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Abstract

We are interested in a problem introduced by Vassilvitskd &annakakis [12], the computation of a minimum set of sohs
that approximates within an accuraeythe Pareto set of a multi-objective optimization probleme Wainly establish a new
3-approximation algorithm for the bi-objective case. Wgoapropose a study of the greedy algorithm performance fotrikh
objective case when the points are given explicitly, answgesin open question raised by Koltun and Papadimitriou]in [9

Keywords: Multi-objective optimization, Pareto set, non-domingpeihts, approximation algorithm, greedy algorithm.

1. Introduction introduced by [12] and continued in [3] is théieient construc-

o S N . tion of e-Pareto sets of size as small as possible. This paper
In multi-objective optimization, in opposition to singld0  5cuses on the same issue.

jective optimization, there is typically no optimal sohtii.e. In the following section, we define the basic concepts, for-
one that is best for all the objectives. Therefore, the stethd majize the problem and recall some results of previousadlat
situation is that any solution can always be improved onatle \yorks. Then. in section 3. we mainly propose a new polyno-
one objective. The solutions of interest, callgficientsolu- g time 3-approximation algorithm of the size of a smailles
tions, are these such that any solution which is better on ong pgreto set for the bi-objective case. In section 4, we aealy
objective is necessarily worse on at least one other obdtt  the performance of the greedy algorithm when the pointsef th
other_ wo_rds, a solu_tlon isfiécient if its corresponding vector objectives space are given explicitly in the input and thevau
of objective values is not dominated by any other vector of ob g of objectives is three, answering an open questiond-aise

jective values corresponding to a feasible solution. Tvese (9] we conclude with some possible extensions to this work.
tors, associated tdl&cient solutions, are calledon-dominated

points For many multi-objective optimization problems, one
of the main dfficulties is the large cardinality of the set of non-
dominated points (oPareto set Indeed, it is well-known, in
particular, that most multi-objective combinatorial apization problems where we try to minimize several objectives, i.e.
problems arentractable in the sense that they admit families Mines{ (). . ... f(X)}, wherefy, ..., f, arep > 2 objective

of instances for which the number of non-dominated points ignctions andS is the set of feasible solutions. In the case
exponential in the size of the instance [4]. Thus, insteg@fof  \here some or all objective functions are to be maximized, ou
ducing the full set of non-dominated points, we may prefer tqqgits are directly extendable.

provide an approximation of this set. This idea is represgnt

by the concept of aa-Pareto set, which is a sBt, of solutions We distinguish the decision spa&¥ewhich contains the set
that approximately dominates every other solutions, ichs S of feasible solutions of the instance and the criterion spac
that for every solutiors, it contains a solutiors' that is better Y S RP which contains the criterion vectors or simgigints
within a factor 1+ thansin all the objectives. The existence of We denote byZ = f(S) c Y the set of the images of feasible
e-Pareto sets of polynomial size is well-known [10] and poly-Solutions calledeasible points

nomial time algorithms that produmePfiret_o sets ha\_/e"been We denote by; the coordinate on criteriof of a pointy € Y
developed and improved for many multi-objective optimimat  forj = 1,..., p. We say that a point dominatesnother point
problems, including Murr-osiective Swortest Pari [7, 13, 11], v if yis at least as good gsin all the objectives, i.ey; <y’ for
MuLTI-OBJECTIVE KNAPSACK [5, 1] However, note that there may alli = 1,..., p. A feasible solutiorx € S is Ca”edgﬁcientif
exist manye-Pareto sets, some of which can have very smalihere is no other feasible solutishe S such thatf (x) # f(x)
size and some others very large size. An interesting problerind f(x') dominatesf(x). If x is efficient,z = f(x) is called a
non-dominategboint in the criterion space. We denote®yhe
Email addressesbazgan@lamsade .dauphine.fr (Cristina Bazgan), set Qf non-dominated points, (_:allé’areto ?et .
florian. jamain@lamsade.dauphine.fr (Florian Jamain), lee_n a constant > 1, a pointy C-domlnatesmo.ther point
vdp@lamsade .dauphine. fr (Daniel Vanderpooten) y if y is at least as good ag up to a factor ofc in all the

2. Preliminaries

In this paper, we consider multi-objective optimization
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objectives, i.e.y; < cy. For any rationak > 0, ane-Pareto
set R, is a subset of feasible points such that forzadl P, there
existszZ € P, such thatZ (1 + ¢)-dominatesz. In the context
of e-Pareto sets, the central relation is theH%)-dominance
relation, denoted b¥..

