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Abstract

The Lasserre hierarchy of semidefinite programming (SDP) relaxations is
an effective scheme for finding computationally feasible SDP approximations
of polynomial optimization over compact semi-algebraic sets. In this paper,
we show that, for convex polynomial optimization, the Lasserre hierarchy
with a slightly extended quadratic module always converges asymptotically

even in the face of non-compact semi-algebraic feasible sets. We do this by
exploiting a coercivity property of convex polynomials that are bounded be-
low. We further establish that the positive definiteness of the Hessian of the
associated Lagrangian at a saddle-point (rather than the objective function
at each minimizer) guarantees finite convergence of the hierarchy. We ob-
tain finite convergence by first establishing a new sum-of-squares polynomial
representation of convex polynomials over convex semi-algebraic sets under a
saddle-point condition. We finally prove that the existence of a saddle-point
of the Lagrangian for a convex polynomial program is also necessary for the
hierarchy to have finite convergence.
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1 Introduction

When it comes to polynomial optimization over compact semi-algebraic feasible
sets, Lasserre’s hierarchy of semidefinite programming (SDP) relaxations [17] is an
effective scheme for solving polynomial optimization problems via computationally
feasible approximations. The hierarchy has asymptotic convergence in the sense that
the sequence of optimal values of the SDP relaxations converges to the optimal value
of the original problem [16, 17] under mild assumptions. It has finite convergence
for convex polynomial optimization over compact semi-algebraic sets whenever the
Hessian of the convex polynomial is positive definite at each minimizer [13, 16, 17],
requiring strict convexity of the convex polynomial (see Lemma 2.1 in Section 2).
The proofs of these convergence hold in the compact case of the semi-algebraic fea-
sible sets and they rely on the powerful sum-of-squares polynomial representation of
positive polynomials over compact semi-algebraic sets from real algebraic geometry
[23, 26].

The purpose of this paper is to show that, in the case of a non-compact semi-algebraic
feasible set of a convex polynomial program, an extended quadratic module, gener-
ated in terms of both the convex polynomial objective function and the polynomials
associated with the semi-algebraic set, leads to a converging hierarchy of semidefinite
programming (SDP) relaxations.

Main Contributions

We establish that the Lasserre hierarchy of SDP approximations with the extended
quadratic module always converges asymptotically for convex polynomial programs
without any compactness assumptions on the feasible sets. We also show that the
positive definiteness of the Hessian of the Lagrangian at a saddle-point guarantees
finite convergence of the hierarchy.

We prove asymptotic convergence of the hierarchy by exploiting a coercivity property
of convex polynomials that are bounded below. On the other hand, we derive finite
convergence by first proving that a convex polynomial with positive definite Hessian
at a single point is strictly convex and coercive, and then establishing that the
positive definiteness of the Hessian of the Lagrangian at a saddle-point guarantees a
sum-of-squares representation of a convex polynomial over a convex (not necessarily
compact) semi-algebraic set.

Moreover, we establish that the existence of a saddle-point of the associated La-
grangian at every minimizer of the convex problem is necessary for the Lasserre
hierarchy to have finite convergence. We give simple numerical examples explaining
the assumptions of our theorems.

Significance of our Contributions

The Lasserre hierarchy of SDP approximations with our extended quadratic mod-
ule is significant for convex polynomial programming because it not only converges
asymptotically without any regularity conditions on the feasible set but also exhibits
finite convergence without the standard strict convexity requirement of the objec-
tive function. Our conditions for finite convergence are given in terms of positive
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definiteness of the associated Lagrangian function rather than just the objective
function (c.f. [13, 16]).

The significance of our sum-of-squares polynomial representation is that it allows
us to construct a hierarchy of SDP approximations in terms of quadratic modules
rather than pre-orderings [3, 4, 5] even in the case of convex programs with non-
compact feasible sets. Also, our representation extends the corresponding known
representations of convex polynomials over compact feasible sets [13, 16].

2 Convergence of Lasserre Hierarchy without Com-

pactness

We begin by fixing notation and definitions. Throughout this paper, Rn denotes
the Euclidean space with dimension n. The inner product in R

n is defined by
〈x, y〉 := xTy for all x, y ∈ R

n. The non-negative orthant of Rn is denoted by R
n
+

and is defined by R
n
+ := {(x1, . . . , xn) ∈ R

n | xi ≥ 0}. Denote by R[x] the ring of
polynomials in x := (x1, x2, . . . , xn) with real coefficients.

A symmetric n× n matrix A is said to be positive definite, denoted by A ≻ 0, if
xTAx > 0 for all x ∈ R

n, x 6= 0. The gradient and the Hessian of a real polynomial
f ∈ R[x] at a point x∗ are denoted by ∇f(x∗) and ∇2f(x∗) respectively. Moreover,
for a function L : Rn × R

m → R, we use ∇2
xxL(x, λ) to denote the second order

derivative with respect to the variable x.
We say that a real polynomial f ∈ R[x] is sum of squares (SOS) if there exist real

polynomials fj , j = 1, . . . , r, such that f =
∑r

j=1 f
2
j . The set of all sum-of-squares

real polynomials is denoted by Σ2. An important property of the sum-of-squares
polynomials is that checking a polynomial is sum of squares or not is equivalent to
solving a semidefinite linear programming problem. For details see [17, 18, 22].

