [8] :

Property 1 ([8]). When cost functions are concave, a planning

belongs to the set of extreme points of solutions if and only if it

can be decomposed into capacity constrained subplans.

This property can be seen as a generalization of the ZIO

dominance property used by Wagner and Whitin [7] to de-

sign their algorithm. Recall that ZIO (Zero Inventory Ordering)

policies consist in ordering only when inventory level drops to

zero. A similar property has also been stated by Lippman [10]

as regeneration point property. Notice that Florian and Klein

[8] consider no stepwise production cost, contrary to Lippman

[10] who in turn considers no production setup cost. We now

demonstrate with a simple example that Property 1 does not

hold when considering stepwise production costs.

Example 1. Consider a time horizon of 3 periods with de-

mands (1, 2, 3) to satisfy. Production capacity is 3 and batch
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(1) (2) (3) (1 (3)t t2)
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x x

P=3

t t(1) (2 3) 2(1 3)

P=3
x
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x

planning (a) planning (b)

planning (c) planning (d)

Figure 1: Best capacity constrained planning for each subplan decomposition

in Example 1.

size is 2 units. Set-up costs are set to 2 for production, and 5

per batch. A unit holding cost of 0.5 is paid per product and

per unit of time. Other costs are null.

Clearly there exist 4 possible subplan decompositions:

(1)(2)(3), (1-2)(3), (1)(2-3), (1-2-3). In the first one, each pe-

riod forms a subplan; in the second, the first two periods 1 and

2 constitute a subplan, etc. The best capacity constrained plan-

nings associated to each decomposition are given in Figure 1.

In fact there is only one possible capacity constrained sched-

ule for each decomposition. Their costs are respectively: (a)

26, (b) 25, (c) 26.5, (d) 26.5. Hence the best planning respect-

ing the capacity constrained property for the instance is (b).

However the optimal planning consists of producing 2 units at

each period, resulting in a cost of 22. This example shows that

capacity constrained subplans are not dominant with stepwise

linear production costs.

Notice that in the example, the optimal solution has only one

subplan, but with 3 periods with production not at full capacity.

With stepwise production costs, Property 1 is not verified any

more due to the fact that it can be preferable to produce only

full batch sizes to save fixed cost per batch instead of saturating

the production capacity.

For the CLSP with stepwise costs, we introduce the follow-

ing definitions on production levels:

Definition 3. For a given planning, a period t is said to be:

• P-saturated if production is at full capacity (xt = Pt). In

the literature "full-truck load period" is also used concern-

ing similar dispatch scheduling problems.

• B-saturated if production corresponds to the maximum

number of full batches, without any fractional batch (xt =

⌊Pt/Bt⌋Bt)

• Fractional, if there exists a non-complete batch (xt mod

Bt , 0, xt > 0 and xt < Pt). For the same concept, less-

than-truckload period is also used in the literature.

• FBS (Full Batch Size) finally if the period is neither P-

saturated, B-saturated, null (zero production) nor frac-

tional. This corresponds to a production of only full

batches (xt mod Bt = 0), but not B-saturated.

Let us remark that in a fractional period an empty space

remains in a batch as well as an unused production capacity.

Hence, at least one more unit can be produced with no addi-

tional fixed cost. This situation should be quite rare in an opti-

mal schedule, which is expressed formally in Property 2. First,

we introduce the following definition which generalizes Defini-

tion 2:

Definition 4 (Batch Constrained Subplan). A subplan is

batch constrained if it contains at most one fractional period.

The following property by Lee et al. [13] generalizes the

property in [10] which assumes only fixed transportation costs

(in CLSP-SW, fixed transportation cost corresponds to the fixed

cost per batch). It stands that between two consecutive regener-

ation points, there is at most one fractional batch production.

Property 2 (Decomposition Property, [13]). There exists an

optimal planning which can be decomposed into batch con-

strained subplans for stepwise concave costs. Thus, there exists

at most one fractional period in each subplan.

We now introduce a dominance property for the capacitated

case, inspired by Baker et al. [9], who states that there exists an

optimal planning such that for each period t, st(Pt − xt)xt = 0.

