
ar
X

iv
:1

40
2.

28
52

v2
 [

m
at

h.
O

C
]

 1
3

Fe
b

20
14

Robust Integer Programming

Shmuel Onn

Technion - Israel Institute of Technology, Haifa, Israel

onn@ie.technion.ac.il

Abstract

We provide a complexity classification of four variants of robust integer

programming when the underlying Graver basis is given. We discuss applica-

tions to robust multicommodity flows and multidimensional transportation,

and describe an effective parametrization of robust integer programming.

1 Introduction

Robust discrete optimization involves making optimal decisions under uncertainty
in the problem data, see [4] for a detailed development of this framework. In this
note we study robust integer programming problems where the uncertainty occurs
in the cost of the feasible points. More precisely, we consider a set of feasible integer
points which satisfy a system of linear inequalities in standard form given by

X := {x ∈ Z
n , Ax = b , l ≤ x ≤ u} , (1)

where A is an integer m×n matrix, b ∈ Z
m, and l, u ∈ Z

n. The uncertain cost to be
minimized belongs to a finite nonempty set C ⊂ Z

n of potential cost vectors. The
worst-case cost of point x ∈ X is max{cx : c ∈ C}. The robust integer programming
problem is then to find x ∈ X attaining minimum worst-case cost, that is, to solve

min
x∈X

max
c∈C

cx .

When C is a singleton, the problem reduces to standard linear integer programming,
and hence is no easier than the latter, which is NP-hard. We therefore make some
reasonable assumptions on C and X and study the complexity of the problem under
these assumptions. First, we assume that C is either an explicit list C = {c1, . . . , ck}
of given cost vectors, or a box C = {c ∈ Z

n : d ≤ c ≤ e} for some d, e ∈ Z
n, so that

the cost of each decision variable lies in a given interval. Note that a box C has
exponentially many elements and cannot be explicitly listed efficiently. Second, we
assume that the so-called Graver basis G(A) of the matrix A defining X is given;

1

http://arxiv.org/abs/1402.2852v2

2

this object, defined in Section 2, plays a central role in a recent theory of integer
programming developed in [5] and the references therein. As illustrated in Section
3, the Graver basis can be computed in polynomial time from A for a variety of
applications including multicommodity flows and multidimensional transportation.
Moreover, there is a parametrization of all integer programs [2] under which the
Graver basis can be computed in polynomial time for each fixed parameter value.

The standard interpretation of robust discrete optimization is that the “decision
maker” first chooses a point from X and that “nature” then chooses a cost from
C. However, the problem can more symmetrically be regarded as a two party game
where the X player must pay cx to the C player. It is then also natural to consider
the “dual” problem where the C player makes its choice first, that is, the problem

max
c∈C

min
x∈X

cx .

We show the following complexity classification of robust integer programming.

Theorem 1.1 The following complexity table holds for the robust integer program-
ming problems with the Graver basis of the matrix of X given as part of the input:

list C box C

minX maxC NP-hard polynomial time
maxC minX polynomial time NP-hard

We remark that when costs are replaced by profits, the corresponding problems
reduce to the corresponding problems with C replaced by −C := {−c : c ∈ C} via
the following relations, resulting in the same complexities as in Theorem 1.1:

max
x∈X

min
c∈C

cx = −min
x∈X

max
c∈−C

cx , min
c∈C

max
x∈X

cx = −max
c∈−C

min
x∈X

cx .

In Section 2 we define the Graver basis and prove Theorem 1.1. In Section 3 we
discuss applications to robust multicommodity flows and robust multidimensional
transportation, and describe the parametrization of robust integer programming.

2 Proof

We begin by defining the Graver basis. Introduce a partial order ⊑ on R
n by x ⊑ y if

xiyi ≥ 0 and |xi| ≤ |yi| for i = 1, . . . , n. The Graver basis of the integer m×n matrix
A is the finite set G(A) ⊂ Z

n of ⊑-minimal elements in {x ∈ Z
n : Ax = 0, x 6= 0}.

Proof of Theorem 1.1. We prove the four entries of the complexity table one by one.