Recall that a quadratic module generated by polynomials −g1, . . . ,−gm ∈ R[x] is
defined as

M(−g1, . . . ,−gm) := {σ0 − σ1g1 − · · · − σmgm | σi ∈ Σ2, i = 0, 1, . . . , m}.

It is a subset of polynomials that are non-negative on the set {x ∈ R
n | gi(x) ≤

0, i = 1, . . . , m} and possess a very nice certificate for this property.
The quadratic module M(−g1, . . . ,−gm) is called Archimedean [18, 28] if there

exists p ∈ M(−g1, . . . ,−gm) such that {x : p(x) ≥ 0} is compact. When the
quadratic module M(−g1, . . . ,−gm) is compact, we have the following important
characterization of positivity of a polynomial over a semialgebraic set.

Lemma 2.1. (Putinar positivstellensatz) [23] Let f, gj, j = 1, . . . , m, be real
polynomials with K := {x : gj(x) ≤ 0, j = 1, . . . , m} 6= ∅. Suppose that f(x) > 0 for
all x ∈ K and M(−g1, . . . ,−gm) is Archimedean. Then, f ∈ M(−g1, . . . ,−gm).
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In this section we examine the Lasserre SDP relaxation scheme to the following
convex programming problem with polynomials:

f ∗ := min
x∈Rn

{f(x) | gi(x) ≤ 0, i = 1, 2, . . . , m}, (2.1)

where f, g1, . . . , gm are convex polynomials on R
n and

K := {x ∈ R
n | g1(x) ≤ 0, . . . , gm(x) ≤ 0} 6= ∅.

Let c ∈ R be such that c > f(x0) for some x0 ∈ K. For each integer k, we
define the truncated quadratic module Mk generated by the polynomials c− f and
−g1, . . . ,−gm as

Mk := {σ0 −
m
∑

i=1

σigi + σ(c− f) | σ, σ0, σ1, . . . , σm ∈ Σ2 ⊂ R[x],

deg σ0 ≤ 2k, deg σigi ≤ 2k and deg σ(c− f) ≤ 2k}.

Consider the following relaxation problem

f ∗
k := sup{µ ∈ R | f − µ ∈ Mk}. (2.2)

As is well known, the problem of computing the supremum f ∗
k can be reduced

to a semidefinite program (see [14], [17], [18], [22]). Moreover, we can see that

f ∗
k ≤ f ∗

k+1 ≤ · · · ≤ f ∗.

The following useful coercivity property of a convex polynomial, that is bounded
below, allows us to establish that the Lasserre hierarchy of SDP relaxations of Prob-
lem (2.1) has an asymptotic convergence in the sense that f ∗

k ↑ f ∗ as k → ∞. Recall
that a real-valued function f on R

n is coercive on R
n whenever lim inf

||x||→∞
f(x) = +∞.

Lemma 2.2 (Coercivity and Convex Polynomials). Let h ∈ R[x] be a convex
polynomial which is bounded below on R

n. Then there exist an orthogonal n × n

matrix A and a coercive polynomial g : Rl → R, 1 ≤ l ≤ n, such that

h(Ax) = h(A(x1, . . . , xl, . . . , xn)
T ) = g(x1, . . . , xl), for x = (x1, . . . , xl, . . . , xn)

T ∈ R
n.

In particular, h attains its infimum on R
n.

Proof. The proof is given in Appendix.

The following known existence result of a solution of convex polynomial programs
will also be useful for the proof of asymptotic convergence.

Lemma 2.3. [1] Let f0, f1, . . . , fm be convex polynomials on R
n. Let C := {x ∈ R

n :
fi(x) ≤ 0, i = 1, . . . , m}. Suppose that infx∈C f0(x) > −∞. Then, argminx∈Cf0(x) 6=
∅.
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Theorem 2.1 (Asymptotic Convergence). For Problem (2.1), let x∗ be a min-
imizer. Then, lim

k→∞
f ∗
k = f ∗.

Proof. [Positivity of Approximate Lagrangian by Convex Programming
Duality]. Let ǫ > 0. We first prove that there exists λ ∈ R

m
+ such that

f(x)− f(x∗) +
m
∑

i=1

λigi(x) + ǫ > 0, ∀x ∈ R
n.

Note that, by the assumption, f−f(x∗) ≥ 0 onK, whereK := {x ∈ R
n | g1(x) ≤

0, . . . , gm(x) ≤ 0}. Then, f + ǫ− f(x∗) > 0 on K. So, there exists δ > 0 such that
f + ǫ − f(x∗) > 0 on Kδ, where Kδ := {x ∈ R

n | g1(x) ≤ δ, . . . , gm(x) ≤ δ}.
Otherwise, we can find a sequence {δk} ⊂ R+, δk → 0 and {xk} ⊂ R

n such that
gi(xk) ≤ δk, i = 1, 2, . . . , m and f(xk) + ǫ− f(x∗) ≤ 0. Then,

0 ≤ inf
x,z1,...,zm

{
m
∑

i=1

z2i | f(x) + ǫ− f(x∗) ≤ 0, gi(x)− zi ≤ 0, i = 1, . . . , m}

≤
m
∑

i=1

δ2k = mδ2k → 0, as k → ∞.

