

László A.Végh, Giacomo Zambelli

A polynomial projection-type algorithm for
linear programming

Article (Accepted version)
(Refereed)

 Original citation:
Végh, László A. and Zambelli, Giacomo (2014) A polynomial projection-type algorithm for linear
programming. Operations Research Letters, 42 (1). pp. 91-96. ISSN 0167-6377

DOI: 10.1016/j.orl.2013.12.007

© 2014 Elsevier B.V.

This version available at: http://eprints.lse.ac.uk/55610/

Available in LSE Research Online: October 2017

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=l.vegh@lse.ac.uk
http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=g.zambelli@lse.ac.uk
http://www.journals.elsevier.com/operations-research-letters/
http://doi.org/10.1016/j.orl.2013.12.007
http://www.elsevier.com/
http://eprints.lse.ac.uk/55610/

A polynomial projection-type algorithm for linear

programming

László A. Végh, Giacomo Zambelli∗

Department of Management, London School of Economics and Political Science

Abstract

We propose a simple O([n5/ logn]L) algorithm for linear programming fea-
sibility, that can be considered as a polynomial-time implementation of the
relaxation method. Our work draws from Chubanov’s “Divide-and-Conquer”
algorithm [5], where the recursion is replaced by a simple and more efficient
iterative method. A similar approach was used in a more recent paper of
Chubanov [7].

Keywords: Linear Programming, polynomial-time algorithms, relaxation
method.
2010 MSC: 90C05

1. Introduction

In the linear programming feasibility problem we are given a matrix A ∈
Zm×n and a vector b ∈ Zm, and we wish to compute a feasible solution to
the system

Ax = b
x ≥ 0

(1)

or show that none exists. The first practical algorithm for linear programming
was the simplex method, introduced by Dantzig in 1947 [8]; while efficient in
practice, for most known pivoting rules the method has an exponential-time
worst case complexity. The first polynomial-time algorithm, the ellipsoid
method, was introduced by Khachiyan [12], followed a few years later by

∗Corresponding author
Email addresses: l.vegh@lse.ac.uk (László A. Végh), g.zambelli@lse.ac.uk

(Giacomo Zambelli)

Preprint submitted to Operations Research Letters December 16, 2013

Karamarkar’s first interior point method [11]. Between the 40s and the 70s
several other algorithms with exponential worst case complexity were devel-
oped, such as von Neumann’s method (see [9]) and the relaxation method by
Agmon [2] and Motzkin and Shoenberg [14]. Betke [4] and Chubanov [5, 6] in-
troduced polynomial-time rescaled versions of the relaxation method. A sub-
stantially simpler and improved algorithm was recently given by Chubanov
[7]. Computational experiments of Chubanov’s original algorithm, as well as
a different treatment, were carried out by Basu, De Loera and Junod [3].

Here we present a polynomial time algorithm based on [5]. The engine
behind our algorithm is the Bubble algorithm subroutine, which can be con-
sidered as an unfolding of the recursion in the Divide-and-Conquer algorithm
described in [5]. Our algorithm is also related to the one in [7]; in particular,
our Bubble algorithm is an analogue of the Basic algorithm in [7]. However,
while our Bubble algorithm is a variant of the relaxation method(more pre-
cisely, its special case, the projection method), Chubanov’s Basic algorithm
is precisely von Neumann’s algorithm (see Dantzig [9]).

The two algorithms proceed in a somewhat different manner. Chubanov’s
algorithm decides whether Ax = 0 has a strictly positive solution, and re-
duces problems of the form (1) via an homogenization, whereas we work
directly with the form (1). Also, the key updating step of the bounds on the
feasible region after an iteration of the basic subroutine and the supporting
argument substantially differs from ours. In particular, whereas [7] divides
only one of the upper bounds on the variables by exactly two, our algorithm
uses simultaneous updates of multiple components. Another difference is
that instead of repeatedly changing the original system by a rescaling, we
keep the same problem setting during the entire algorithm and modify a cer-
tain norm instead. This enables a clean understanding of the progress made
by the algorithm.

If we denote by L the encoding size of the matrix (A, b), our algorithm per-
forms O([n5/ logn]L) arithmetic operations. Chubanov’s algorithm [7] has a
better running time bound of O(n4L); however, note that our algorithm is
still a considerable improvement over O(n18+3ǫL12+2ǫ) in the previous version
[6]. We get a better bound O([n/ logn]L) on the number of executions of
the basic subroutine, as compared to O(nL) in [7]; on the other hand, [7]
can use an argument bounding the overall number of elementary iterations of
all executions of the basic subroutine, thus achieving a better running time
estimation.

2

1.1. The LP algorithm

We highlight our polynomial-time algorithm to find a feasible solution of
(1). We denote by P the feasible region of (1). Throughout the paper we
will assume that A has full-row rank.

