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Abstract

We give a polynomial-time dynamic programming al-
gorithm for solving the linear complementarity prob-
lem with tridiagonal or, more generally, Hessenberg
P-matrices. We briefly review three known tractable
matrix classes and show that none of them contains
all tridiagonal P-matrices.

1 Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the
linear complementarity problem LCP(M, q) is to find
vectors w, z ∈ Rn such that

w −Mz = q, w, z ≥ 0, wT z = 0. (1)

It is NP-complete in general to decide whether such
vectors exist [2]. But if M is a P-matrix (meaning
that all principal minors—determinants of principal
submatrices—are positive), then there are unique so-
lution vectors w̃, z̃ for every right-hand side q [10].
It is unknown whether these vectors can be found in
polynomial time [7].
The matrix M = (mij)

n
i,j=1 is tridiagonal if mij =

0 for |j − i| > 1. More generally, M is lower Hes-
senberg if mij = 0 for j − i > 1, and M is upper
Hessenberg if MT is lower Hessenberg; see Figure 1.
In this note we show that LCP(M, q) can be solved

in polynomial time if M is a lower (or upper) Hes-
senberg P-matrix. Polynomial-time results already
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Figure 1: A tridiagonal matrix (left) and a lower Hes-
senberg matrix (right); the nonzero entries are en-
closed in bold lines.

exist for other classes of matrices, most notably Z-
matrices [1], hidden Z-matrices [6], and transposed
hidden K-matrices [9]. Section 6 shows that none of
these classes contains all tridiagonal P-matrices.

For the remainder of this note, we fix a P-matrix
M ∈ Rn×n and a vector q ∈ Rn.

2 The optimal basis

For B ⊆ [n] := {1, 2, . . . , n}, we let MB be the n× n
matrix whose ith column is the ith column of −M
if i ∈ B, and the ith column of the n × n identity
matrix In otherwise. MB is invertible for every set B,
a direct consequence of M having nonzero principal
minors. We call B a basis and MB the associated
basis matrix.

The complementary pair (w(B), z(B)) associated
with the basis B is defined by

wi(B) :=

{

0 if i ∈ B

(M
−1

B q)i if i /∈ B
(2)
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and

zi(B) :=

{

(M
−1

B q)i if i ∈ B

0 if i /∈ B
, (3)

for all i ∈ [n].

Lemma 2.1. For every basis B ⊆ [n], the following
two statements are equivalent.

(i) The pair (w(B), z(B)) solves LCP(M, q), mean-
ing that w = w(B), z = z(B) satisfy (1).

(ii) M
−1

B q ≥ 0.

If both statements hold, B is called an optimal ba-
sis for LCP(M, q).

Proof. As a consequence of (2) and (3), w = w(B)
and z = z(B) already satisfy w−Mz = q and wT z =
0, for every B. Moreover, w, z ≥ 0 if and only if

w(B), z(B) ≥ 0; this in turn is equivalent to M
−1

B q ≥
0.

From now on, we assume w.l.o.g. that LCP(M, q)

is nondegenerate, meaning that (M
−1

B q)i 6= 0 for all
B ⊆ [n] and all i ∈ [n]. We can achieve this e.g.
through a symbolic perturbation of q. In this case,
we obtain the following

Lemma 2.2. There is a unique optimal basis B̃ for
LCP(M, q).

Proof. Let w̃, z̃ be solution vectors of LCP(M, q), and
set B̃ := {i ∈ [n] : w̃i = 0}. Since w̃T z̃ = 0, we have
z̃i = 0 if i ∈ [n] \ B̃. Hence, the vectors w̃, z̃ satisfy

q = (In | −M)

(

w̃
z̃

)

= M B̃

(

w̃[n]\B̃

z̃B̃

)

,

so w̃ = w(B̃), z̃ = z(B̃) follows. Hence, B̃ satisfies
statement (i) in Lemma 2.1 and is therefore an opti-
mal basis.
Uniqueness of w̃, z̃ [10] implies via Lemma 2.1 that

(w(B), z(B)) = (w(B̃), z(B̃)) for every optimal ba-

sis B. But then (2) and (3) show that (M
−1

B̃ q)i =

(M
−1

B q)i = 0 for all i ∈ B̃ ⊕ B. Under nondegener-
acy, there can be no such i, hence B = B̃.

3 Subproblems

For K ⊆ [n], let MKK be the principal submatrix of
M consisting of all entries mij with i, j ∈ K. Fur-
thermore, let qK be the subvector of q consisting of
all entries qi, i ∈ K.
By definition, the submatrix MKK is also a P-

matrix, and LCP(MKK , qK) is easily seen to inherit
nondegeneracy from LCP(M, q). Hence, Lemma 2.2
allows us to make the following

Definition 3.1. For k ∈ [n], B(k) ⊆ [k] is the unique
optimal basis of LCP(M[k][k], q[k]).

We also set B(−1) = B(0) = ∅.

4 The lower Hessenberg case

Let M be a lower Hessenberg matrix. Then we have
the following

Theorem 4.1. For every k ∈ [n], there exists an
index ℓ ∈ {−1, 0, . . . , k − 1} such that

B(k) = B(ℓ) ∪ {ℓ+ 2, ℓ+ 3, . . . , k}.

Proof. If B(k) = [k], the statement holds with index
ℓ = −1. Otherwise, let ℓ ∈ {0, 1, . . . , k − 1} be the
largest index such that ℓ + 1 /∈ B(k). The matrix
M[k][k] is lower Hessenberg as well, which implies that

the basis matrix M := M[k][k]B(k)
associated with

B(k) satisfies mij = 0 if i ≤ ℓ < j; see Figure 2.