For a given instanck, there may exist severatPareto sets,
and these may haveftikrent sizes. It is shown in [10] that,
for every classical multi-objective optimization probleam &-
Pareto set of size polynomial in the input size arid dlways
exists. Moreover its computation is related to the companat
of the following routineGAP;.

Given an instancé of a given problem, a point and a ra-
tional§ > 0, the routineGAP;(y) either returns a feasible point
that dominatey or reports that there does not exist any feasibl
pointzsuch tha < - foralli=1,...,p.

We say that routin€&sAP;(y) runs in polynomial time (resp.
fully polynomial time whery > 0) if its running time is poly-
nomial in|l| andly| (resp.|l|, |yl, |6] and ¥/6). An e-Pareto set
is computable in polynomial time (resp. fully polynomiaht)
if and only if the routineGAP; runs in polynomial time (resp.
fully polynomial time) [10].

e

erroré is a rational number, otherwise it is approximated from
below by a rational number. We denote By a smallests-
Pareto set and bypt. its cardinality. It follows from [10] that
opt. is polynomial in the input size and &

We are interested in generic algorithms that compute in-poly
nomial time aneg-Pareto set of minimal size. For the bi-
objective case, a generic algorithm that computes-&areto
set of size at most@t, was established in [12] using rou-
tines GAP;. Moreover, if the routingGAP; runs in polyno-
mial time (resp. fully polynomial time) then the algorithiis@a
runs in polynomial time (resp. fully polynomial time). Then
it is shown in [3] that are-Pareto set of size at mosbgt, is
computable in polynomial time if there exists routiri&sstricy
computable in polynomial time for both objectives. These ap
proximation results are tight for the class of problems dtiing
such routines. An algorithm that computessaRareto set of
size at mosk.opt, is called ak-approximation algorithm.

3. Two objectives

Since ane-Pareto set of polynomial size can still be quite e first present a hardness result for theoBective Knap-

large, Vassilvitskii and Yannakakis investigate in [123 tteter-

sack problem then we propose a new generic algorithm that

mination ofe-Pareto sets of minimal size. These authors alsodpproximates the size of a smallesPareto set to a factor 3

proposegenericalgorithms to deal with this problem. An algo-

which is much simpler and, in some cases, mdfeient than

rithm is called generic if it does not depend on any particula ihe gne presented in [12].
problem and makes use of general purpose routines for which

only the implementation is specific to the proble@AP; is

such a general purpose routine). In such algorithms it ig onl

3.1. Approximation hardness f@t-osiecTive KNAPSACK

required to have bounds on the minimum and maximum values Diakonikolas and Yannakakis [3] showed that the size of a

of the objective functions. Assuming in the following thaet
objective functions take positive rational values whosmer
ators and denominators have at modbits, any feasible point
has a value betweerr and 2" and moreover the ffierence
between the values of any two solutions is at leadt Zor any
criterion. From [10],0pt. is polynomial in the input size and
1/e.

smalleste-Pareto set of Bosiective Stortest Parn and B-
OBJECTIVE SPANNING TREE Cannot be approximated within a factor
better than 2 in polynomial time, unless=PNP. These results
are tight since these two problems admit a rouRestrict that
runs in polynomial time, and thus arPareto set of size at most
20pt, is computable in polynomial time as shown in [3]. Vas-
silvitski and Yannakakis [12] showed that the size of a small

In order to use generic algorithms, Diakonikolas and Yan-este-Pareto set of an artificial variant ofNKpsack, called B-
nakakis introduced in [3] two other general purpose rowtine oBjecTive 2-Type-KNaPsack, cannot be approximated within a

calledRestrict andDualRestric} for the bi-objective case.