So, from Lemma 2.3 that there exist y∗ ∈ R
n and z∗ = (z∗1 , . . . , z

∗
m) ∈ R

m such
that f(y∗) + ǫ − f(x∗) ≤ 0, gi(y

∗)− z∗i ≤ 0, i = 1, . . . , m, and
∑m

i=1 z
∗
i
2 = 0. Thus,

f(y∗) + ǫ− f(x∗) ≤ 0 and gi(y
∗) ≤ 0, i = 1, 2, . . . , m. This is a contradiction.

Now, by Lemma 2.3, f attains its minimizer at w∗ ∈ Kδ with f(w∗)+ǫ−f(x∗) >
0. As gi(x

∗) ≤ 0 < δ, i = 1, 2, . . . , m, the Slater condition holds for the constraints,
g1(x) ≤ δ, . . . , gm(x) ≤ δ, and so, by the convex programming duality [8, 9, 10], there
exist λi ≥ 0, i = 1, 2, . . . , m such that, for all x ∈ R

n, f(x) +
∑m

i=1 λi(gi(x) − δ) ≥
f(w∗). This gives us that, for all x ∈ R

n, f(x)+
∑m

i=1 λigi(x) ≥ f(w∗)+
∑m

i=1 λiδ ≥
f(w∗) > f(x∗)− ǫ.

[Asymptotic Representation by Putinar Positivstellensatz]. Let, for each
x ∈ R

n,

h(x) := f(x)− f(x∗) +

m
∑

i=1

λigi(x) + ǫ.

Then, h is a convex polynomial which is positive on R
n. Lemma 2.2 shows that

there exist an orthogonal n×n matrix A and a coercive polynomial g : Rl → R such
that

h(A(x1, . . . , xl, . . . , xn)) = g(x1, . . . , xl), for x = (x1, . . . , xl, . . . , xn) ∈ R
n. (2.3)

Let T = {x ∈ R
n : h(x) ≤ c− f(x∗) + ǫ}. Then, T is nonempty. As g is coercive on

R
l, it follows from (2.3) that

S := {x ∈ R
l | g(x1, . . . , xl) ≤ c− f(x∗) + ǫ}
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is a nonempty and compact set. The positivity of h guarantees that g > 0 over
R

l, and in particular g > 0 over S. Let p(x) = g(x) − c + f(x∗) − ǫ for all x ∈
R

l. Then M(−p) is Archimedean as −p ∈ M(−p) and {x : −p(x) ≥ 0} = S is
compact. Then, Putinar Positivstellensatz (Lemma 2.1) gives us that there exist
sum-of-squares polynomials σ0, σ1 over Rl such that

g = σ0 + σ1(c− f(x∗)− g + ǫ).

From (2.3), for each x = (x1, . . . , xl, xl+1, . . . , xn) ∈ R
n, h(Ax) = g(x1, . . . , xl). So,

for each x = (x1, . . . , xl, xl+1, . . . , xn) ∈ R
n,

h(Ax) = σ0(x1, . . . , xl) + σ1(x1, . . . , xl)(c− h(Ax)− f(x∗) + ǫ).

Then, for each z ∈ R
n,

h(z) = σ0

(

(A−1z)1, . . . , (A
−1z)l

)

+ σ1

(

(A−1z)1, . . . , (A
−1z)l

)

(c− h(z)− f(x∗) + ǫ).

Using the definition of h, we see that, for each z ∈ R
n,

f(z)− f(x∗) +
m
∑

i=1

λigi(z) + ǫ

= σ0

(

(A−1z)1, . . . , (A
−1z)l

)

+ σ1

(

(A−1z)1, . . . , (A
−1z)l

)

(c− f(z)−
m
∑

i=1

λigi(z)).

Thus, for each z ∈ R
n,

f(z)− f(x∗) + ǫ (2.4)

= σ0

(

(A−1z)1, . . . , (A
−1z)l

)

+ σ1

(

(A−1z)1, . . . , (A
−1z)l

)

(c− f(z))

−
m
∑

i=1

(

σ1

(

(A−1z)1, . . . , (A
−1z)l

)

λi + λi

)

gi(z) ,

where z 7→ σi

(

(A−1z)1, . . . , (A
−1z)l

)

, i = 0, 1, are sum-of-squares polynomials and
λi ≥ 0, for i = 1, 2, . . . , m.
[Convergence from Asymptotic Representation]. Equation (2.4) shows that,
for each ǫ > 0, f − f ∗ + ǫ ∈ M(−g1, . . . ,−gm, c − f). So, there exists k ∈ N such
that f ∗ − ǫ ≤ f ∗

k . This together with the fact that f ∗
k ≤ f ∗

k+1 ≤ · · · ≤ f ∗ gives us
that lim

k→∞
f ∗
k = f ∗.

3 Sums of Squares Representations and Finite Con-

vergence

In this section, we present new representation results for non-negativity of convex
polynomials over convex semi-algebraic sets. For related results, see [6, 7, 19, 21,
27, 28] and other references therein.
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The following Lemma on strict convexity and coercivity of convex polynomials
plays a key role in proving the desired representation of convex polynomials and
then the finite convergence of the Lasserre hierarchy.