This property means that if the inventory level at the begin-

ning of period t is strictly positive, the production is either null

or at maximum capacity. In [9], this property is proven with

time varying production capacity and setup costs, but station-

ary linear production and holding costs. Bitran and Yanasse [2]

have extended this result to linear functions non-increasing over

time. We generalize this dominance to stepwise linear functions

(linearity is based on the quantities) under WW cost structure:

Property 3. If the variable production cost pu
t is linear in the

quantity produced and follows WW cost structure, then there

exists an optimal schedule which verifies for each period t

st(Pt − xt)(xt mod Bt) = 0

As a consequence, if the inventory level is strictly positive, pe-

riod t cannot be a fractional period. Hence a fractional period

can only appear as the first period of a subplan.

Proof. We will show how to transform an arbitrary plan-

ning into a planning of lower cost which verifies the property.

Consider an optimal planning with t the latest period such that

st > 0, xt mod Bt , 0, and xt < Pt. Let us write q = xt mod Bt

the fractional batch size. Consider one unit in stock at the be-

ginning of period t. This unit has been produced at the first

preceding period t′ such that xt′ > 0 (we can assume that the

demand is satisfied using the first-in-first-out principle, i.e. pro-

duction at a period is assigned to the first unsatisfied demand).

Notice that, inventory level can only decrease between t′ and t.

4



If we transfer this production unit from t′ to t, then the result-

ing planning remains feasible: stock levels are positive or null,

and production capacity at t is necessarily respected (t was not

P-saturated). When we compare costs, no additional setup cost

appears, since a setup for production and for batch is already

paid at t for q. The variable part can only decrease due to the

assumption of WW cost structure.

Hence, we have obtained a better planning. We can then re-

peat this transformation, till the planning becomes infeasible or

a setup cost appears. This corresponds to delay an amount of

min{Bt − q, Pt − q, st} at period t. In each case the new schedule

verifies the property for period t.

Delaying the production of a part of st at period t may create

new periods which do not satisfy Property 3. However such

periods can only appear before t. We can therefore repeat

this process on the new latest fractional period with positive

stock, till the beginning of the planning is reached. It shows

that we can transform any schedule to verify the property

on a sub-sequence 1, . . . , t without modifying the end of the

schedule on t + 1, . . . ,T . We will use this fact for proof of

Property 4. 2

Notice that until now, we only require the variable production

cost to have WW cost property, without making any assumption

on the fixed cost per batch. Indeed no new setup cost is involved

in the transformation. As a corollary, if the fixed cost per batch

also has WW cost structure, and the batch sizes are stationary,

we have the following property:

Property 4. In addition to Property 3, there exists an optimal

schedule which verifies for each period t,

st ≥ B⇒ xt(Pt − xt)(⌊Pt/B⌋B − xt) = 0

The property implies that if the inventory level is higher than

the batch size, then the production can only be null, P-saturated

or B-saturated.

Proof. We consider an optimal planning verifying the Prop-

erty 3. Again, we use a simple interchange argument. Consider

the latest period t of a schedule which does not verify the im-

plication: st ≥ B while the production at period t is neither

null, nor saturated. As inventory level is strictly positive and

the production is not P-saturated, t must be an FBS period due

to Property 3. Let t′ be the last period preceding t where pro-

duction occurs (xt′ > 0). We now show that we can delay a full

batch from t′ to t without increasing the cost of the planning.

First notice that at least B units are produced at time t′. In-

deed, if inventory level st′ is strictly positive, Property 3 again

imposes that at least a full batch size is produced. Otherwise

st′ = 0 and we necessarily have xt′ = dt′ + · · ·+ dt + st ≥ st ≥ B.

We can therefore delay B units from t′ to t maintaining the

feasibility of the schedule: inventory levels between t′ and t are

greater than st and hence greater than B, and an additional batch

can always be produced in an FBS period without violating pro-

duction capacity constraint. This interchange can only decrease

the cost of the schedule, due to the WW cost assumptions on

the fixed cost per batch: it is always more economical to de-

lay the production of a full batch size to a period whose setup

production cost is already paid.