Entry (1,1): Consider the NP-complete problem of deciding, given a ∈ Z
n
+, if there

is a subset I ⊆ [n] := {1, . . . , n} such that
∑

i∈I ai =
∑

i/∈I ai. Let a0 :=
∑n

i=1 ai
and define c1, c2 ∈ Z

n+1 by c1 := (0, a) and c2 := (a0,−a). Next, define the set

X := {x ∈ Z
n+1 : 0x = 0, 1 ≤ x0 ≤ 1, 0 ≤ xi ≤ 1, i = 1, . . . , n} ;

3

it is not hard to verify that the Graver basis of the matrix 0 defining X is given by
G(0) = ±{1i : 0 ≤ i ≤ n} with 1i the ith unit vector. Now, there is a bijection
between x ∈ X and I ⊆ [n] with I(x) := {i : 1 ≤ i ≤ n, xi = 1}. For any x ∈ X ,

max{c1x, c2x} = max{
∑

i∈I(x)

ai, a0 −
∑

i∈I(x)

ai} = max{
∑

i∈I(x)

ai,
∑

i/∈I(x)

ai} ≥
a0

2

with equality if and only
∑

i∈I(x) ai =
∑

i/∈I(x) ai. So minx∈X maxc∈C cx = a0
2
if and

only if there is an I with
∑

i∈I ai =
∑

i/∈I(x) ai, and solution of the robust integer
programming problem will enable solution of the given NP-complete problem.

Entry (1,2): For of each feasible point x ∈ X define f(x) := maxc∈C cx. Then

f(x) := max{
n

∑

i=1

cixi : di ≤ ci ≤ ei} =
n

∑

i=1

max{dixi, eixi} =
n

∑

i=1

fi(xi) ,

where fi(xi) := max{dixi, eixi}. Since fi(xi) is the maximum of two univariate
convex functions, it is also univariate convex. Therefore f(x) =

∑n
i=1 fi(xi) is

separable convex. So the robust integer programming problem is the integer program

min
x∈X

max
c∈C

cx = min{f(x) : x ∈ Z
n, Ax = b, l ≤ x ≤ u}

of minimizing a separable convex function f over integer points satisfying lower and
upper bounds and a system of equations with defining matrix whose Graver basis
G(A) is given, which can be solved in polynomial time, see [5, Theorem 3.12] or [3].

Entry (2,1): For each cost vector c ∈ C in the given list, consider the program

g(c) := min{cx : x ∈ Z
n, Ax = b, l ≤ x ≤ u} ;

its objective function cx is linear hence separable convex, and therefore, given G(A),
can be solved in polynomial time by [5, Theorem 3.12] again; then that c ∈ C which
attains maximum value g(c) solves the given robust integer programming problem.

Entry (2,2): Consider again the NP-complete problem of deciding, given a ∈ Z
n
+, if

there is a subset I ⊆ [n] such that
∑

i∈I ai =
∑

i/∈I ai. Let again a0 :=
∑n

i=1 ai. Let

C := {c ∈ Z
n+2 : 1 ≤ c0 ≤ 1, 0 ≤ ci ≤ 1, i = 1, . . . , n, 0 ≤ cn+1 ≤ 0} ,

Next let m := n+ 1 and define an m× (n + 2) matrix A and vector b ∈ Z
m by

A :=

(

In+1
a0

−2a

)

, b :=

(

0
−a

)

,

and let

X := {x ∈ Z
n+2 : Ax = b, −|a0| ≤ xi ≤ |a0|, i = 0, . . . , n, 0 ≤ xn+1 ≤ 1} .

4

It is not hard to verify that the Graver basis of A is given by G(A) = ±{(−a0, 2a, 1)}.
Now, note that the value of xn+1 determines the value of the other xi via the

system Ax = b so that X = {(0,−a, 0), (−a0, a, 1)}. Next, there is a bijection
between c ∈ C and I ⊆ [n] with I(c) := {i : 1 ≤ i ≤ n, ci = 1}. For each c ∈ C,

min
x∈X

cx = min{−
∑

i∈I(c)

ai,−a0 +
∑

i∈I(c)

ai} = min{−
∑

i∈I(c)

ai,−
∑

i/∈I(c)

ai} ≤ −
a0

2

with equality if and only
∑

i∈I(c) ai =
∑

i/∈I(c) ai. So maxc∈C minx∈X cx = −a0
2

if

and only if there is an I with
∑

i∈I ai =
∑

i/∈I ai, and solution of the robust inte-
ger programming problem will enable solution of the given NP-complete problem.

3 Applications

An (r, s)× t bimatrix is a matrix A consisting of two blocks A1, A2, with A1 its r× t

submatrix consisting of the first r rows and A2 its s× t submatrix consisting of the
last s rows. The n-fold product of A is the following (r + ns)× nt matrix,

A(n) :=















A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2















.