Let d1, . . . , dm be the m columns of (A, b) with largest Euclidean norm,
and let ∆ = ‖d1‖ · · · ‖dm‖. It can be easily shown that ∆ < 2L (see for exam-
ple [10, Lemma 1.3.3]). By Hadamard’s bound, for every square submatrix
B of (A, b), | det(B)| ≤ ∆. It follows that, for every basic feasible solution x̄
of (1), there exists q ∈ Z, 1 ≤ q ≤ ∆, such that, for j = 1, . . . , n, x̄j = pj/q
for some integer pj, 0 ≤ pj ≤ ∆. In particular, x̄j ≤ ∆ for j = 1, . . . , n, and
x̄j ≥ ∆−1 whenever x̄j > 0.

The algorithm maintains a vector u ∈ Rn, u > 0, such that every basic
feasible solution of (1) is contained in the hypercube {x : 0 ≤ x ≤ u}. At
the beginning, we set ui := ∆, i = 1, . . . , n.

At every iteration, either the algorithm stops with a point in P , or it
determines a vector u′ ∈ Rn, 0 < u′ ≤ u, such that every basic feasible
solution of (1) satisfies x ≤ u′ and such that, for some index p ∈ {1, . . . , n},
u′
p ≤ up/2. For j = 1, . . . , n, if u′

j ≤ ∆−1 we reduce the number of variables
by setting xj := 0, and removing the jth column of the matrix A; otherwise,
we update uj := u′

j.
The entire algorithm terminates either during an iteration when a feasible

solution is found, or once the system Ax = b has a unique solution or is
infeasible. If the unique solution is nonnegative, then it gives a point in P ,
otherwise the problem is infeasible.

Since at every iteration there exists some variable xp such that up is
at least halved, and since ∆−1 ≤ uj ≤ ∆ for every variable xj that has
not been set to 0, it follows that the algorithm terminates after at most
n log(∆2) ∈ O(nL) iterations. The crux of the algorithm is the following
theorem and the subsequent claim.

Theorem 1. There exists a strongly polynomial time algorithm which, given
A ∈ Zm×n, b ∈ Zm, and u ∈ Rn, u > 0, in O(n4) arithmetic operations
returns one of the following:

1. A feasible solution to (1);

2. A vector (v, w) ∈ Rm × Rn
+, w 6= 0, such that (v⊤A + w⊤)x̄ < v⊤b +

1
2n
w⊤u for every x̄ ∈ {x ∈ Rn : 0 ≤ x ≤ u}.

3

The algorithm referred to in Theorem 1 will be called the Bubble algorithm,
described in Section 2.

Claim 2. Let u ∈ Rn, u > 0, such that every basic feasible solution for
(1) satisfies x ≤ u, and let (v, w) ∈ Rm × Rn

+ be a vector as in point 2 of

Theorem 1. For j = 1, . . . , n, let u′
j := min

{

uj,
∑n

i=1
uiwi

2nwj

}

. Then every

basic feasible solution of (1) satisfies x ≤ u′. Furthermore, if we let p :=
argmaxj=1,...,n{ujwj}, then u′

p ≤ up/2.

Proof. Since w 6= 0, up to re-scaling (v, w) we may assume that
∑n

i=1 uiwi =
2n, therefore u′

j = min{uj, w
−1
j }, j = 1, . . . , n. Since every basic feasible

solution x̄ for (1) satisfies (v⊤A + w⊤)x̄ < v⊤b+ 1
2n
w⊤u, it follows that, for

j = 1, . . . , n,

0 > v⊤(Ax̄− b) +
n

∑

i=1

wi

(

x̄i −
ui

2n

)

=
n

∑

i=1

wix̄i − 1 ≥ wjx̄j − 1.

It follows that x̄j < w−1
j , thus x̄j ≤ u′

j. Finally, by our choice of p, upwp ≥ 2,
therefore w−1

p ≤ up/2.

Theorem 1 and Claim 2 imply that our algorithm runs in time O(n5L). In
Section 3 we will refine our analysis and show that the number of calls to the
Bubble algorithm is actually O([n/ logn]L). This gives an overall running
time of O([n5/ logn]L).

1.2. Scalar products

We recall a few facts about scalar products that will be needed in the
remainder. Given a symmetric positive definite matrix D, we denote by
〈x, y〉D = x⊤Dy. We let ‖ · ‖D the norm defined by ‖x‖D =

√

〈x, x〉D, and
refer to it as the D-norm. The D-distance between two points x and y is
‖x − y‖D. Given a point c ∈ Rn and r > 0, we define BD(c, r) := {x :
‖x− c‖D ≤ r}, and refer to it as the D-ball of radius r centered at c.

Given any system Cx = d of inequalities, we denote 〈Cx = d〉 := {x ∈
Rn : Cx = d}. We recall that, given a point x̄, assuming w.l.o.g. that C
has full row rank, the point y in 〈Cx = d〉 at minimum D-distance from x̄ is
given by the formula

y = x̄+D−1C⊤(CD−1C⊤)−1(d− Cx̄), (2)

4

and thus the D-distance between x̄ and 〈Cx = d〉 is

‖y − x̄‖D =
√

(d− Cx̄)⊤(CD−1C⊤)−1(d− Cx̄). (3)

Remark 3. If y is the point in 〈Cx = d〉 at minimum D-distance from x̄,
then the vector λ := (CD−1C⊤)−1(d−Cx̄) is the unique solution to y − x̄ =
D−1C⊤λ and ‖y − x̄‖2D = (d− Cx̄)⊤λ.