Lemma 3.1 (Hessian Condition for Coercivity and Strict Convexity). Let
f ∈ R[x] be a convex polynomial. If ∇2f(x0) ≻ 0 at some point x0 ∈ R

n then f is
coercive and strictly convex on R

n.

Proof. A simple proof is given in the Appendix.

Let f and g1, . . . , gm ∈ R[x] be convex polynomials with K := {x ∈ R
n | gi(x) ≤

0, i = 1, . . . , m} 6= ∅. Suppose that argminKf 6= ∅ and that there exists x∗ ∈
argminKf . Then, convex programming duality [8, 9, 10, 11] shows that if there exists
x0 ∈ R

n such that gi(x
0) < 0 for i = 1, . . . , m, then there exists λ∗ ∈ R

m
+ such that

(x∗, λ∗) is a saddle-point of the Lagrangian function L(x, λ) := f(x) +
∑m

i=1 λigi(x)
in the sense that for each x ∈ R

n and for each λ ∈ R
m
+ ,

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ).

Theorem 3.1 (Representation of Convex Polynomials). Let f and g1, . . . , gm ∈
R[x] be convex polynomials with K := {x ∈ R

n | gi(x) ≤ 0, i = 1, . . . , m} 6= ∅.
Let L : Rn × R

m
+ → R be the Lagrangian function defined by L(x, λ) := f(x) +

∑m

i=1 λigi(x). If the Lagrangian function L has a saddle-point (x∗, λ∗) ∈ K × R
m
+

with ∇2
xxL(x

∗, λ∗) ≻ 0, then, for any c ∈ R with c > f(x∗), we have f − f(x∗) ∈
M(−g1, . . . ,−gm, c− f).

Proof. Since (x∗, λ∗) is a saddle-point of the Lagrangian function L and x∗ ∈ K, it
follows that, for each x ∈ R

n, L(x, λ∗) ≥ L(x∗, λ∗) = f(x∗) and x∗ is a minimizer of
f over K. Let

h(x) := L(x, λ∗)− f(x∗) = f(x)− f(x∗) +

m
∑

i=1

λ∗
i gi(x), ∀x ∈ R

n.

Clearly h is a convex polynomial and h(x) ≥ 0, for all x ∈ R
n. Moreover, it is

easy to check that h(x∗) = 0 = infx∈Rn h(x); in particular, ∇h(x∗) = 0. By a
direct calculation, the Hessian ∇2h of h at x∗ is positive definite. We deduce from
Lemma 3.1 that the polynomial h is strictly convex and coercive, which implies
that x∗ is the unique minimizer of h on R

n and that

S := {x ∈ R
n | h(x) ≤ c− f(x∗)}

is a nonempty compact set.
We may now apply [25, Corollary 3.6] (see also [24, Example 3.18]) to conclude

that there exist sum-of-squares polynomials σ0, σ1 ∈ Σ2 such that, for each x ∈ R
n,

h(x) = σ0(x) + σ1(x)(c− f(x∗)− h(x)).
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This reduces to, for each x ∈ R
n,

f(x)− f(x∗) = σ0 −
m
∑

i=1

(λ∗
i + λ∗

iσ1)gi(x) + σ1(c− f(x)).

Then the conclusion follows.

Example 3.1 (Importance of positive definite Hessian of L at a saddle–
point for representation). Let p ∈ R[x] be a convex form (i.e., homogeneous
polynomial) on R

n of degree at least 4 which is not a sum-of-squares polynomial.
See [2] for the existence of such polynomials.

Let f, g be convex polynomials on R
n×R defined by f(x, y) := p(x) and g(x, y) :=

y2−1. Then, f is not strictly convex. Let f ∗ := minx∈K f(x, y), whereK := {(x, y) ∈
R

n × R | g(x, y) ≤ 0} = R
n × [−1, 1].

Then f ∗ = 0 because f(0, 1) = 0, ∇f(0, 1) = 0 and f is convex. Consider the
corresponding Lagrangian L : Rn+1 × R+ → R defined by L(x, y, λ) := f(x, y) +
λg(x, y). Clearly, (x∗, y∗, λ∗) := (0, 1, 0) is a saddle point of L as L(x∗, y∗, λ) =
L(x∗, y∗, λ∗) = 0 ≤ f(x, y) = L(x, y, λ∗) for all x ∈ R

n and λ ∈ R+. Moreover, as
∇2p(x∗) = ∇2p(0) = 0, the Hessian of the Lagrangian function L is not positive
definite at the point (x∗, y∗, λ∗).

We now show that the representation of Theorem 3.1 fails. To see this, note
that the quadratic module M(1 − ‖x‖2) ⊂ R[x] is Archimedean. So, there exists
c > f(x∗, y∗) = 0 such that c− p ∈ M(1− ‖x‖2).

On the contrary, suppose that the representation of Theorem 3.1 holds. Then,

f(x, y) = σ0(x, y)− σ1(x, y)g(x, y) + σ(x, y)(c− f(x, y)) for all (x, y) ∈ R
n × R,

for some sum-of-squares polynomials σ, σ0, σ1 in the ring R[x, y]. Letting y = 1 and
noting that g(x, 1) = 0, we see that, for all x ∈ R

n

p(x) = f(x, 1) = σ0(x, 1) + σ(x, 1)(c− f(x, 1))

= σ0(x, 1) + σ(x, 1)(c− p(x)).

