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Abstract

We consider a polyhedron intersected by a two-term disjunction, and we characterize
the polyhedron resulting from taking its closed convex hull. This generalizes an earlier
result of Conforti, Wolsey and Zambelli on split disjunctions. We also recover as a special
case the valid inequalities derived by Judice, Sherali, Ribeiro and Faustino for linear
complementarity problems.
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1 Introduction

We consider a polyhedron P = {x ∈ Rn : Ax ≤ b} and a two-term disjunction c1x ≤ d1∨c2x ≤
d2. Let P1 = P ∩ {c1x ≤ d1} and P2 = P ∩ {c2x ≤ d2}. The main result of this paper is
a description of conv(P1 ∪ P2), the closed convex hull of P1 ∪ P2. The standard disjunctive
programming approach to this question is to express the closed convex hull of P1 ∪ P2 in a
higher dimensional space and to project the resulting polyhedron onto the original x-space.
In this paper, we follow a different approach introduced by Conforti, Wolsey and Zambelli [1].

To avoid trivial cases, we assume that c1, c2 ̸= 0, (c1, d1) is not a multiple of (c2, d2), and
P1 and P2 are nonempty. Before stating our main result, we give an easy sufficient condition.
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For w ∈ Rm, let w+ be the vector of Rm defined by w+
i = max(0, wi), and let w− ∈ Rm be

defined by w−
i = max(0,−wi).

Lemma 1. For any (w, u0, v0) ∈ Rm+2 such that wA + u0c
1 − v0c

2 = 0 and u0, v0 ≥ 0, the
inequality (w+A+ u0c

1)x ≤ max{w+b+ u0d1, w
−b+ v0d2} is valid for conv(P1 ∪ P2).

Proof. Since P1 and P2 are nonempty, the inequality αx ≤ β is valid for conv(P1 ∪P2) if and
only if there exists multipliers u, v ∈ Rm, u0, v0 ∈ R such that

α = uA+ u0c
1

α = vA+ v0c
2

β ≥ ub+ u0d1

β ≥ vb+ v0d2

u, v, u0, v0 ≥ 0.

Given (w, u0, v0) such that wA+ u0c
1 − v0c

2 = 0 and u0, v0 ≥ 0, choose u = w+, v = w−,
α = w+A + u0c

1 and β = max{w+b + u0d1, w
−b + v0d2} and notice that this satisfies the

system above.

Given a set of vectors X ⊆ Rm, we say that X is minimally dependent if the vectors in X
are linearly dependent but the vectors in every proper subset of X are linearly independent.

Let W(A, c1, c2) be the set of all (w, u0, v0) ∈ Rm+2 such that: (i) u0, v0 > 0; (ii) wA +
u0c

1−v0c
2 = 0; (iii) the set of vectors comprising c1, c2 and the rows of A relative to nonzero

entries of w is minimally dependent. Note that W(A, c1, c2) is a finite set of vectors up to
positive scaling. Indeed, finitely many row sets are considered by Condition (iii), and each
of these sets gives rise to one ray.

Let Wa = W(A, c1, c2) and Wb = W
(
(A, b), (c1, d1), (c

2, d2)
)
where (A, b) denotes the

augmented matrix.

Theorem 2. The polyhedron conv(P1 ∪ P2) is the set of all points in P satisfying

(w+A+ u0c
1)x ≤ max{w+b+ u0d1, w

−b+ v0d2} for every (w, u0, v0) ∈ Wa ∪Wb. (1)

Theorem 2 implies the following result of Conforti, Wolsey and Zambelli [1].

Corollary 3. Consider a polyhedron P = {x ∈ Rn : Ax ≤ b} and a split disjunction πx ≤
π0∨ πx ≥ π0+1 where π ∈ Zn, π0 ∈ Z. Let P1 = P ∩{πx ≤ π0} and P2 = P ∩{πx ≥ π0+1}.
The polyhedron conv(P1 ∪ P2) is the set of all points in P satisfying the inequalities

πx− s−
b−Ax

⌈sb⌉ − sb
≤ π0,

for all s ∈ Rm such that sA = π, π0 < sb < π0 + 1, and the rows of A relative to nonzero
entries of s are linearly independent.