In particular, given α ∈ Rn \ {0} and β ∈ R, and denoting by y the point
in 〈α⊤x = β〉 at minimum D-distance from x̄, we have

y = x̄+
D−1α(β − α⊤x̄)

α⊤D−1α
, ‖y − x̄‖D =

|β − α⊤x̄|√
α⊤D−1α

. (4)

We recall the following fact.

Lemma 4. Let K ⊆ Rn be a convex set, let x̄ ∈ Rn \ K, and let z be the
point in K at minimum D-distance from x̄. Then 〈z − x̄, x〉D ≥ ‖z − x̄‖2D
for all x ∈ K, and 〈z − x̄, x〉D ≤ ‖z − x̄‖2D for all x ∈ BD(x̄, ‖z − x̄‖D).

Throughout the paper we denote by ei the ith unit vector, where the
dimension of the space will be clear from the context.

2. The Bubble algorithm

Given u ∈ Rn such that u > 0, define the vector ℓ := u
2n

and let P̃ :=
{x : Ax = b, x ≥ ℓ}. Denote by D = (dij) the n × n diagonal matrix
whose ith diagonal element is dii = 4u−2

i . Since u > 0, D is positive definite.
Furthermore, {x ∈ Rn : 0 ≤ x ≤ u} ⊂ BD(0, 2

√
n).

Throughout the rest of the paper we denote A := 〈Ax = b〉. The Bubble
algorithm is based on the following lemma; the proof is illustrated in Figure 1.

Lemma 5. Let z ∈ A such that 〈z, x〉D ≥ ‖z‖2D is valid for P̃ . If z /∈ P , let
i ∈ {1, . . . , n} such that zi < 0, and let K := {x ∈ A : 〈z, x〉D ≥ ‖z‖2D, xi ≥
ℓi}. Assume that K 6= ∅, and let z′ be the point in K at minimum D-distance
from the origin. Then 〈z′, x〉D ≥ ‖z′‖2D is valid for P̃ and ‖z′‖2D > ‖z‖2D+ 1

n2 .

5

Proof. Since K is a polyhedron containing P̃ , it follows from Lemma 4 that
〈z′, x〉D ≥ ‖z′‖2D is valid for P̃ . Applying (4) with α = ei, β = ℓi, and x̄ = z,
we obtain that the D-distance between z and 〈xi = ℓi〉 is equal to

|ℓi − zi|
√

(ei)⊤D−1ei
> 2

ℓi
ui

=
1

n
.

It follows that every point in BD(z,
1
n
) violates the inequality xi ≥ ℓi. Next,

we show that, for every x ∈ BD(0,
√

‖z‖2D + 1
n2), if x satisfies 〈z, x〉D ≥ ‖z‖2D

then x ∈ BD(z,
1
n
). Indeed, any such point x satisfies ‖z − x‖2D = ‖z‖2D +

‖x‖2D − 2〈z, x〉D ≤ 2‖z‖2D + 1
n2 − 2‖z‖2D = 1

n2 . Since every point in BD(z,
1
n
)

violates xi ≥ ℓi, it follows that BD(0,
√

‖z‖2D + 1
n2) is disjoint from K thus,

by definition of z′, ‖z′‖2D > ‖z‖2D + 1
n2 .

BD(0,
√

‖z‖2D + 1
n2)

K

z

z′

BD(z,
1
n
)

0

〈z, x〉D ≥ ‖z‖2D

xi ≥ ℓi

Figure 1: Bubbles merge: the D-ball BD(0,
√

‖z‖2
D
+ 1

n2) is disjoint from K.

Note that, if 〈z, x〉D ≥ ‖z‖2D is a valid inequality for P̃ , then there exists
(v, w) ∈ Rm ×Rn

+ such that Dz = A⊤v +w and ‖z‖2D = v⊤b+w⊤ℓ, because
〈z, x〉D = (Dz)⊤x. Also, whenever K in the statement of Lemma 5 is empty,
there exists a vector (v, w) ∈ Rm×Rn

+ such that A⊤v+w = 0 and v⊤b+w⊤ℓ >
0. We will detail in Section 2.1 how these vectors (v, w) can be computed.
Lemma 5 and the above considerations suggest the following algorithm.

6

Bubble algorithm

Input: A system Ax = b, x ≥ 0, and a vector u > 0.

Output: Either:

1. A point in P , or;

2. (v, w) ∈ Rm × Rn
+ such that

(v⊤A+ w⊤)x < v⊤b+ w⊤ℓ ∀ x ∈ BD(0, 2
√
n).