0
0
0
1
0
0

0
0
0
1
0
0

↑ column ℓ+ 1 ↑ column ℓ+ 1

Figure 2: The basis matrix M = M[k][k]B(k)
in the

tridiagonal and lower Hessenberg case if ℓ + 1 /∈ Bk.
We have M [ℓ][ℓ] = M[ℓ][ℓ]B(k)∩[ℓ]

.

As a consequence, the system of k equations

M[k][k]B(k)
x = q[k] (4)
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includes the ℓ equations

M[ℓ][ℓ]B(k)∩[ℓ]
x[ℓ] = q[ℓ]. (5)

Since B(k) is the optimal basis of LCP(M[k][k], q[k]),
the unique solution x̃ of (4) satisfies x̃ ≥ 0; see
Lemma 2.1. Vice versa, the unique partial solution
x̃[ℓ] ≥ 0 of subsystem (5) shows thatB(k)∩[ℓ] = B(ℓ),
the unique optimal basis of LCP(M[ℓ][ℓ], q[ℓ]). To-
gether with the choice of ℓ, the statement of the the-
orem follows.

We remark that a variant of Theorem 4.1 for upper
Hessenberg matrices can be obtained by considering
lower right principal submatrices MKK .

5 Polynomial-time algorithm

A basis test is a procedure to decide whether a given
basis B ⊆ [n] is optimal for LCP(M, q). According
to Lemma 2.1, a basis test can be implemented in
polynomial time, using Gaussian elimination. In the
sequel, we will therefore adopt the number of basis
tests as a measure of algorithmic complexity. Here is
our main result.

Theorem 5.1. Let M ∈ Rn×n be a lower Hessenberg
P-matrix. The optimal basis B̃ = B(n) of LCP(M, q)
can be found with at most

(

n+1
2

)

basis tests.

Proof. We successively compute the optimal bases
B(−1), B(0), . . . , B(n), where B(−1) = B(0) = ∅.
To determine B(k), k > 0, we simply test the k + 1
candidates for B(k) that are given by Theorem 4.1.
In fact, we already know B(k) after testing k of
the candidates. This algorithm requires a total of
∑n

k=1 k =
(

n+1
2

)

basis tests.

Using an O(n3) Gaussian elimination procedure,
we obtain an O(n5) algorithm—this is certainly not
best possible. Faster algorithms are available if M
is a tridiagonal Z-matrix [5] or K-matrix [4, 3], but
to our knowledge, the above algorithm is the first
one to handle tridiagonal (and lower Hessenberg) P-
matrices in polynomial time. The case of upper Hes-
senberg matrices is analogous, see the remark at the
end of Section 4.

All upper and lower triangular P-matrices are hid-
den Z [12], meaning that linear complementarity
problems with triangular P-matrices can be solved
in polynomial time [6]. We can now also handle the
“almost” triangular Hessenberg P-matrices. As we
show next, there is a significant combinatorial differ-
ence between the two classes.

6 A tridiagonal example

Let us consider LCP(M, q) with

M =









36 −81 0 0
147 16 −74 0
0 114 28 171
0 0 −33 72









, q =









1
1

−1
1









.

(6)
This linear complementarity problem was found by
a computer search, with the goal of establishing
Lemma 6.2 below. It can be checked that M is a
tridiagonal P-matrix, but not a Z-matrix (a matrix
with nonpositive off-diagonal entries). To show that
some other known polynomial-time manageable ma-
trix classes fail to contain all tridiagonal P-matrices,
we need a new concept.

Definition 6.1. Let O(M, q) be the digraph with ver-
tex set 2[n] and arc set

{(B,B ⊕ {i}) : B ⊆ [n], i ∈ [n], (M
−1

B q)i < 0}.

This digraph was first studied by Stickney & Wat-
son [11]. Under nondegeneracy of LCP(M, q), it has
a unique sink that coincides with the optimal basis.

Lemma 6.2. For M, q as in (6), O(M, q) contains
the directed cycle {1, 2, 3, 4} → {1, 2, 3} → {1, 2} →
{2} → ∅ → {3} → {3, 4} → {2, 3, 4} → {1, 2, 3, 4}.

We omit the elementary proof. This implies that
M cannot be a hidden Z-matrix, since for such ma-
trices, O(M, q) is the acyclic digraph of some geo-
metric hypercube in Rn, with edges directed by a
linear function [6]. For the same reason, the tridi-
agonal P-matrix MT cannot be the transpose of a
hidden K-matrix (a hidden Z-matrix that is also a P-
matrix) [9]. We remark that Morris has constructed a
family of lower Hessenberg matrices M ∈ Rn×n such
that O(M, q) is highly cyclic for suitable q ∈ Rn [8].
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7 Beyond Hessenberg matrices

It is natural to ask whether LCP(M, q) can still be
solved in polynomial time if M is a matrix of fixed
bandwidth (number of nonzero diagonals), or fixed
half-bandwidth (number of nonzero diagonals above
or below the main diagonal); see Figure 3.

Figure 3: Matrices of bandwidth 5 (left) and right
half-bandwidth 2 (right).

Let M be of fixed right half-bandwidth t. General-
izing Theorem 4.1, one can prove that there are only
polynomially many candidates forB(k), provided that
B(k) has a t-hole, meaning that B(k) is disjoint from
some contiguous t-element subset of [k].

The only subset of [k] without a 1-hole is the set
[k] itself, and this is why the lower Hessenberg case
t = 1 is easy. But there is already an exponential
number of subsets of [k] without a 2-hole. Hence,
the above approach fails for t ≥ 2. It remains open
whether there is another polynomial-time algorithm
in the case of fixed (right) bandwidth.
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