This is the formula of the MIR inequalities of Nemhauser and Wolsey [3].
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Proof. The case (w, u0, v0) ∈ Wa cannot occur in Theorem 2 since no valid inequality for
conv(P1 ∪ P2) has w = 0 and c1 = π and c2 = −π are already dependent. Thus Theorem 2
reduces to: conv(P1∪P2) is the set of all points in P satisfying the inequalities (w+A+u0π)x ≤
w+b + u0π0 for every (w, u0, v0) ∈ Rm+2 such that: (i) u0, v0 > 0; (ii) wA + u0π + v0π = 0,
wb+u0π0+ v0(π0+1) = 0; (iii) the set of vectors comprising (π, π0), (π, π0+1) and the rows
of (A, b) relative to nonzero entries of w is minimally dependent.

Since the inequality (w+A+u0π)x ≤ w+b+u0π0 is defined up to a positive scaling factor,
we may assume u0 + v0 = 1. Set s = −w. Thus (ii) implies sA = π and sb = π0 + v0. Since
u0, v0 > 0 and π0 ∈ Z, it follows that π0 < sb < π0 + 1. Thus (w+A + u0π)x ≤ w+b + u0π0
can be rewritten as πx− s− b−Ax

⌈sb⌉−sb ≤ π0. Note that (iii) and the equation sA = π imply that
the rows of A corresponding to nonzero entries of s are linearly independent.

We first prove Theorem 2 for the homogeneous case where all the right-hand sides are
zero.

2 The Homogeneous Case

We consider a polyhedral cone P = {x ∈ Rn : Ax ≤ 0} and a two-term disjunction c1x ≤
0 ∨ c2x ≤ 0. Let P1 = P ∩ {c1x ≤ 0} and P2 = P ∩ {c2x ≤ 0}. Since both P1 and P2 are
nonempty, an inequality αx ≤ 0 is valid for conv(P1∪P2) if and only if there exist multipliers
u, v ∈ Rm, u0, v0 ∈ R such that

α = uA+ u0c
1

α = vA+ v0c
2

u, v, u0, v0 ≥ 0.

We denote by C the pointed cone defined by the vectors (α, u, u0, v, v0) satisfying the above
linear system. We will use the following facts.

Fact 4. Consider a point (α, u, u0, v, v0) ∈ C. If either u0 = 0 or v0 = 0 then the inequality
αx ≤ 0 is implied by Ax ≤ 0.

Fact 5. Let M be a matrix. The rows of M are minimally dependent if and only if there
exists a vector x̄ all of whose components are nonzero such that every solution of the system
xM = 0 is a multiple of x̄.

Lemma 6. A vector (α, u, u0, v, v0) in C such that u0, v0 > 0 is an extreme ray of C if and
only if uivi = 0, i = 1, . . . ,m, and the following holds: the set of vectors comprising c1, c2

and the rows of A corresponding to positive entries of u+ v is minimally dependent.

Proof. Let (α, u, v, u0, v0) be a vector in C such that u0, v0 > 0. Then (α, u, v, u0, v0) is an
extreme ray of C if and only if (u, v, u0, v0) is an extreme ray of the cone defined by

(u− v)A+ u0c
1 − v0c

2 = 0 (2)

u, v ≥ 0 (3)
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By Fact 5, this is the case if and only if the set of rows of the matrix


A

−A
c1

−c2

 corresponding

to positive entries of (u, v, u0, v0) is minimally dependent. Since u0, v0 > 0, this happens if
and only if uivi = 0 for all i = 1, . . . ,m and the set of vectors comprising c1, c2 and the rows
of A corresponding to positive entries of u+ v is minimally dependent.

Theorem 7. The cone conv(P1 ∪ P2) is the set of all points in P satisfying the inequalities

(w+A+ u0c
1)x ≤ 0 for every (w, u0, v0) ∈ W(A, c1, c2).