Initialize z as the point in A at minimum D-distance from 0. Set ℓ := u
2n
.

While ‖z‖D ≤ 2
√
n, do

If z ∈ P , STOP;

Else, Choose i such that zi < 0;
Let K := {x ∈ A : 〈z, x〉D ≥ ‖z‖2D, xi ≥ ℓi}.
If K = ∅, then output (v, w) ∈ Rm × Rn

+

such that A⊤v + w = 0 and v⊤b+ v⊤ℓ > 0;
Else Reset z to be the point in K
at minimum D-distance from 0,

Endwhile;

Output (v, w) ∈ Rm × Rn
+ such that

Dz = A⊤v + w and ‖z‖2D = v⊤b+ w⊤ℓ.

By Lemma 5, the value of ‖z‖2D increases by at least 1
n2 at every iteration.

Therefore, after at most 4n3 iterations, ‖z‖D > 2
√
n. In particular, if the

algorithm terminates outside the “while” cycle, then the inequality 〈z, x〉D ≥
‖z‖2D is valid for P̃ and it is violated by every point in BD(0, 2

√
n), and

therefore by every point in {x : 0 ≤ x ≤ u}. Note that this is the second
outcome of Theorem 1.

To show that the Bubble algorithm is strongly polynomial, we need to
address two issues. The first is how to compute, at any iteration, the new
point z and a vector (v, w) ∈ Rm × Rn

+ such that Dz = A⊤v + w and
‖z‖2D = v⊤b + w⊤ℓ, and how to compute a Farkas certificate of infeasibility
for P̃ if the Bubble algorithm stops with K = ∅. In Section 2.1, we show
how this step can be implemented in O(n) time, and therefore Bubble al-
gorithm performs O(n4) arithmetic operations. The second issue is that, in
the above algorithm, the encoding size of the vector z computed could grow
exponentially. In Section 2.2 we show how this can be avoided by performing
an appropriate rounding at every iteration.

Note that our Bubble algorithm terminates with either a point in P , or

7

with a separating hyperplane. The latter arises in two cases: either if K = ∅
in a certain iteration, or at the end of the while cycle. The Divide-and-
Conquer algorithm in Chubanov [5] and Basu et al. [3] has three possible
outcomes, including a “failure” scenario, corresponding to K = ∅. Their rea-
son for handling this scenario separately is due to an initial homogenization
step; we do not have to make such a distinction as we do not perform such
an homogenization.

2.1. Computing the closest point in K

Instead of maintaining (v, w) ∈ Rm×Rn
+ with Dz = A⊤v+w and ‖z‖2D =

v⊤b+w⊤ℓ, it is more convenient to work with a different representation inside
the affine subspace A, as detailed below.

Let us denote by r0 the point in A at minimum D-distance from the
origin. By (2) and Remark 3, using Gaussian elimination we can compute in
strongly polynomial time v̄0 ∈ Rm such that Dr0 = A⊤v̄0 and ‖r0‖2D = b⊤v̄0.

Remark 6. Observe that, for every x ∈ A, 〈x− r0, r0〉D = 0, thus ‖x‖2D =
‖x − r0‖2D + ‖r0‖2D. It follows that, for any convex set C ⊆ A, the point
in C at minimum D-distance from the origin is the point in C at minimum
D-distance from r0.

For j = 1, . . . , n, we may assume that ∅ 6= {x ∈ A : xj ≥ ℓj} (A. Under
this assumption, there exists αj ∈ A − r0 and βj ∈ R such that ‖αj‖D = 1
and {x ∈ A : xj ≥ ℓj} = {x ∈ A : 〈αj, x〉D ≥ βj}. Note that (αj, βj) can
be computed using Gaussian elimination, along with v̄j ∈ Rm and w̄j ∈ R+

such that Dαj = A⊤v̄j + w̄je
j , βj = b⊤v̄j + w̄jℓj. Observe that, if we denote

by rj the point in {x ∈ A : xj = ℓj} at minimum D-distance from the origin,
then |β| = ‖rj − r0‖D and rj = r0 + βαj.

We may assume that r0 /∈ P , otherwise the algorithm terminates imme-
diately. It follows that at the first iteration z = rt for some t such that
βt > 0. We can assume that at the first iteration, we choose t = argmaxj βj .
In particular, ‖z‖D ≥ ‖rj‖D for all j such that βj > 0. By Lemma 5 and
Remark 6, ‖z − r0‖D ≥ 1

n
.

At any subsequent iteration, we are given a point z in A \ P such that
〈z, x〉D ≥ ‖z‖2D is valid for P̃ . Let α = (z− r0)/‖z− r0‖D and β = ‖z− r0‖.
It follows that {x ∈ A : 〈z, x〉D ≥ ‖z‖2D} = {x ∈ A : 〈α, x〉D ≥ β}. We will

8

maintain a vector λ ∈ Rn
+ such that

(α, β) =

n
∑

j=1

λj(α
j, βj). (5)

These provide the vectors (v, w) with Dz = A⊤v + w, ‖z‖2D = b⊤v + ℓ⊤w,
and w ≥ 0, by defining v := v̄0 + β

∑n
j=1 λj v̄

j and w := β
∑n

j=1 λjw̄je
j .