So, p ∈ M(c − p) ⊂ R[x]. Then we have p ∈ M(1 − ‖x‖2). By Proposition 4 in De
Klerk, Laurent, and Parrilo [12], a form belongs to the quadratic moduleM(1−‖x‖2)
if and only if it is a sum-of-squares polynomial. This contradicts our assumption
that the polynomial p is not a sum-of-squares. Thus, the representation fails in this
case.

As an easy application of Theorem 2.1, we obtain the following representation
under the Archimedean assumption. For related results, see [16, Theorem 3.4] and
[13, Corollary 3.3].

Corollary 3.1 (Representation with Archimedean Condition). Let f, g1, . . . , gm ∈
R[x] be convex polynomials, and let K := {x ∈ R

n | gi(x) ≤ 0, i = 1, . . . , m} 6= ∅.
Suppose that the following assumptions hold:

8



(i) There exists x0 ∈ R
n such that gi(x

0) < 0 for i = 1, . . . , m.

(ii) ∇2
xxL(x

∗, λ∗) ≻ 0 at a saddle-point (x∗, λ∗) ∈ R
n×R

m
+ of the Lagrange function

L.

(iii) The quadratic module M(−g1, . . . ,−gm) is Archimedean.

Then, f − f(x∗) ∈ M(−g1, . . . ,−gm).

Proof. The assumption (iii) implies that the setK is compact, and so argminx∈Kf(x) 6=
∅. The assumption (i) guarantees that there exists λ∗ ∈ R

m
+ such that (x∗, λ∗)

is a saddle-point of the Lagrangian function L. Let c ∈ N be an arbitrary nat-
ural number satisfying c > f(x∗). Thanks to Theorem 2.1, we get f − f(x∗) ∈
M(−g1, . . . ,−gm, c− f).

On the other hand, by taking c large enough, if necessary, from the assump-
tion (iii) we may assume that c − f ∈ M(−g1, . . . ,−gm). Therefore f − f(x∗) ∈
M(−g1, . . . ,−gm, c− f) = M(−g1, . . . ,−gm), which completes the proof.

Remark 3.1 (Comparisons with known recent results). In the special case
where the Hessian ∇2f of the objective function f is positive definite at a minimizer
x∗ ∈ argminKf , then the Slater condition ensures that there exists λ∗ ∈ R

m
+ such

that (x∗, λ∗) is a saddle-point of the Lagrangian function L, and so, the Hessian∇2
xxL

of L is positive definite at (x∗, λ∗). Hence, it is easy to see that the above corollary
extends the representation results for convex polynomial optimization established
in [16, Theorem 3.4] and [13, Corollary 3.3].

The following simple one dimensional example illustrates that our representation
result can be applied to the case where the Hessian ∇2f of the objective function f

is not positive definite at a minimizer.

Example 3.2. (Verifying representation: Non-positive definiteness case
of the Hessian ∇2f) Let f(x) = x and g(x) = x2 − 1. Then, K := {x ∈
R | g(x) ≤ 0} = [−1, 1]. Clearly, argminKf = {−1} and f is not positive definite
at the unique minimizer x∗ := −1. On the other hand, direct verification shows
that (x∗, λ∗) := (−1, 1

2
) is a saddle point of the Lagrangian function L(x, λ) :=

f(x) + λg(x) = x + λ(x2 − 1), and ∇2
xxL(x

∗, λ∗) ≻ 0. Moreover, Slater condition is
satisfied and the quadratic module M(−g) is Archimedean. So, it follows from the
previous corollary that f − f(x∗) = f + 1 ∈ M(−g). Indeed, f − f(x∗) = x + 1 =
1
2
(x+ 1)2 + 1

2
(1− x2) ∈ M(−g).

As we see in the following theorem, under the Slater condition and the positive
definiteness of the Hessian of f at a minimizer, we obtain a sharper representation
than the one in Theorem 3.1.

Theorem 3.2 (Sharp Representation with positive definite ∇2f(x∗)). Let
f and g1, . . . , gm ∈ R[x] be convex polynomials with K := {x ∈ R

n | gi(x) ≤
0, i = 1, . . . , m} 6= ∅. Let argminx∈Kf(x) 6= ∅ and x∗ ∈ argminx∈Kf(x). If there
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exists x0 ∈ R
n such that gi(x

0) < 0, for i = 1, . . . , m and if ∇2f(x∗) ≻ 0 then, for
any c > f(x∗), there exist sum-of-squares polynomials σ0, σ1 ∈ Σ2 and Lagrange
multipliers λ∗

i ≥ 0, i = 1, 2, . . . , m such that

f − f(x∗) = σ0 −
m
∑

i=1

λ∗
i gi + σ1(c− f).

Proof. The Slater condition and convex programming duality guarantee that there
exists λ∗ ∈ R

m
+ such that (x∗, λ∗) is a saddle-point of the Lagrangian function

L(x, λ) := f(x) +
∑m

i=1 λigi(x). So, for each x ∈ R
n, L(x, λ∗) ≥ L(x∗, λ∗) = f(x∗).