Given an instance, a boundb and a rationall > 0, the
routineRestrict(f1, f2 < b) either returns a feasible pointat-
isfyingz < bandz < (1+6). min{fi(x) : xe S andf,(x) < b}
or correctly reports that there does not exist any feasibiletp
such thaz, < b.

Given an instance, a boundb and a rationals > 0, the
routineDualRestricy(fy, f, < b) either returns a feasible point
zsatisfyingz, < b(1+6) andz < min{fi(x) : x e Sandfy(x) <
b} or correctly reports that there does not exist any feasitiletp
zsuch thatz, < b.

We say that routineRestrict(f;, f, < b) or DualRe-
stricts(f1, f2 < b) runs in polynomial time (resp. fully poly-
nomial time whers > 0) if its running time is polynomial inl |
and|b| (resp.|l|, |bl, |6] and 1/6). RoutinesRestrict(f1, f2 < b)
and DualRestric§(f,, f1 < b’) are polynomially equivalent as
proved in [3].

factor better than 3 in polynomial time, unless-IP. This re-
sult is also tight since this problem has a routBwP; that runs
in polynomial time, and thus an-Pareto set of size at most
3opt, is computable in polynomial time as shown in [12].

In this part, we investigate the status of the classical ver-
sion, called B-osiective Knapsack, with as input a se@) of
items, a capacitg and for each item two valuesv,(i), va(i)
and a weightv(i). Values and weights are positive rationals.
A solution is a nonempty subs€ of items with total values
vi(Q) = Yico Va(i), v2(Q) = Yico V2(i) and a total weight
W(Q') = Yieg W(i) < c. The goal is to maximize the values.
First, note that the size of a smallesPareto set of BosiecTive
Knapsack is approximable in polynomial time to a factor 3 since
this problem admits an FPTAS, which is equivalent to the-exis
tence of a polynomial time routim@AP; [5]. We prove that the
size of a smallest-Pareto set of BosrecTive Knapsack is not
approximable in polynomial time within a factor better tHan

In the routines considered in this paper we assume that théP # NP.
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Theorem 1. For Br-ossective Knapsack the size of a smallest
&-Pareto set cannot be approximated within a factor bettanth
3 in polynomial time, unled8 = NP.

Proof : We construct a gap-preserving reduction from thie-P
TiTioN problem. Thus, from any instandeof Partition, we
construct an instanck of Br-osiective Knapsack such that if
the answer of is 'yes'’ then the size of the smallesPareto set
of I” is 1 and if the answer dfis 'no’ then the size of the small-
este-Pareto set of’ is 3. Recall that in kkrrrion, the input is
a setN of n positive integersy, .. ., a,, and we have to deter-
mine if it is possible to partitiolN into two subsets with equal
sum. Starting with such an instance we construct an instaince
Bi-ossective Knapsack as follows. Letb = Y., /2. For each

i =1,...,n, we have one itemwith valuesvy(i) = v»(i) = &
and weightw(i) = a. In addition, we have two special iteras
andg with vy (@) = (1 + )b, v2(@) = 0, w(a) = bandvy(8) = 0,
Vo(B) = (1 + )b, w(B) = b. The capacity of the knapsackbs
Note that if a solution contains a special item, it cannottaion
any other item. Ler* andZ® be the points corresponding to the
solution with special iten@ andg respectively. Consider now
solutions without special items. The corresponding pdiats
ing the same value on each criterion,Zebe the point with the
largest valuer* on each criterionz* dominates all other such
points.

If | is a’yes’ instance, we hawe = b. Thus,z" (1 + &)-
dominates bottz* andZ, and{z'} is ane-Pareto set. i is a
'no’ instance, we have* < b. Thusz* andZ’ must make part
of anye-Pareto set anft’, 72, 7} is a smallest-Pareto set. O

wheren is the number of jobd, andR are respectively lower
and upper bounds on the first coordinate of an optimal saiutio
For Br-ossective BipartiTE MATCHING, the running time of the
routine presented in [6] ©(m°/%)) wheremis the number of
edges in the graph.

