arXiv:1402.2852v2 [math.OC] 13 Feb 2014

Robust Integer Programming

Shmuel Onn

Technion - Israel Institute of Technology, Haifa, Israel
onn@ie.technion.ac.il

Abstract

We provide a complexity classification of four variants of robust integer
programming when the underlying Graver basis is given. We discuss applica-
tions to robust multicommodity flows and multidimensional transportation,
and describe an effective parametrization of robust integer programming.

1 Introduction

Robust discrete optimization involves making optimal decisions under uncertainty
in the problem data, see [4] for a detailed development of this framework. In this
note we study robust integer programming problems where the uncertainty occurs
in the cost of the feasible points. More precisely, we consider a set of feasible integer
points which satisfy a system of linear inequalities in standard form given by

X ={2zeZ", Az=0b, <z <u}, (1)

where A is an integer m x n matrix, b € Z™, and [, u € Z". The uncertain cost to be
minimized belongs to a finite nonempty set C' C Z™ of potential cost vectors. The
worst-case cost of point x € X is max{cx : ¢ € C'}. The robust integer programming
problem is then to find x € X attaining minimum worst-case cost, that is, to solve

min max czr .

zeX ceC
When C'is a singleton, the problem reduces to standard linear integer programming,
and hence is no easier than the latter, which is NP-hard. We therefore make some
reasonable assumptions on C' and X and study the complexity of the problem under
these assumptions. First, we assume that C is either an explicit list C = {c!, ..., c*}
of given cost vectors, or a box C' = {c € Z" : d < ¢ < e} for some d,e € Z", so that
the cost of each decision variable lies in a given interval. Note that a box C has
exponentially many elements and cannot be explicitly listed efficiently. Second, we
assume that the so-called Graver basis G(A) of the matrix A defining X is given;
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this object, defined in Section 2, plays a central role in a recent theory of integer
programming developed in [5] and the references therein. As illustrated in Section
3, the Graver basis can be computed in polynomial time from A for a variety of
applications including multicommodity flows and multidimensional transportation.
Moreover, there is a parametrization of all integer programs [2] under which the
Graver basis can be computed in polynomial time for each fixed parameter value.
The standard interpretation of robust discrete optimization is that the “decision
maker” first chooses a point from X and that “nature” then chooses a cost from
C'. However, the problem can more symmetrically be regarded as a two party game
where the X player must pay cz to the C player. It is then also natural to consider
the “dual” problem where the C' player makes its choice first, that is, the problem

max min cx .
ceC zeX

We show the following complexity classification of robust integer programming.

Theorem 1.1 The following complexity table holds for the robust integer program-
ming problems with the Graver basis of the matriz of X given as part of the input:

list C' box C'
minx maxc NP-hard polynomial time
maxc miny | polynomial time NP-hard

We remark that when costs are replaced by profits, the corresponding problems
reduce to the corresponding problems with C replaced by —C := {—c: ¢ € C} via
the following relations, resulting in the same complexities as in Theorem [L.Ik

maxmincr = — minmaxcze , minmaxcr = —maxmince .
zeX ceC zeX ce—C ceC zeX ce—C zeX

In Section 2 we define the Graver basis and prove Theorem [I.Il In Section 3 we
discuss applications to robust multicommodity flows and robust multidimensional
transportation, and describe the parametrization of robust integer programming.

2 Proof

We begin by defining the Graver basis. Introduce a partial order C on R” by = C y if
xy; > 0and |z;| < |y;| fori = 1,...,n. The Graver basis of the integer m x n matrix
A is the finite set G(A) C Z™ of C-minimal elements in {x € Z" : Az =0, z # 0}.

Proof of Theorem[I1l. We prove the four entries of the complexity table one by one.

Entry (1,1): Consider the NP-complete problem of deciding, given a € Z, if there
is a subset I C [n] := {1,...,n} such that >7,.;a; = > .. a;. Let ag :== 371, a;
and define ¢!, ¢ € Z" by ¢! := (0,a) and ¢ := (ag, —a). Next, define the set

X = {zezZ" :02x=0, 1<z0<1, 0<a;,<1, i=1,...,n};



it is not hard to verify that the Graver basis of the matrix 0 defining X is given by
G(0) = £{1, : 0 < i < n} with 1; the ith unit vector. Now, there is a bijection
between x € X and I C [n] with I(z) :=={i:1<i<mn, x; =1}. For any z € X,

max{c'z, 2r} = max{ Z a;, ag — Z a;} = max{ Z a;, Z a;} > %

i€l(x i€l(x) i€l(x) i¢1(x)

with equality if and only >, I Zi¢ I(z) @i~ SO Milgex MaXeec cx = 4 if and
only if there is an I with ZZE / i¢1(z) > and solution of the robust integer
programming problem will enable solution of the given NP-complete problem.

Entry (1,2): For of each feasible point # € X define f(z) := max.cc cx. Then
f(z) = max{z i di < < e} = Zmax{dixi,eixi} = Z filz;)
i=1 i=1 i=1

where f;(z;) = max{d;x;,e;x;}. Since f;(z;) is the maximum of two univariate
convex functions, it is also univariate convex. Therefore f(z) = Y o fi(z;) is
separable convex. So the robust integer programming problem is the integer program

. o . n _ <<
il max cz min{f(z) : z € 2", A =10, | <x <u}

of minimizing a separable convex function f over integer points satisfying lower and
upper bounds and a system of equations with defining matrix whose Graver basis
G(A) is given, which can be solved in polynomial time, see [5, Theorem 3.12] or [3].