Then,

h(x) := L(x, λ∗)− f(x∗) = f(x)− f(x∗) +
m
∑

i=1

λ∗
i gi(x) ≥ 0, ∀x ∈ R

n.

Now, by the assumption, ∇2f(x∗) ≻ 0 and so, Lemma 3.1 shows that f is a
strictly convex and coercive polynomial. Then, the convex set S̄ := {x ∈ R

n | f(x) ≤
c} is nonempty and compact. Since h ≥ 0 on S̄, [25, Corollary 3.6] (see also [24,
Example 3.18]) gives us that there exist sum-of-squares polynomials σ0, σ1 ∈ Σ2

such that, for each x ∈ R
n,

h(x) = σ0(x) + σ1(x)(c− f(x)).

This reduces to, for each x ∈ R
n,

f(x)− f(x∗) = σ0 −
m
∑

i=1

λ∗
i gi(x) + σ1(c− f(x)).

Then the conclusion follows.

Remark 3.2 (Constraint qualifications). In Corollary 2.1 and Theorem 2.2, we
have used the Slater condition for guaranteeing the existence of a saddle-point. For
other general constraint qualifications ensuring the existence of a saddle point of the
Lagrangian function, see [10, 11].

We now show that the Lasserre hierarchy of SDP relaxations of Problem (2.1)
has finite convergence which means that f ∗

k = f ∗ for some integer k and Problem
(2.2) achieves its optimal value f ∗

k .

Theorem 3.3 (Finite Convergence). For Problem (2.1), let L : Rn×R
m
+ → R be

the Lagrangian function defined by L(x, λ) = f(x) +
∑m

i=1 λigi(x). Assume that the
Lagrangian function L has a saddle-point (x∗, λ∗) ∈ K×R

m
+ with ∇2

xxL(x
∗, λ∗) ≻ 0.

Then there exists an integer k such that f ∗
k = f ∗ and Problem (2.2) achieves its

optimal value.

10



Proof. We know that f ∗
k ≤ f ∗ for all k ≥ 1. On the other hand, it follows from

Theorem 3.1 that there exist sum-of-squares polynomials σ, σ0, σ1, . . . , σm ∈ Σ2

such that

f − f ∗ = σ0 − σ1g1 − · · · − σmgm + σ(c− f).

Hence f ∗
k = f ∗ for some k ∈ N. As (x∗, λ∗) ∈ K × R

m
+ is a saddle-point of L, x∗

is minimizer of Problem (2.1) and f ∗ = f(x∗) which is also a solution of Problem
(2.2).

Remark 3.3. It is worth noting that in the case, where ∇2f(x∗) is positive definite
at a minimizer x∗ of Problem (2.1), using Theorem 2.2, one can establish finite
convergence of a sharper form of approximation Problem (2.2), where the Lagrange
multipliers, λ∗

i , i = 1, 2, . . . , m, associated with the minimizer x∗, are replaced by
σi, i = 1, 2, . . . , m, in Mk.

The following example shows that the finite convergence in the preceding theorem
may fail if the saddle-point condition does not hold at a minimizer.

Example 3.3 (Importance of Saddle-point Condition for Finite Conver-
gence). Consider the minimization problem

min{f(x, y) | g(x, y) ≤ 0 }, (3.5)

where f(x, y) = x2+y2+x+y, g(x, y) = x2+y2 and K := {(x, y) ∈ R
2 | g(x, y) ≤ 0}.

Clearly, the unique minimizer of (3.5) is (x∗, y∗) = (0, 0), f ∗ := f(x∗, y∗) = 0 and
∇2f(x∗, y∗) = diag(2, 2) ≻ 0. It is easy to check that the saddle-point condition is
not satisfied at (x∗, y∗) = (0, 0).

Now, let c be a real number such that c > f ∗ = 0. For each k, the kth-order
relaxation problem of (3.5) is

sup{µ ∈ R | f − µ ∈ Mk},

whereMk := {σ0−σ1g+σ(c−f) | σ, σ0, σ1 ∈ Σ2, deg σ0 ≤ 2k, deg σ1g ≤ 2k, deg σ(c−
f) ≤ 2k}. We now show that the finite convergence fails. We establish this by
the method of contradiction. Suppose that Problem (3.5) has finite convergence.
Then, there exists k0 ∈ N, σ, σ0, σ1 ∈ Σ2 with deg σ0 ≤ 2k0, deg σ1g ≤ 2k0 and
deg σ(c − f) ≤ 2k0 such that f = f − f ∗ = σ0 − σ1g + σ(c − f). This gives us, for
each (x, y) ∈ R

2, that
(

1+σ(x, y)+σ1(x, y)
)

(x2+y2)+(1+σ(x, y))(x+y) = σ0(x, y)+cσ(x, y) ≥ 0. (3.6)

Letting (x, y) = (− 1
k
,− 1

k
) in (3.6), where k ∈ N, yields

(

1 + σ(−
1

k
,−

1

k
) + σ1(−

1

k
,−

1

k
)
) 2

k2
− (1 + σ1(−

1

k
,−

1

k
))
2

k
≥ 0.