Our approximation algorithm has the same approximationra-
tio as the algorithm presented in [12] but is much simplethbo
in its description and in its proof, owing to the use of thetiog
SoftRestrict instead ofGAP;. Its running time is comparable
to the one of [12] and better under some conditions.

Before presenting and analyzing this new 3-approximation
algorithm, we first compare the two routin@$\P and SoftRe-
strict.

Proposition 1. The routines SoftRestrict and GAP are polyno-
mially equivalent.

Proof: We first show that we can answer @AP;(y) us-
ing SoftRestrigi(f;, 2 < y2/(1 + 6)). Indeed, if SoftRe-
stricts(f1, f2 < y2/(1 + 6)) returns NO or returns a feasible
pointzwith z > y;, we return NO and iBoftRestrigl( fy, f, <
y2/(1 + 6)) returns a feasible poimtwith z < y; we returnz

We give in the following an algorithm that computes the
function SoftRestrigi(f;, f < b) using a polynomial num-
ber of calls toGAP; wheres’ V1+6 — 1. We first call
GAPy((1+ 67)2™, (1 + 6")b). If it returns NO, then we also re-
turn NO for SoftRestrigi(f;, f, < b). Otherwise, we partition
the objective space by defining intervals, on the first object
from 27™/(1 + ¢’) to 2" such that the ratio between the up-

Remark that we can generalize the previous result, provinger and lower bounds of each interval ist¥’. We perform

that for p-ossective Knapsack with p > 2 the size of a smallest
e-Pareto set cannot be approximated within a factor better th
p + 1 in polynomial time, unless P NP.

3.2. A new 3-approximation algorithm

a binary search on the upper bounds of the previous intervals
calling GAPy (a, (1 + ¢’)b) for somea until one finds a valua*
such that (i\GAPy (a"(1+ &"), (1 + §’)b) returns a feasible point
z" and (ii) GAPy (a*, (1 + ¢”)b) returns NO. Then we retuizi.
The number of subdivisions on the first coordinate is

We propose in this section a new 3-approximation algorithm2m;/ log(1 + ¢’) ~ ®(4m/¢’). Hence, the number of calls to

based on another routine call8dftRestrigt

Given a positive rational bourtwand a parametey > 0, the
routine SoftRestrig(f;, f, < b) either returns a feasible point
z satisfyingz, < (1+6)bandz < (1 + 6).min{fy(x) : x €

GAPy is ©(log(m/8"))=0(log(m/s)). a

Corollary 1. Consider the class of bi-objective problems that
possess a fully polynomial time routine SoftRestrdth § > 0

S andfy(X) < b} or correctly reports that there does not existfor both objectives. Then, for amy> 0, there is no polynomial

any feasible point such that, < b.

We say that a routin8oftRestric{(f, f, < b) runs in poly-
nomial time (resp. fully polynomial time whe# > 0) if its
running time is polynomial inl| and|b| (resp. |l], |b|, |6] and
1/8).

Remark that a routin&oftRestrigi(f;, f, < b), with a
strict constraint, can easily be simulated by a routiuétRe-
stricty(f1, f, < ') usingb’ = b — 22™,

time generic algorithm using SoftRestithat computes an-
Pareto set of size less than or equaBmpt..

Proof: Follows from Proposition 1 and the fact that the same
result holds for the routin&AP; [12]. |

Algorithm description. We first describe briefly the idea of the
algorithm. We computd™" and ;""" which represent lower