In every iteration, our algorithm terminates if z ≥ 0, or it picks an index
with zi < 0 and defines K := {x ∈ A : 〈z, x〉D ≥ ‖z‖2D, xi ≥ ℓi}.

If K = ∅ then the algorithm terminates; otherwise, the current z is
replaced by the point z′ in K at minimum D-distance from the origin.

In the rest of this section, we describe how to compute z′ if K 6= ∅, or a
Farkas certificate of infeasibility if K = ∅. Let

K̄ := {x ∈ Rn : 〈α, x〉D ≥ β, 〈αi, x〉D ≥ βi}.

It follows that K = A ∩ K̄.

Claim 7. If K̄ 6= ∅, then the point in K̄ at minimum D-distance from r0 is
equal to z′. In particular K 6= ∅ if and only if K̄ 6= ∅.

Proof. Let z̄ be the point in K̄ at minimum D-distance from r0. Since 〈z̄ −
r0, x〉D ≥ ‖z̄− r0‖2D is valid for K̄, it follows that D(z̄− r0) = µ1Dαi+µ2Dα
for some µ1, µ2 ≥ 0. From this, we get z̄ = r0 + µ1α

i + µ2α, which implies
Az̄ = Ar0 + µ1Aα

i + µ2Aα = b. This shows that z̄ ∈ A, and thus z̄ ∈ K.
Since K ⊆ K̄, it follows that z̄ is the point in K at minimum D-distance
from r0, and thus from the origin, i.e. z̄ = z′. In particular, if K̄ 6= ∅ then
also K 6= ∅. Conversely, if K 6= ∅ then K̄ 6= ∅ because K ⊆ K̄.

Claim 8. K 6= ∅ if and only if αi and α are linearly independent. If K 6= ∅,
then z′ is the point in

L := 〈〈α, x〉D = β, 〈αi, x〉D = βi〉

at minimum D-distance from r0.

Proof. Assume that K 6= ∅. By Claim 7, z′ is the point in K̄ at minimum
D-distance from r0. We will show that z′ is the point in L at minimum
D-distance from r0. It suffices to show that z′ satisfies 〈α, z′〉D = β and

9

〈αi, z′〉D = βi. If 〈αi, z′〉D > βi, then z′ is the point in {x : 〈α, x〉D ≥ β} at
minimum D-distance from r0, and thus z′ = z, contradicting the fact that
‖z′‖D > ‖z‖D. If 〈α, z′〉D = β, then z′ is the point in {x : 〈αi, x〉D ≥ βi} at
minimum D-distance from r0. If βi > 0 then z′ = ri, contradicting the fact
that ‖z′‖D > ‖z‖D ≥ maxj βj, whereas if βi ≤ 0 then z′ = r0, contradicting
the fact that r0 /∈ K̄.

For the first part of the statement, by Claim 7, K 6= ∅ if and only if
K̄ 6= ∅. Clearly K̄ 6= ∅ if αi and α are linearly independent. Conversely,
assume K̄ 6= ∅. If αi and α are linearly dependent, then, because z′ is the
point in L at minimum D-distance from r0, it follows that L = 〈〈αi, x〉D =
βi〉 = 〈〈α, x〉D = β〉 and that z′ = z, a contradiction.

Case K 6= ∅. By Claim 8 z′ is the closest point in L from r0, and αi and
α are linearly independent. According to Remark 3, we have that z′ − r0 =
µ1α + µ2αi, where (µ1, µ2)

⊤ = (CD−1C⊤)−1(d − Cr0), C being the 2 × n
matrix whose rows are (Dαi)⊤ and Dα⊤, and where d ∈ R2 is defined by
d1 = βi, d2 = β. A simple computation gives that

µ1 =
βi − β〈αi, α〉D
1− 〈αi, α〉2D

µ2 =
β − βi〈αi, α〉D
1− 〈αi, α〉2D

. (6)

We also claim that µ1, µ2 ≥ 0. Indeed, 〈z′ − r0, x〉D ≥ ‖z′ − r0‖2D is a valid
linear inequality for K̄, and µ1 and µ2 are the unique coefficients satisfying
D(z′ − r0) = µ1α

i + µ2α and ‖z′ − r0‖2D = µ1β
i + µ2β. Defining

β ′ = ‖z′ − r0‖D, α′ = (z′ − r0)/β ′, λ′ := (µ1e
i + µ2λ)/β

′, (7)

we have that λ′ ≥ 0 and (α′, β ′) =
∑n

j=1 λ
′
j(α

j, βj). Therefore, z
′ and λ′ can

be computed by performing O(n) arithmetic operations at every iteration of
the Bubble algorithm.