For each fixed bimatrix A, the Graver basis G(A(n)) of the n-fold product of A can
be computed in time which is polynomial in n, see [5, Theorem 4.4] or [1]. This has
a variety of applications including multicommodity flows, multidimensional trans-
portation, and more generally any integer program via a suitable parametrization.
We now discuss consequences of this to the robust counterparts of these applications.

The (integer) multicommodity flow problem is as follows. There are l types of
discrete commodities, m suppliers, and n consumers. Supplier i has supply ski in
commodity k. Consumer j has demand dkj in commodity k. Channel (i, j) has
capacity ui,j which is an upper bound on the total flow of all commodities on that
channel. There is a cost cki,j per unit flow of commodity k on channel (i, j). The
non-robust problem is to find a multicommodity flow consisting of xk

i,j units of flow
of commodity k on channel (i, j) for all i, j, k, satisfying the supply, demand, and
capacity constraints, and attaining minimum cost

∑

i,j,k c
k
i,jx

k
i,j , that is, solve

min{cx : x = (xk
i,j) ∈ Z

l×m×n
+ ,

∑

j

xk
i,j = ski ,

∑

i

xk
i,j = dkj ,

l
∑

k=1

xk
i,j ≤ ui,j} .

5

The problem is NP-hard already for l = 2 commodities orm = 3 suppliers. However,
it is natural to have relatively small numbers of commodities and suppliers but very
large number of consumers, and we have the following consequence of our theorem.

Corollary 3.1 For fixed l commodities and m suppliers, the robust multicommodity
flow problem minX maxC with box C or maxC minX with list C is polytime solvable.

Proof. Introduce a slack commodity 0 with new variables x0
i,j := ui,j −

∑l
k=1 x

k
i,j

representing the slack flow on each channel (i, j), with cost c0i,j := 0, and suitable

slack supplies s0i :=
∑

j ui,j −
∑l

k=1 s
k
i and slack demands d0j :=

∑

i ui,j −
∑l

k=1 d
k
j .

Let Ĉ := {(0, c) : c ∈ C} consist of the costs augmented with the 0 slack costs, and

X̂ := {x ∈ Z
(l+1)×m×n ,

∑

j

xk
i,j = ski ,

∑

i

xk
i,j = dkj ,

l
∑

k=0

xk
i,j = ui,j , 0 ≤ xk

i,j ≤ ui,j} .

It can be shown that the matrix defining the equations of X̂ is an n-fold product
of a fixed bimatrix, hence its Graver basis can be computed in polynomial time, see
[5, Chapter 4]. The corollary now follows from Theorem 1.1 applied to X̂ and Ĉ.

Next we consider the (integer) three-dimensional transportation problem,

min{cx : x ∈ Z
l×m×n
+ :

∑

i

xi,j,k = uj,k ,
∑

j

xi,j,k = vi,k ,
∑

k

xi,j,k = wi,j} .

It is NP-hard even for l = 3, see [2]. But we have the following robustness statement.

Corollary 3.2 For every fixed l and m, the robust three-dimensional transportation
problem minX maxC with box C or maxC minX with list C is polytime solvable.

Proof. Note that each variable obeys the bounds 0 ≤ xi,j,k ≤ min{uj,k, vi,k, wi,j}. It
can be shown again that the matrix defining the equations of X is an n-fold product
of a fixed bimatrix, hence its Graver basis can again be computed in polynomial
time, see [5, Chapter 5]. The corollary then follows again from Theorem 1.1.

It was shown in [2] that every bounded integer program can be isomorphically
represented in polynomial time as some 3×m×n transportation problems with l = 3
and some m and n. Regarding m as a parameter, Corollary 3.2 implies that we can
do robust integer programming in polynomial time for the class of 3×m×n problems
with varying n. Since every integer program belongs to one of these classes for some
m, this provides an effective parametrization of robust integer programming.

6

References

[1] De Loera, J., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer program-
ming. Discrete Optimization 5:231–241 (2008)

[2] De Loera, J., Onn, S.: All linear and integer programs are slim 3-way trans-
portation programs. SIAM Journal on Optimization 17:806–821 (2006)

[3] Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm
for convex integer minimization. Mathematical Programming 126:97–117 (2011)

[4] Kouvelis, P., Yu, G.: Robust Discrete Optimiation and its Applications. Kluwer
(1997)

[5] Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced
Mathematics, European Mathematical Society (2010), available online at:
http://ie.technion.ac.il/∼onn/Book/NDO.pdf

http://ie.technion.ac.il/~onn/Book/NDO.pdf

	1 Introduction
	2 Proof
	3 Applications