Notice that, as exactly a quantity B has been delayed, period t

remains an FBS period, and thus still fulfills Property 3. It may

be a different matter for period t′ if it was P-saturated in the

planning. However, in this case we can modify the new sched-

ule only on sub-sequence 1, . . . , t′ such that it verifies Prop-

erty 3 (cf the proof of this property).

Repeating the transformation leads to either a B-saturated pe-

riod at t, or to a drop in the inventory level st below B, verifying

the property at t. We then iterate the same process on previous

periods till the beginning of the schedule is reached. 2

In order to efficiently detect FBS periods in a subplan, we in-

troduce the notion of sub-interval. Let us assume that the batch

size is stationary, Bt = B. As a result of Property 4, the periods

with an inventory level lower than B play a particular role. This

role is analogous to that of regeneration points when no fixed

costs per batch are involved. Indeed only 3 production possi-

bilities exist for other periods with an inventory level greater or

equal than B, namely 0, Pt and ⌊Pt/B⌋B. We define, similarly

to Definition 1, a sub-interval as follows:

Definition 5 (Sub-interval). Given a planning, a sub-

sequence of production on periods k, . . . , f −1 is a sub-interval,

denoted S [k f ], if sk and s f are strictly lower than B, and st ≥ B

for all t = k + 1, . . . , f − 1.

Notice that a sub-interval is necessarily included in a

subplan. We denote a sub-interval S (u f ] when inventory level

is null at u, i.e. u is the begining of the subplan. The same

notation stands for S [kv) with v the end of a subplan.

In the remaining of the paper we make the following as-

sumptions, implying in particular that Property 4 holds:

• Batch size Bt = B is stationary.

• Production cost pt is a stepwise linear function of the

quantity produced, for each period t. Moreover, the vari-

able production cost pu
t and the fixed cost per batch pb

t

have WW cost structure. Fixed production cost p
f
t can

take any positive values.

Under these assumptions, we have the following corollary of

Property 4, underlying the similarity between subplan and sub-

interval:

Corollary 1 (Fractional& FBS periods). Fractional periods

can only take place at the beginning of a subplan, while FBS

periods can only take place at the beginning of a sub-interval.

In the next section, under these assumptions, we present a

polynomial time algorithm to find an optimal planning, first in

the case where P mod B = 0, second for any constant values

of P and B.
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5. Polynomial time algorithms

The main idea of both algorithms is to compute the minimum

cost Z∗(u, v) associated to each possible batch constrained sub-

plan S (u,v). Using the decomposition property 2, the cost of an

optimal schedule can then be computed in O(T 2) by a shortest-

path like dynamic programming algorithm. The computation

of the optimum cost of a subplan relies on the notion of sub-

interval, and the computation of the cost of sub-intervals con-

stitutes hence the heart of our approach. Let u and v be two

consecutive regeneration points, and S [k f ] a sub-interval inside

this subplan. Let us denote by Cv[k, f ] the cost of the optimal

planning on the sub-interval S [k f ], assuming v as the next re-

generation point. This cost includes production cost inside [k,f]

and inventory holding costs till the beginning of period f .

We first present the cost computation for the case where P is

multiple of B. We describe the production structure of a con-

stant production capacitated case and we give the idea of the

solution algorithm. In the next section we extend this result to

the general case.

Figure 2 gives the production structure of a batch constrained

subplan, based on Properties 3 and 4: inside a sub-interval, only

saturated periods can be encountered. The entering inventory
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Figure 2: Structure of a batch constrained subplan with stationary production

capacity P (where P does not necessarily divide B). In the figure, (uv) denotes a

subplan and [k f ] a sub-interval. We represent the different types of production

that are possible at each period.

level ŝv
k

and the production x̂k at the beginning of a sub-interval

depend on the number of P-saturated and B-saturated periods

in the subplan. We use the following notations:

ρ[a,b] : number of P-saturated periods on sub-sequence

a, . . . , b − 1 for a given schedule.

ϑ[a,b] : number of B-saturated periods on sub-sequence

a, . . . , b − 1 for a given schedule.

We also denote by Q = ⌊P/B⌋B the production quantity of a

B-saturated period.