Then,

1 + σ(−
1

k
,−

1

k
) + σ1(−

1

k
,−

1

k
) ≥ k(1 + σ1(−

1

k
,−

1

k
)) ≥ k,

which is impossible as the left hand side converges to 1 + σ(0, 0) + σ1(0, 0).
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The following theorem shows that the existence of saddle-point of the Lagrangian
function of Problem (2.1) at each minimizer is indeed necessary for our finite con-
vergence.

Theorem 3.4 (Necessity of Saddle-point for Finite Convergence). For Prob-
lem (2.1), let L : Rn × R

m
+ → R be the Lagrangian function defined by L(x, λ) :=

f(x) +
∑m

i=1 λigi(x). If the Lasserre hierarchy has finite convergence then, for ev-
ery minimizer x∗ of Problem (2.1), there exists λ∗ ∈ R

m
+ such that (x∗, λ∗) is a

saddle-point of L.

Proof. Assume that the Lasserre hierarchy has finite convergence. Let x∗ ∈ K with
f ∗ := f(x∗) = minx∈K f(x). Then,

f − f ∗ = σ0 − σ1g1 − · · · − σmgm + σ(c− f),

where σ, σ0, σ1, . . . , σm ∈ Σ2 are sum-of-squares polynomials and c > f(x∗). This
gives us that

(1 + σ)(f − f ∗) = σ0 − σ1g1 − · · · − σmgm + σ(c− f ∗).

Thus, for all x ∈ R
n,

(

1 + σ(x)
)

(f(x)− f ∗) +

m
∑

i=1

σi(x)gi(x) = σ0(x),

where σ0 := σ0 + σ(c − f ∗) ∈ Σ2. Let x = x∗. Then, we have
∑m

i=1 σi(x
∗)gi(x

∗) =
σ0(x

∗) ≥ 0. This together with σi ≥ 0 and x∗ ∈ K implies that

σ0(x
∗) = 0 and σi(x

∗)gi(x
∗) = 0, i = 1, . . . , m,

and hence σ0(x
∗) = σ(x∗) = 0. As σ0(x) ≥ 0 and σ0(x

∗) = 0, x∗ is a minimizer of
σ0 and so,

0 = ∇σ0(x
∗) = (1 + σ(x∗))∇f(x∗) +

m
∑

i=1

σi(x
∗)∇gi(x

∗) +
m
∑

i=1

∇σi(x
∗)gi(x

∗)

= ∇f(x∗) +
m
∑

i=1

σi(x
∗)∇gi(x

∗) +
m
∑

i=1

∇σi(x
∗)gi(x

∗).

Since σi(x
∗)gi(x

∗) = 0, i = 1, . . . , m, it follows that if gi(x
∗) < 0 then σi(x

∗) = 0
and hence ∇σi(x

∗) = 0. Consequently, ∇σi(x
∗)gi(x

∗) = 0, i = 1, . . . , m. So, we have

∇f(x∗) +
m
∑

i=1

λ∗
i∇gi(x

∗) = 0,

where λ∗
i := σi(x

∗), i = 1, . . . , m. Hence, by convexity of f +
∑m

i=1 λ
∗
i gi, we get that,

for each x ∈ R
n,

f(x) +

m
∑

i=1

λ∗
i gi(x) ≥ f(x∗) +

m
∑

i=1

λ∗
i gi(x

∗).
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It is now easy to check that (x∗, λ∗) is a saddle-point of the Lagrangian function of
Problem (2.1).

Remark 3.4. For related necessary conditions for finite convergence of Lasserre
hierarchy for optimization problems, where feasible sets are compact, see [20].

4 Appendix: Proofs of Coercivity & Strict Con-

vexity of Convex Polynomials

Proof of Lemma 2.2. Let

Eh := {d ∈ R
n | h(x+ td) = h(x), ∀ t ∈ R and ∀ x ∈ R

n}.

Then, it is easy to verify directly that Eh is a subspace of Rn. Let l := n− dimEh,

and let e1, . . . , en ∈ R
n be an orthonormal basis such that span{el+1, . . . , en} =

Eh and span{e1, . . . , el} = E⊥
h , where E⊥

h is the orthogonal complement of Eh.
Let A := [e1, . . . , en]. Then, A is an orthogonal matrix. Define g : Rl → R by

g(x1, . . . , xl) := h
(

∑l

i=1 xiei

)

. Then, g is a convex polynomial and bounded below

on R
l. Further, we have, for all x ∈ R

n,

h(Ax) = h

(

n
∑

i=1

xiei

)

= h

(

l
∑

i=1

xiei +

n
∑

i=l+1

xiei

)

= h

(

l
∑

i=1

xiei

)

= g(x1, . . . , xl),

where the third equality follows by the fact that
∑n

i=l+1 xiei ∈ Eh.

To verify that g is indeed coercive, we assume, on the contrary, that S := {x :
g(x) ≤ α} is unbounded for some α ∈ R. Let {ak} ⊆ S such that ‖ak‖ → +∞ as
k → ∞. Let a ∈ R

l. Then, by passing to subsequence if necessary, we may assume
that ak−a

‖ak−a‖
→ v 6= 0. Let t ≥ 0. For sufficiently large k, we have 0 < t

‖ak−a‖
< 1,

and so

g

(

a + t
ak − a

‖ak − a‖

)

= g

((

1−
t

‖ak − a‖

)

a+
t

‖ak − a‖
ak

)

≤

(

1−
t

‖ak − a‖

)

g(a) +
t

‖ak − a‖
g(ak)

≤ max{g(a), α}.