Remark 9. Since z′ ∈ 〈〈αi, x〉D = βi〉, it follows that ‖z′‖D ≥ ‖ri‖D. There-
fore, at every iteration of the algorithm, |βj | ≤ β whenever λj > 0.

Case K = ∅. By Claim 8, K̄ = ∅ and the vectors αi and α are linearly
dependent. This implies that, for some ν > 0, αi = −να and βi > −νβ.
Defining λ′ := ei + νλ, we obtain that

∑n
j=1 λ

′
jα

j = 0 and
∑n

j=1 λ
′
jβj > 0.

A Farkas certificate of infeasibility (v′, w′) can be obtained by setting
v′ := v̄0 +

∑n
j=1 λ

′
j v̄

j and w′ :=
∑n

j=1 λ
′
jw̄je

j. We thus have A⊤v′ + w′ = 0,

w′ ≥ 0 and b⊤v′ + ℓ⊤w′ > 0, showing infeasibility of P̃ .

10

2.2. Bounding the encoding sizes

Note that the encoding size of the vector z within the Bubble algorithm
could grow exponentially, and also the size of the upper bound vector u
maintained by the LP algorithm.

To maintain the size of u polynomially bounded, we will perform a round-
ing at every iteration as follows. Instead of the new bounds u′

j as in Claim 2,
let us define ũj as the smallest integer multiple of 1/(3n∆) with u′

j ≤ ũj.
We proceed to the next iteration of the Bubble algorithm with the input
vector ũ. Clearly the encoding size of ũ is polynomially bounded in n and L,
and we shall show in the next section that this rounding does not affect the
asymptotic running time bound of O([n5/ logn]L).

In the rest of this section we show how a rounding step can be introduced
in the Bubble algorithm in order to guarantee that the sizes of the num-
bers remain polynomially bounded. The rounding will be performed on the
coefficients λj in (5).

In every iteration, after the new values of z and the λj’s are obtained,
we replace them by z̃ and λ̃j satisfying (5), such that these values have
polynomial encoding size. At the same time, we show that ‖z‖2D−‖z̃‖2D ≤ 1

2n2

(Claim 10); since at every iteration of the Bubble algorithm the value of ‖z‖2D
increases by at least 1

n2 , the number of iterations in Bubble algorithm may
increase by at most a factor of 2, to 8n3. Let

q := ⌈16n3⌉.

For every number a ∈ R, we denote by [a]q the number of the form p/q,
p ∈ Z, with |p/q − a| minimal. Given the current point z and λ ∈ Rn

+

satisfying (5) let

(γ, δ) :=

n
∑

j=1

[λj]q(α
j , βj).

It follows that 〈γ, x〉D ≥ δ is a valid inequality for P̃ . Let us define z̃ as the
closest point in 〈〈γ, x〉D = δ〉 to r0. This can be obtained by

α̃ := γ/‖γ‖D, β̃ = δ/‖γ‖D, z̃ := r0 + α̃β̃, λ̃j := [λj]q/‖γ‖D
Note that (α̃, β̃) =

∑n
j=1 λ̃j(α

j, βj) and ‖z̃−r0‖D = |β̃| hold. The next claim
will show that β̃ > 0.

Claim 10. ‖z‖2D − ‖z̃‖2D ≤ 1
2n2 and β̃ > 0.

11

Proof. We first show that ‖α−γ‖D ≤ n
2q

and |β−δ| ≤ nβ
2q
. Indeed, ‖α−γ‖2D =

∑n
j,h=1(λj − [λj]q)(λh − [λh]q)〈αj, αh〉D ≤ n2

4q2
, because 〈αj, αh〉D ≤ 1 for

j, h = 1, . . . , n. Also, |β − δ| = |∑n
j=1(λj − [λj]q)β

j| ≤ nβ
2q
, because by

Remark 9 |βj| ≤ β whenever λj > 0. Note that δ ≥ β
(

1− n
2q

)

> 0, thus

β̃ > 0, proving the second claim.
We assume that ‖z‖D ≥ ‖z̃‖D, otherwise the first claim is trivial. Note

that ‖z‖D − ‖z̃‖D = β − δ
‖γ‖D

≤ |β − δ| + δ
‖γ‖D

|‖γ‖D − 1| ≤ βn
q
, where

the last inequality follows from |β − δ| ≤ nβ
2q
, β̃ ≤ β and from |‖γ‖D − 1| =

|‖γ‖D−‖α‖D| ≤ ‖α−γ‖D ≤ n
2q
. Finally ‖z‖2D−‖z̃‖2D = (‖z‖D−‖z̃‖D)(‖z‖D+

‖z̃‖D) ≤ 2β‖z‖Dn
q

≤ 8n2

q
≤ 1

2n2 . The second inequality follows since β ≤
‖z‖D ≤ 2

√
n by the termination criterion of the Bubble algorithm.

We claim that the encoding size of the λ̃j’s remains polynomially bounded.
Note that, if at every iteration we guarantee that λj (j = 1, . . . , n) is bounded
from above by a number of polynomial size, then the encoding sizes of [λj]q
is polynomial as well, and therefore so is the encoding size of λ̃.