5.1. Case with P multiple of B

In this case P-saturated and B-saturated periods coincide and

we have Q = P. As a consequence, all production quantities in-

side a subplan are multiple of the batch size. The expression of

the inventory level ŝv
k

represents exactly the total demand until

the next regeneration point modulo B. However the production

quantity at period k depends on the number of B-saturated pe-

riods in the sub-interval. Using the inventory flow conservation

on S [k f ], we have:

xk + ϑ[k+1, f ]Q =

f−1∑

t=k

dt + s f − sk

Let us remark that the number ϑ[k+1, f ] of B-saturated periods is

(almost) fixed for given inventory levels s f and sk. Indeed let

(q, r) be the quotient and the rest of the Euclidean division of

the right side of the previous equation by Q. If xk < Q, we have

by definition (ϑ[k+1, f ], xk) = (q, r). Otherwise we have xk = Q,

r = 0 and ϑ[k+1, f ] = q−1. Hence the number ϑ̂[k f ] in a dominant

schedule is given by ⌊(
∑ f−1

t=k
dt + ŝv

f
− ŝv

k
)/Q⌋. We can state the

following proposition:

Proposition 1. The production at the beginning of a sub-

interval S [k f ], included in a subplan S (uv), depends only on pe-

riods f and v, and is given by

x̂k =


(
∑ f−1

t=k
dt + ŝv

f
− ŝv

k
) mod Q if this quantity is not null

0 or Q otherwise (no production or B-saturated period)

with ŝv
k
=


0 if k = u (k is the beginning of the subplan)

(
∑v−1

t=k dt) mod B otherwise

In addition we must have x̂k + ŝv
k
≥ dk for the planning to be

feasible.

The entering inventory of a sub-interval is entirely deter-

mined by the next regeneration point. To compute dynamically

Z∗(u, v), we introduce Z∗[k, v) the cost of an optimal planning

between the first period k of a sub-interval and v, the next re-

generation point. If we know that the sub-interval ends at pe-

riod f (possibly f = v), since the planning is fixed by v on

S [k f ], Bellman’s sub-optimality principle applies and we have

Z∗[k, v) = Cv[k, f ] + Z∗[ f , v). Figure 3 gives a picture of these

different notations. Hence we can compute dynamically Z∗[k, v)

based on the recursive equation:

Z∗[k, v) = min{ Cv[k, f ] + Z∗[ f , v) | k < f ≤ v }

The different steps of the computation of Z∗(u, v) are summa-

rized in pseudo-code in Algorithm 1. In the last step, the cost

of an optimal schedule OPT [u] on sub-sequence u, . . . ,T + 1

is dynamically computed as a shortest path in the graph where

nodes are the regeneration points and arcs are weighted with the

cost Z∗(u, v) to pass from node u to node v.

Let us see how to compute the cost Cv[k, f ] of sub-intervals.

Notice that with the possibility of having production inside the

6
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Figure 3: Dynamic computation of Z∗[k, v).

Algorithm 1 Principle steps of the algorithm for P mod B = 0

INPUTS: An instance of CLSP-SW

OUTPUT: The optimal planning cost

for v = 1 to T + 1 do {Computation of costs Z∗(u, v)}

Compute the array of all Cv[k, f ] for k < f ≤ v

for k = v downto 1 do {Computation of costs Z∗[k, v)}

Z∗[k, v)← min f=k+1,...,v{ C
v[k, f ] + Z∗[ f , v) }

end for

Cv
R
←{Compute the array of all Cv(u, k] for u < k ≤ v}

for u = v downto 1 do

{Computation of Z∗(u, v) for u = 1, . . . , v − 1}

Z∗(u, v)← mink=u+1,...,v{ C
v
R
[u, k] + Z∗[k, v) }

end for

end for

for u = T downto 1 do {Computation of the optimal cost

OPT [u] on sub-sequence u, . . . , T + 1}

OPT [u]← minv=u+1,...,T+1{ Z∗(u, v) + OPT [v] }

end for

return OPT [1]

sub-interval, the inventory level at a period t (k < t ≤ f ≤

v) depends on the number of saturated periods between t and

f . Let us denote by s̃t(ϑ) the entering inventory level at t if

exactly ϑ B-saturated periods occur in t, . . . , f − 1. Inventory

flow conservation gives:

s̃t(ϑ) =

f−1∑

i=t

di + ŝv
f − ϑQ

Let us introduce G(t, ϑ) the minimum cost of a planning be-

tween the end of period t till the beginning of period f , such

that exactly ϑ B-saturated periods occur in sub-sequence t +

1, . . . , f − 1. The final inventory level at f is ŝv
f
. In addition we

require that the inventory level at each period is greater than B.