Proof. To obtain a description of conv(P1 ∪ P2) it suffices to consider inequalities αx ≤ 0
for which there exist multipliers u, v, u0, v0 such that (α, u, v, u0, v0) is an extreme ray of C.
Furthermore, we can restrict our attention to inequalities αx ≤ 0 that are not valid for P .
By Fact 4, this implies that u0, v0 > 0.

Lemma 6 implies that a vector (α, u, v, u0, v0) ∈ C such that u0, v0 > 0 is an extreme
ray of C if and only if u = w+ and v = w− for some (w, u0, v0) ∈ W(A, c1, c2). Given that
α = uA+ u0c

1, the theorem follows.

3 The Polyhedral Case

Now we consider a polyhedron P = {x ∈ Rn : Ax ≤ b} and a two-term disjunction c1x ≤
d1 ∨ c2x ≤ d2. Let P1 = P ∩ {c1x ≤ d1} and P2 = P ∩ {c2x ≤ d2}. Our assumptions are that
c1, c2 ̸= 0, (c1, d1) is not a multiple of (c2, d2), and P1 and P2 are nonempty.

Let P̃ be the following homogenized version of P : P̃ = {(x, x0) ∈ Rn+1 : Ax − bx0 ≤
0, x0 ≥ 0}. Similarly, let P̃1 = P̃ ∩ {c1x− d1x0 ≤ 0} and P̃2 = P̃ ∩ {c2x− d2x0 ≤ 0}.

Lemma 8. The inequality αx ≤ β is valid for conv(P1 ∪ P2) if and only if the inequality
αx− βx0 ≤ 0 is valid for conv(P̃1 ∪ P̃2).

Proof. Assume αx ≤ β is valid for conv(P1 ∪ P2). Take i ∈ {1, 2}; we know that αx ≤ β
is valid for Pi, we show that αx − βx0 ≤ 0 is valid for P̃i. To see this, take (x, x0) ∈ P̃i.
If x0 > 0, then ( x

x0
, 1) ∈ Pi and thus α x

x0
≤ β, or equivalently αx − βx0 ≤ 0. If x0 = 0,

then
(
A
ci

)
x ≤ 0 and so x is in the recession cone of Pi. Validity then implies that αx ≤ 0, or

equivalently αx− βx0 ≤ 0.
The converse is direct.

Proof of Theorem 2.

Let Ã =

(
A −b
0 −1

)
, c̃1 = (c1,−d1) and c̃2 = (c2,−d2). From these definitions and

employing Theorem 7 we have that

conv(P̃1 ∪ P̃2) = P̃ ∩
{
(x, x0) : (w̃

+Ã+ u0c̃
1)

(
x

x0

)
≤ 0 for all (w̃, u0, v0) ∈ W(Ã, c̃1, c̃2)

}
.
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Now using Lemma 8 we get that

conv(P1 ∪ P2) = P ∩
{
x : (w,w0)

+

(
A

0

)
x+ (w,w0)

+

(
−b

−1

)
+ u0c

1x− u0d1 ≤ 0

for all ((w,w0), u0, v0) ∈ W(Ã, c̃1, c̃2)
}

= P ∩
{
x : (w+A+ u0c

1)x ≤ w+b+ u0d1 + w+
0

for all ((w,w0), u0, v0) ∈ W(Ã, c̃1, c̃2)
}
.

We claim that for ((w,w0), u0, v0) ∈ W(Ã, c̃1, c̃2) we have w+b+u0d1+w+
0 = max{w+b+

u0d1, w
−b+ v0d2}. This is because

(w,w0)

(
A −b
0 −1

)
+ u0(c

1,−d1)− v0(c
2,−d2) = 0,

which implies that w0 = −wb − u0d1 + v0d2; noticing that w = w+ − w−, we get w0 =
(w−b+ v0d2)− (w+b+ u0d1), which gives the claim.