Let z and λ satisfy (5), and let z′ denote the next point, with λ′ defined
by (7); note that z′ and λ′ also satisfy (5).

Claim 11. If ‖z′‖D ≤ 2
√
n, then λ′

j ≤ 8n3(λj + 1) for j = 1, . . . , n.

Proof. Let µ1, µ2 ≥ 0 be defined as in (6); recall that these satisfy z′ − r0 =
µ1α

i + µ2α and ‖z′ − r0‖2D = µ1βi + µ2β. We first show that µ1, µ2 ≤ 8n3β.
It follows from (6) that

‖z′ − r0‖2D =
β2
i + β2 − 2ββi〈α, αi〉D

1− 〈αi, α〉2D
=

=
‖ri − r0‖2D + ‖z − r0‖2D − 2〈ri − r0, z − r0〉D

1− 〈αi, α〉2D
=

‖z − ri‖2D
1− 〈αi, α〉2D

.

In the second equality we use ri − r0 = αiβi, z − r0 = αβ, and ‖αi‖D =
‖α‖D = 1. Since z has distance at least 1/n from the hyperplane 〈〈ri, x〉D =
‖ri‖2D〉, it follows that ‖z − ri‖D ≥ 1/n. Since ‖z′ − r0‖D ≤ 2

√
n, we obtain

1−〈αi, α〉2D ≥ 1/4n3. Further, by Remark 9 we have |βi| ≤ β. These together
with (6) and |〈αi, α〉D| ≤ 1, imply µ1, µ2 ≤ 8n3β.

Since (7) defines λ′ = (µ1e
i + µ2λ)/‖z′ − r0‖, using that ‖z′ − r0‖ > β, it

follows that λ′
j ≤ 8n3(λj + 1) for j = 1, . . . , n.

12

Since at the first iteration λj ≤ 1, j = 1, . . . , n, it follows from the above
claim that after k iterations of the Bubble algorithm, we have λj ≤ k(8n3)k.
As argued above, the rounded Bubble algorithm terminates in at most 8n3

iterations, therefore λj ∈ O(n3(8n3)8n
3

) in all iterations. Consequently, the
λj’s encoding sizes are polynomially bounded.

Since every iteration of the Bubble algorithmcan be carried out in O(n)
arithmetic operations and the encoding size of the numbers remains poly-
nomially bound it follows that the Bubble algorithm is strongly polynomial,
with running time O(n4).

3. Improving the running time by a 1/ log(n) factor

In this section, we show that the total number of calls of the Bubble

algorithm can be bounded by O
(

n
logn

L
)

. This will be achieved through

an amortized runtime analysis by means of a potential. For simplicity, we
first present the analysis for the version where the updated vector u is not
rounded, and then explain the necessary modifications when rounding is used.

A main event in the LP algorithm is when, for some coordinate j, we
obtain uj < ∆−1 and therefore we may conclude xj = 0. This reduces
the number of variables by one. The algorithm terminates once the system
Ax = b has a unique solution or is infeasible; assume this happens after
eliminating f ≤ n − 1 variables. For simplicity of notation, let us assume
that the variables are set to zero in the order xn, xn−1, . . . , xn−f+1, breaking
ties arbitrarily. For k = 2, . . . , f , the k-th phase of the algorithm starts with
the iteration after the one when xn+2−k is set to zero and terminates when
xn+1−k is set to zero; the first phase consists of all iterations until xn is set
to 0. A phase can be empty if multiple variables are set to 0 simultaneously.
In the k-th phase there are n− k + 1 variables in the problem. We analyze
the potential

Ψ :=

n
∑

j=1

logmax

{

uj,
1

∆

}

.

Note that the initial value of Ψ is n log∆, and it is monotone decreasing
during the entire algorithm. Let pk denote the decrease in the potential
value in phase k. Since uj decreases from ∆ to at most 1

∆
for every j =

n+1− k, . . . , n in the first k phases, we have that the value of Ψ at the end

13

of the k-th phase is at most (n− 2k) log∆, or equivalently,

k
∑

i=1

pi ≥ 2k log∆. (8)

Claim 12. In the k-th phase of the algorithm, Ψ decreases by at least log(n−
k + 2) in every iteration, with the possible exception of the last one.