Due to the dominances we clearly have

Cv[k, f ] = min


p(x̂k) +G(k, ϑ̂[k, f ]) if x̂k < Q

p(Q) +G(k, ϑ̂[k, f ] − 1) if x̂k = Q

For fixed f , the computation of all Cv[k, f ] can be achieved in

linear time by a backward iteration, since quantities x̂k and ϑ[k f ]

can be clearly deduced from their values at k + 1 in constant

time. This stands, of course, if G(t, ϑ) are precomputed first

for all values t = 1, . . . , f − 1 and ϑ = 0, . . . , f − t − 1. Since

only 2 production levels are possible (0 or Q), one can express

recursively this quantity with the simple equation:

G(t, ϑ) = ht(s̃t+1(ϑ))+ min



G(t + 1, ϑ) if s̃t+1(ϑ) ≥ dt+1

// no production at t + 1

pt+1(Q) +G(t + 1, ϑ − 1)

if s̃t+1(ϑ − 1) ≥ dt+1

// t + 1 is B-saturated

+∞ if st+1(ϑ) < B and t+1<f

// not valid

As initial conditions we have G( f , 0) = 0 and G( f , ϑ) = +∞

for ϑ > 0. Since s̃t can be deduced in constant time from s̃t+1,

for given f and v, one can compute G for all ϑ and ρ with a

complexity in O(T 2). It results that for a given regeneration

point v, the computation of the cost of all the sub-intervals be-

fore v takes a time complexity in O(T 3) for a space in O(T 2).

The overall complexity of Algorithm 1 has a time complexity

in O(T 4) and an O(T 2) space complexity.

5.2. General Case

We relax now the assumption that P is multiple of B. In

this case, the periods inside a sub-interval can be either with

no production, B-saturated or P-saturated. These latter periods

(P , Q) are not multiple of batch size B, and thus the entering

inventory level of the sub-interval will depend on them. Let us

denote by ρ[kv) the number of P-saturated periods on the sub-

sequence k, . . . , v − 1. The inventory flow conservation can be

written now as:

ŝv
k(ρ[kv)) =


0 if k = u (k is the beginning of the subplan)

(
∑v−1

t=k dt − ρ[kv)P) mod B, otherwise

Consider a sub-interval S [k f ] included in a subplan S (uv). Since

inventory level at period k is function of the number of P-

saturated periods till next regeneration point, the cost Cv[k, f ]

cannot be entirely determined by v. For given ρ[k,v) and ρ[ f v),

one can compute inventory levels sk and s f and thus decom-

pose the problem into computing the best planning on the

sub-interval respecting those inventory levels. Let us note

Cv[k, f ](ρ[k, f ], ρ[ f ,v)) the minimum cost of a schedule on the sub-

interval that admits exactly ρ[k, f ] P-saturated periods on S [k f ]

and ρ[ f ,v) P-saturated periods on sub-sequence f , . . . , v − 1. In

such a schedule, production at period k corresponds to the total

demand in sub-interval S [k, f ] which is not satisfied by saturated

periods (neither P-saturated nor B-saturated), knowing that the

entering inventory is ŝv
k
(ρ[k f ] + ρ[ f ,v)) and the final inventory at

f is ŝv
f
(ρ[ f ,v)). With material balance constraint we have only 3

possibilities for xk:

x̂k =



P (k is P-saturated), or

Q (k is B-saturated), or(∑ f−1

t=k
dt + ŝv

f
(ρ[ f ,v)) − ŝv

k
(ρ[k f ] + ρ[ f ,v)) − ρ[k f ]P

)
mod Q
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We denote for short by ϑ̂k the quotient in the Euclidian division

of
∑ f−1

t=k
dt + ŝv

f
(ρ[ f ,v)) − ŝv

k
(ρ[kv)]) − ρ[k f ]P by Q. Based on the 3

potential productions at k, we then have the formula:

Cv[k, f ](ρ[k, f ], ρ[ f ,v]) = pk(x̂k)+

+min



F(k, ϑ̂, ρ[k f ] − 1) if x̂k = P

F(k, ϑ̂ − 1, ρ[k f ]) if x̂k = Q

F(k, ϑ̂, ρ[k f ]) otherwise

where F(t, ϑ, ρ) is the minimum cost of a planning from the end

of period t till the beginning of period f , with no fractional nor

FBS periods, but with exactly ϑ B-saturated periods and ρ P-

saturated periods. The inventory level at each period must be

greater than B and the final inventory at f must be ŝv
f
(ρ[ f ,v)).

Notice that the inventory level at period t is hence equal to the

quantity s̃t(ϑ, ρ) =
∑ f−1

i=t
di + ŝv

f
(ρ[ f ,v)) − ϑQ − ρP. We have the

following recursive expression for F:

F(t, ϑ, ρ) = ht(st+1(ϑ, ρ))+

+min



F(t + 1, ϑ, ρ) if s̃t+1(ϑ, ρ) ≥ dt+1

pt+1(Q) + F(t + 1, ϑ − 1, ρ) if s̃t+1(ϑ − 1, ρ) ≥ dt+1

pt+1(P) + F(t + 1, ϑ, ρ − 1) if s̃t+1(ϑ, ρ − 1) ≥ dt+1

+∞ if s̃t+1(ϑ, ρ) < B if t + 1 < f

For given f , v and ρ[ f , v), computing F for all possible triplets

(t, ϑ, ρ) is achievable in time O(T 3), since s̃t can be deduced in

constant time from preceding values. Thus, computing all F

values is O(T 6) time. The time complexity of the algorithm to

compute Cv[k, f ] takes O(T 5) time. Its aim is to compute all

possible costs Cv[k, f ](ρ[k, f ], ρ[ f ,v]) of sub-intervals for a given

regeneration point v. The space complexity is simply in O(T 4)

to store each value.

The recursive formula to compute Z∗[k, v)(ρ), which is the

optimal planning cost over k, . . . , v − 1 with exactly ρ P-

saturated periods is given by:

Z∗[k, v)(ρ) = min
f

min
ρ[k f ]

{ Cv[k, f ](ρ[k, f ], ρ−ρ[k, f ])+Z∗[ f , v)(ρ−ρ[k, f ]) }.

The computation of all these costs for a given v can be done in

space O(T 2) and time O(T 4), if costs Cv[k, f ] are provided. The

optimal cost of the subplan S (uv) is then:

Z∗(u, v) = min
ρ
{ Z∗(u, v)(ρ) }

which requires a complexity in O(T 2) time to determine these

values for given u and v. In total, the algorithm has a time

complexity in O(T 6) for a space in O(T 4).

6. Computational experiments

The aim of this section is to demonstrate the efficiency of our

dynamic programming (DP) based algorithm versus a mixed

integer linear programming (MILP) formulation solved via a

commercial software. The MILP is coded in Mosel and exe-

cuted with Xpress IVE version 1.22. The DP is coded in Java.

Tests are carried out on an Intel CORE, 2.70 GHz with 4 Gb

of RAM. In the literature there are different MILP formulations

proposed for the lot sizing problem. We have chosen the ag-

gregated formulation (AGG) since it is the most natural and has

been shown to be quite efficient for the capacitated case (see

[18]). In Xpress default parameters are used for cut strategy

and presolving.

The complexity of the DP is only dependent on T, the length

of the time horizon. In contrast the computational time of the

MILP is very sensitive on each parameter: cost parameters,

horizon length, demands, production capacity, batch size, etc.