To complete the proof of the theorem, it remains to show that if ((w,w0), u0, v0) ∈
W(Ã, c̃1, c̃2) then (w, u0, v0) ∈ Wa ∪ Wb. If w0 = 0, then it follows from definitions that
(w, u0, v0) ∈ Wb. Now consider the case w0 > 0. Let (A′, b′) be the submatrix of (A, b)

corresponding to the nonzero entries of w. We claim that if N =


0 −1
A′ −b′

c1 −d1
c2 −d2

 is minimally

dependent, then M =

 A′

c1

c2

 is also minimally dependent. Suppose that the rows of M

are not minimally dependent and let λ be a nonzero vector with λj = 0 such that λM = 0.
Using the same λ, we can find a multiplier λ0 for the row (0,−1) such that (λ0, λ)N = 0,
contradicting the fact that N is minimally dependent. 2

4 Complementarity Problems and Separation

In this section, we relate Theorem 2 to previous work of Judice, Sherali, Ribeiro and Faustino
[2], who proposed a valid inequality for the complementarity problem.

We first observe that our two-term disjunction problem is equivalent to the following
complementarity problem: Ax = b, x ≥ 0 and x1 · x2 = 0.

We show how to transform the model Ax ≤ b with the disjunction c1x ≤ d1 ∨ c2x ≤ d2
into the above form. First, unrestricted variables xi can be replaced by the difference of two
nonnegative variables. By adding nonnegative slacks, the inequality system Ax ≤ b can be
transformed into equality form. Next consider the disjunction c1x ≤ d1 ∨ c2x ≤ d2. We add
the two equations c1x + s+1 − s−1 = d1 and c2x + s+2 − s−2 = d2 to the current system, with
s+1 , s

−
1 , s

+
2 , s

−
2 ≥ 0, and we impose s−1 · s−2 = 0.

Conversely, in a complementarity problem Ax = b, x ≥ 0, x1 ·x2 = 0, the complementarity
condition x1 · x2 = 0 can be formulated as the disjunction x1 ≤ 0 ∨ x2 ≤ 0.
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Thus Theorem 2 can be used to describe the convex hull of feasible solutions to Ax = b,

x ≥ 0, x1 · x2 = 0. Multipliers satisfying (ii) in W
(
(
(
A
−I

)
,
(
b
0

)
), (e1, 0), (e2, 0)

)
give valid

inequalities for Ax ≤ b, x ≥ 0, x1 · x2 = 0 and therefore for our complementarity problem
(here the unit vectors e1 and e2 are considered as row vectors). Condition (ii) is

µA = ν − u0e
1 + v0e

2 (4)

µb = 0. (5)

where µ are the multipliers associated with the constraint Ax ≤ b and ν the multipliers
associated with −x ≤ 0.

Using Ax = b, cut (1) becomes ∑
j

ν+j xj − u0x1 ≥ 0 (6)

Assume that we have a tableau for problem Ax = b, x ≥ 0 where x1 and x2 are both
basic and strictly positive:

x1 +
∑
j∈N

ā1jxj = b̄1 (7)

x2 +
∑
j∈N

ā2jxj = b̄2. (8)

We can use formula (6) to cut off the current solution x̄ which is infeasible since x̄1 · x̄2 =
b̄1 · b̄2 > 0. Multiplying (7) by 1/b̄1 and (8) by 1/b̄2 and subtracting we get

−x1
b̄1

+
x2
b̄2

+
∑
j∈N

(
ā2j

b̄2
− ā1j

b̄1

)
xj = 0. (9)

This equality is obtained from the system Ax = b using multipliers µ such that µb = 0.
Let ν, u0, v0 satisfy (4). Since µA are the coefficients in the left-hand-side of (9), this implies

u0 = 1/b̄1, v0 = 1/b̄2, and νj =
(
ā2j
b̄2

− ā1j
b̄1

)
for all j ∈ N . As observed above, these

multipliers will produce a valid inequality using formula (6). The corresponding cut is

−x1
b̄1

+
∑
j∈N

(
ā2j

b̄2
− ā1j

b̄1

)+

xj ≥ 0.

This is the cut of Judice, Sherali, Ribeiro and Faustino [2].
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