Proof. Note that in the k-th phase the values un, un−1, . . . , un−k+2 do not
change anymore. Recall from Claim 2 that, for j = 1, . . . , n − k + 1, the
new value of uj is set as u′

j := min
{

uj, w
−1
j

}

, where (v, w) is a vector as

in Theorem 1 normalized to
∑n−k+1

i=1 uiwi = 2(n − k + 1), since n − k +
1 is the number of variables not yet fixed to 0. In particular, uj/u

′
j =

max{1, ujwj} for j = 1, . . . , n − k + 1. The new value of the potential is
Ψ′ =

∑n
j=1 logmin

{

u′
j,

1
∆

}

. In every iteration of the k-th phase except for

the last one we must have uj ≥ u′
j >

1
∆

for every j = 1, . . . , n− k + 1, hence

Ψ−Ψ′ =

n−k+1
∑

j=1

log
uj

u′
j

= log

n−k+1
∏

j=1

max{1, ujwj} ≥ log(n− k + 2). (9)

The last inequality follows from the fact that, for any positive integer t, we
have

min

{

t
∏

j=1

max{1, αj} :
t

∑

j=1

αj = 2t, α ∈ Rt
+

}

= t + 1,

the minimum being achieved when αj = t + 1 for a single value of j and
αj = 1 for all other values.

Let rk denote the number of iterations in phase k. The claim implies the
following upper bound:

rk ≤
pk

log(n− k + 2)
+ 1 (10)

Together with (8), it follows that the total number of iterations
∑f

k=1 rk
is bounded by the optimum of the following LP

max (n− 1) +
∑n

i=1
1

log(n−i+2)
pi

∑k
i=1 pi ≥ 2k log∆ k = 1, . . . , n− 1

∑n
i=1 pi ≤ 2n log∆

p ∈ Rn
+

(11)

14

It is straightforward that the optimum solution is pi = 2 log∆ for i =
1, . . . , n. One concludes that the number of iterations is at most

(n− 1) + 2 log∆
n

∑

i=1

1

log(n− i+ 2)
≤ (n− 1) + 2 log∆

∫ n+1

1

dt

log t
,

where the inequality holds because the function 1
logx

is decreasing. The func-

tion li(x) :=
∫ x

0
dt
ln t

(defined for x > 1) is the logarithmic integral [1], and it is

known that li(x) = O
(

x
log x

)

. This gives the bound O
(

n
logn

L
)

on the total

number of iterations, using that ∆ ≤ 2L.
Let us now turn to the version of the algorithm where u′

j is rounded up
to ũj, an integer multiple of 1/(3n∆). In all but the last iteration of the k’th
phase u′

j ≥ 1/∆ holds, and therefore
uj

ũj
≥ uj

u′

j

· 1
1+1/(3n)

. Hence, from (9), in

the k’th phase we have Ψ − Ψ′ ≥ log(n − k + 2) − (n − k + 1) log 3n+1
3n

>
1
2
log(n−k+2). This ensures at least half of the drop in potential guaranteed

in Claim 12, giving the same asymptotic running time bound.

References

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Func-

tions with Formulas, Graphs, and Mathematical Tables, Dover Publica-
tions, New York (1972).

[2] S. Agmon, The relaxation method for linear inequalities, Canadian Jour-

nal of Mathematics 6 (1954) 382-392.

[3] A. Basu, J. De Loera, M. Junod, On Chubanov’s method for Linear
Programming, (2012) to appear on INFORMS Journal on Computing.
arXiv:1204.2031v1

[4] U. Betke, Relaxation, new combinatorial and polynomial algorithms for
the linear feasibility problem, Discrete & Computational Geometry 32

(2004) 317-338.

[5] S. Chubanov, A strongly polynomial algorithm for linear systems having
a binary solution, Mathematical Programmming 134 (2012), 533-570.

[6] S. Chubanov, A polynomial relaxation-type algorithm for linear pro-
gramming,
www.optimization-online.org/DB_FILE/2011/02/2915.pdf (2010).

15

[7] S. Chubanov, A polynomial projection algorithm for linear program-
ming.
www.optimization-online.org/DB_FILE/2013/07/3948.pdf (2013).

[8] G. B. Dantzig, Maximization of a linear function of variables subject
to linear inequalities, 1947. Published pp. 339347 in T.C. Koopmans
(ed.):Activity Analysis of Production and Allocation, New York-London
(1951) Wiley & Chapman-Hall.

[9] G. B. Dantzig, An ε-precise feasible solution to a linear program with
a convexity constraint in 1/ε2 iterations independent of problem size,
Report SOL 92-5, Stanford University (1992).

[10] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer (1988).

[11] N.K. Karmarkar, A new polynomial-time algorithm for linear program-
ming, Combinatorica 4 (1984) 373-395.

[12] L.G. Khachiyan, A polynomial algorithm in linear programming, Dok-

lady Akademiia Nauk SSSR 224 (1979), 1093-1096 (in Russian). English
Translation: Soviet Mathematics Doklady 20, 191-194.

[13] J.F. Maurras, K. Truemper, M, Akgül, Polynomial algorithms for a class
of linear programs, Mathematical Programming 21 (1981) 121-136.

[14] T. Motzkin, I.J. Schoenberg, The relaxation method for linear inequal-
ities, Canadian Journal of Mathematics 6 (1954) 393-404.

[15] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New
York (1986).

[16] M.J. Todd, The many facets of linear programming, Mathematical Pro-

grammming 91 (2002), 417-436.

16

	Vegh_Polynominal projection_2017_cover
	Vegh_Polynominal projection_2017_author