For a given instance, the resolution with no holding cost can be

very hard to achieve for Xpress, whereas with a positive holding

cost the resolution can be instantaneous. And vice versa. Our

aim is not to conduct exhaustive experiments, but to demon-

strate that (i) our DP algorithm can be used on quite large prac-

tical instances, and (ii) the MILP can perform quite badly in

regards to the computational time on this polynomial time prob-

lem. For this reason, we consider the following instance where

all the parameters are stationary: P = 200, B = 40, f = 100,

q = 10, h = 1, p = 0 and a demand of 41 units for each period.

Notice that we are in the case P mod B = 0. We carried out

tests for different length of horizon, reported in Table 4. We

limit the running time of Xpress to 300 s and give its gap if the

time limit is reached without a proven optimal solution.

Table 4: Computational results for DP and MILP.

Time horizon (T)

20 50 100 200 400

DP time <0.01 s <0.1 s 0.13 s 1.5 s 22.8 s

MILP gap at DP completion 0% 3.47% 32.58% 15.27% 4.04%

MILP gap after 300 s 0% 2.3% 4.23% 5.63% 3.97%

On one hand we can assert that our DP algorithm is very ef-

ficient and its computational time is only dependent on T. Even

for 200 periods it takes less than 2 seconds to compute the op-

timal cost. On the other hand, we have observed that the MILP

cannot improve its lower bound easily and that a small improve-

ment requires many nodes to be explored. It is also to be noticed

that on the instance presented (except for 20 periods), the MILP

ends after 300 s with an integer solution which is not optimum

compared to the cost provided by the DP algorithm.

7. Conclusion

We have studied an extension of the constant CLSP with con-

stant batch size under linear and WW cost structures. We have

proposed two polynomial time algorithms for the following two

cases: production capacity is multiple of the batch size and both

capacities can take arbitrary fixed values. Our results generalize

that of [5] with the addition of setup costs, however restricted

to a constant production capacity and without backlogging.

As a perspective, we may try to improve the time complexity

O(T 6) of the algorithm, using Monge arrays as in [3] or poly-

matroid properties as in [5]. Another perspective can be to ex-

tend our results to the backlogging case. Under backlogging
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assumptions, observe that all the properties we introduced still

hold, which implies that the inventory level is known modulo

B at the beginning of a sub-interval. However when backlog

is allowed, this inventory level can take negative values. It ap-

pears that additionnal dominance properties are needed to limit

the scope of those negative values and derive polynomial time

algorithms. Finally, an important limitation of our algorithm is

on the cost assumptions: linear and Wagner-Whitin costs are

assumed, as in [5]. The question is open for more general pro-

duction costs, especially with stepwise concave costs, whether

the problem remains polynomial or not with constant produc-

tion capacities.
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Appendix

The algorithm can be generalized to a special case of time

dependent production capacity where Pt = ktB, for some kt be-

longing to a fixed set A of integers. Notice that if A is not fixed

but part of the instance, the problem is NP-hard (see section

2). On the contrary, for a fixed subset A, the problem remains

polynomial. We give here only the main arguments. Consider

A = {a1, . . . , aq} a fixed subset of integers. For short let us de-

note by Q j = a jB the B-saturated production corresponding to

the jth production capacity (such a period is said of type j). The

inventory level at the begining of a sub-interval now depends

on our many production periods of each type are saturated till

the end of the subplan. More precisely, if period t is, say, of

type 1, given ϑ j the number of B-saturated periods of type j till

the end of the subplan for j ∈ A\{1}, we can deduce the en-

tering inventory level ŝ(ϑ2, . . . , ϑq) of period k. Following the

principles of section 5.2 it is possible to compute the optimal

cost Cv[k, f ](ϑ̄, ϑ̄′) of a sub-interval [k, f ], for given vectors ϑ̄

at period k and ϑ̄′ at period f , representing the number of B-

saturated batches of each type till the end of the subplan, ex-

cluding the type of period k, respectively of period f , which

can be deduced from flow conservation. This computation is

based on the optimal cost G(t, ϑ1, ϑ2, . . . , ϑq) representing the

optimal cost for the end of period t till the beginning of period

f , with exactly ϑ j batches of type j. For given value v, f and ϑ̄′

all these quantities G() can be computed in time T |A|+1, which

gives an overall time complexity in O(T (|A|+1)2

).
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