Entry (2,1): For each cost vector ¢ € C' in the given list, consider the program
g(c) == min{cx : x € Z", Ar =b, | <z <u};

its objective function cz is linear hence separable convex, and therefore, given G(A),
can be solved in polynomial time by [5, Theorem 3.12] again; then that ¢ € C' which
attains maximum value g(c) solves the given robust integer programming problem.

Entry (2,2): Consider again the NP-complete problem of deciding, given a € Z7, if
there is a subset I C [n] such that >, .;a; = 3_,4; a;. Let again ag := Y, a;. Let

C = {ceZ" : 1<¢<1, 0<¢<1, i=1,....,n, 0< ¢,y <0},

Next let m :=n + 1 and define an m x (n + 2) matrix A and vector b € Z™ by
L Qo L 0
A = <[n+1 —%a ) ) b = < —a ) )

X ={2ecZ"? : Av=0b, —|ag| <zi<|ag, i=0,....,n, 0< x4 <1}.

and let



It is not hard to verify that the Graver basis of A is given by G(A) = +{(—ao, 2a,1)}.
Now, note that the value of x,,; determines the value of the other x; via the

system Az = b so that X = {(0,—a,0),(—ag,a,1)}. Next, there is a bijection

between ¢ € C' and [ C [n] with I(c) :={i:1<i<mn, ¢;=1}. For each c € C,

nper = winf= 3wt 3w} = min(= 3 = 3w} < <

i€l(c) i€l(c i€l(c 1¢1(c)
with equality if and only ZZE (o) @ = Ziél(c) a;. SO MaX.cc Mingex cx = —% if
and only if there is an I with ZZE 1@ = D g1 @, and solution of the robust inte-

ger programming problem will enable solution of the given NP-complete problem. 0O

3 Applications

An (r,s) x t bimatriz is a matrix A consisting of two blocks A;, Ay, with Ay its r x ¢
submatrix consisting of the first » rows and A, its s x ¢t submatrix consisting of the
last s rows. The n-fold product of A is the following (r 4+ ns) X nt matrix,

AL A A
A, 0 - 0
A 0 Ay -+ 0
0 0 --- A

For each fixed bimatrix A, the Graver basis G(A™) of the n-fold product of A can
be computed in time which is polynomial in n, see [5, Theorem 4.4] or [1]. This has
a variety of applications including multicommodity flows, multidimensional trans-
portation, and more generally any integer program via a suitable parametrization.
We now discuss consequences of this to the robust counterparts of these applications.

The (integer) multicommodity flow problem is as follows. There are [ types of
discrete commodities, m suppliers, and n consumers. Supplier 7 has supply s¥ in
commodity k. Consumer j has demand df in commodity k. Channel (i,7j) has
capacity u; ; which is an upper bound on the total flow of all commodities on that
channel. There is a cost cf ; per unit flow of commodity £ on channel (7,7). The
non-robust problem is to ﬁnd a multicommodity flow consisting of a: - units of flow
of commodity k£ on channel (7, j) for all 4, j, k, satisfying the supply, demand and

capacity constraints, and attaining minimum cost ), ik Ci ] x; j, that is, solve

!
. . _ (K Ixmxn k _ _k k _ gk k
min{cz : = (r;;) € ZY ; E Ti; = 5, E Ty =dj, E Tij < uigh
j i k=1



The problem is NP-hard already for [ = 2 commodities or m = 3 suppliers. However,
it is natural to have relatively small numbers of commodities and suppliers but very
large number of consumers, and we have the following consequence of our theorem.

Corollary 3.1 For fixed | commodities and m suppliers, the robust multicommodity
flow problem minx maxgc with box C' or maxe miny with list C is polytime solvable.

Proof. Introduce a slack commodity 0 with new variables 0, := u;; — 22:1 )
representing the slack flow on each channel (i, 7), with cost ng := 0, and suitable

slack supplies ) 1= 3 u;; — > 1 sF and slack demands d? == 3, u;; — S0y, db.
Let C' := {(0,¢) : ¢ € C} consist of the costs augmented with the 0 slack costs, and

!
o I+1)xmxn ko_ ok ko_ gk ko k
X = {zx€ yAaRY , g TP =8, g xi, =dj, E v =g, 0 <2 <l
' ; k=0

J

It can be shown that the matrix defining the equations of X is an n-fold product
of a fixed bimatrix, hence its Graver basis can be computed in polynomial time, see
[5, Chapter 4]. The corollary now follows from Theorem [T applied to X and C'. O

Next we consider the (integer) three-dimensional transportation problem,
min{cx LT E Z{?mxn : in,j7k = Ujk, in,j7k = Vik, in,]}k = wi,j} .
i j k
It is NP-hard even for [ = 3, see [2]. But we have the following robustness statement.

Corollary 3.2 For every fixed I and m, the robust three-dimensional transportation
problem minx maxc with box C' or maxc miny with list C is polytime solvable.

Proof. Note that each variable obeys the bounds 0 < ; ; , < min{w; g, v; s, w; ;}. It
can be shown again that the matrix defining the equations of X is an n-fold product
of a fixed bimatrix, hence its Graver basis can again be computed in polynomial
time, see [0, Chapter 5|. The corollary then follows again from Theorem [[Il O

It was shown in [2] that every bounded integer program can be isomorphically
represented in polynomial time as some 3 X m xn transportation problems with [ = 3
and some m and n. Regarding m as a parameter, Corollary [3.2] implies that we can
do robust integer programming in polynomial time for the class of 3 x m xn problems
with varying n. Since every integer program belongs to one of these classes for some
m, this provides an effective parametrization of robust integer programming.
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