Letting k → ∞, we get that g(a+ tv) ≤ max{g(a), α} for all t ≥ 0. By assumption,
g is bounded below. So, t 7→ g(a+ tv) is either a constant or a polynomial with even
degree ≥ 2. It then follows that g takes a constant value on {a + tv : t ≥ 0} for all
a ∈ R

l. Then, for all t ≥ 0 and for any a ∈ R
l, g(a− tv) = g(a − tv + tv) = g(a).

Thus,
g(a) = g(a+ tv) for all a ∈ R

l and t ∈ R. (4.7)
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Let ṽ := (vT , 0, . . . , 0)T ∈ R
n and d := Aṽ =

∑l

i=1 viei ∈ E⊥
h . Since v 6= 0, d 6= 0.

Moreover, for all x ∈ R
n and t ∈ R,

h(x+ td) = h(A(A−1x+ tṽ)) = g(z + tv) = g(z) = h(x),

where z =
(

(A−1x)1, . . . , (A
−1x)l

)

∈ R
l. So, by definition, d ∈ Eh. Consequently,

we obtain that d ∈ (Eh ∩ E⊥
h )\{0}, which is impossible. Hence, g is coercive.

Since the polynomial g is coercive, there exists z∗ := (z∗1 , . . . , z
∗
l ) ∈ R

l such
that g(z∗) = infz∈Rl g(z). Let x∗ := A

(

z∗

0

)

= z∗1e1 + · · · + z∗l el ∈ E⊥
h ⊂ R

n. Then,
h(x∗) = infx∈Rn h(x) = g(z∗).

Proof of Lemma 3.1. (Coercivity) Let c be a real number such that c ≥ f(x0).
To prove coercivity of f on R

n, it suffices to show that the set

S := {x ∈ R
n | f(x) ≤ c}

is compact. On the contrary, suppose that there exists a sequence {ak}k≥0 ⊂ S such
that ‖ak‖ → ∞ as k → ∞. Without lost of generality, we may assume that there
exists v 6= 0 such that

v := lim
k→∞

ak − x0

‖ak − x0‖
.

Let t ≥ 0. For sufficiently large k, we have 0 < t
‖ak−x0‖

< 1, and so

f

(

x0 + t
ak − x0

‖ak − x0‖

)

= f

((

1−
t

‖ak − x0‖

)

x0 +
t

‖ak − x0‖
ak

)

≤

(

1−
t

‖ak − x0‖

)

f(x0) +
t

‖ak − x0‖
f(ak)

≤ c.

Letting k → ∞, we get

f(x0 + tv) ≤ c, for all t ≥ 0.

On the other hand, as the Hessian ∇2f(x0) is positive definite, 〈∇
2f(x0)v, v〉 > 0

and so, for each t ∈ R,

f(x0 + tv) = f(x0) + 〈∇f(x0), v〉t+
1

2
〈∇2f(x0)v, v〉t

2 + higher order terms in t.

Hence, the one dimensional convex polynomial t 7→ f(x0+ tv) is of even degree ≥ 2.
This is a contradiction since f(x0 + tv) ≤ c for all t ≥ 0.
(Strict Convexity) We establish strict convexity of f by the method of contradic-
tion and suppose that f is not strictly convex. Then, there exist x, y ∈ R

n, x 6= y,

and t0 ∈ (0, 1) such that

f((1− t0)x+ t0y) = (1− t0)f(x) + t0f(y).
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Define h : [0, 1] → R by h(t) = f((1− t)x+ ty)− (1− t)f(x)− tf(y). Then, h is a
convex polynomial, h(t) ≤ 0, for each t ∈ [0, 1] and h(t0) = 0 = maxt∈[0,1] h(t). As h
is a convex function on [0, 1], it attains its maximum on the extreme points of [0, 1],
and so,

f((1− t)x+ ty) = (1− t)f(x) + tf(y), ∀t ∈ [0, 1].

Now, define a polynomial ϕ on R by ϕ(λ) := f
(

x+λ(y−x)
)

, λ ∈ R. Clearly, ϕ is
affine on [0, 1], and moreover, it is coercive on R because f is coercive on R

n, shown
above. We show that ϕ is indeed affine over R. Let the degree of the one-dimensional
polynomial ϕ be d. Then, for each λ ∈ R,

ϕ(λ) = ϕ(0) + ϕ′(0)λ+
ϕ′′(0)

2
λ2 + · · ·+

ϕ(d)(0)

d!
λd.

As ϕ is affine over [0, 1], ϕ(i)(0) = 0 for i = 2, . . . , d, and so, ϕ(λ) = ϕ(0) + ϕ′(0)λ.
Hence, ϕ is affine over R. This contradicts the fact that ϕ is coercive on R.

Remark 4.1. The conclusion of Lemma 2.1 may also be derived from error bound
results of convex polynomials (see e.g [29] and other references therein). However,
for the sake of simplicity and self-containment, we have given an elementary direct
proof for Lemma 2.1.
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