Such a routine was proposed for several problems. For inbounds on the minimum values on the first and second objec-

stance, for the Bosiective SpannING TREE problem, the running
time of the routine presented in [8]@&mrPr(L(n—1)/6], [(n—
1)/6])) wheren is the number of vertices in the grapi,the
number of edges in the graph an(, b) is the time to multi-
ply polynomials of maximum degrees less than or equal to
andb. For a B-ossective SINGLE M ACHINE SCHEDULING problem,
the running time of the routine presented in [2Dg°R/(53L))

tives usingSoftRestrigt. The algorithm iteratively generates a
sequence of pointst, g',...,rS g% Pointsgl,...,q° are se-
lected in decreasing order accordingftaand increasing order
according tof,. Pointq! is selected so as to ({ &)-dominate
the feasible points that have an optimal second coordiniaile w
getting the best possible value &n The algorithm stops when
it generates a poirg® that (1+ £)-dominates the feasible points



f2

Algorithm 1: Algorithm SoftGreedy

input : An instance of a bi-objective problem for which
routinesSoftRestricgi( f1, f < b) and Lo |
SoftRestrigi( f,, f; < b) are available % fffffff E—ddt == @i’

output : An e-Pareto set of size at mosb t, I I )
1 fMn  fy(SoftRestrigf1, fo < 2M)/(1+ 8); A - — - %
finn  f,(SoftRestrici f,, f1 < 2™)/(1 + 6); JiZ et ‘“f_?‘z
2 r1 « SoftRestrig( f,, f; < 2M); oyt ot 2
2 T ek / -
4 f1

4 gt « SoftRestrig(f1, f2 < 1)

min
fi

N
[y

g

pit
Te

—1
5 fi « (ﬁ/(l +ée); Figure 1: lllustration of Algorithm 1 with & 6 = V1+ ¢
6 Q< {q'};
710« 1; _ T
8 Wh”ef_ll > flmin do have z > maxf, -, r'2/(1+ 0)}.

I_(_ I+ 1 _ —i Proof : This results from the definition of the routirgoftRe-
0 | e SOftReSt“%t(lfz, fi<f ) strict; and steps 10-12 and 15 of the algorithm. 0
n | R e Emax® L r/(L+ o)) 4 —
1 q — SoftRestrig(f;, f, < f_zl); Lemma?2. Foralli = 1,...,s we have(l)_cif2 < Q+o)f
13 if gy > r; then and (i) for each feasible point z with,z< f,, we have z >
1 L q < ri; gy/(1+6).

— .
15 fi < q'l/(li+_3); Proof : This results from the definition of the routirBoftRe-
6 | Qe QuU{dY; strict; and steps 10-12 of the algorithm. i
17 return Q;

We can now prove the following result.

) ) ) ) Proposition 2. Set Q is are-Pareto set.
that have a first coordinate equal f§". RoutinesSoftRe-

stricts(f2, f1 < b) andSoftRestricl(f1, f, < b) are alternatively  proof: We show that the points i cover all the feasible
used to construct points and pointsq' respectively. Point'  points by partitioning the range of feasible valuesfenMore
is a point with a smallest second coordinate that we can-deteprecisely, we show that:
mine with the routineSoftRestrigt that is not (1+ ¢)/(1 + 6)- (i) Pointq! (1 + £)-dominates all the feasible points with an
dominated by the pointg’ with j <i. Pointd' is a pointwith ¢, yajue greater than or equaldg/(1 + &).
a smallest first coordinate that we can determine with reutin (i) For eachi = 2,....,s pointq (1 + &)-dominates all
SoftRestrict that (1+ ¢)-dominates point'. A formal descrip-  the feasible points that have thefi value in the interval
tion oft(;us algobnthm is givenin _Algo_rlthn? 1. " y r[qll/(1+ 8),q|171/(1+ 8))_

In order to obtain a 3-approximation algorithm, we consider: iy There is no feasible point with & value smaller than
in the following thats < V1 + £ — 1. Before analyzing this al- 9/(1+¢)
gorithm, we illustrate its behavior in Figure 1 where 3 psint * '
d, g% o are selected by Algorithm 1 in order to cover the part(i) Let z be a feasible point witlr; > gl/(1 + £). We need to

of the objective space with first objective value at legst ~ SNoW thaizis (1+ £)-dominated byy', i.e. thatzo > d3/(1+#).

whereas only one poinp'?, is suficient. From steps 2-4 we getwhegé < r3(1+¢)/(1+06) < f"(1+¢)
and thuy}/(1+ &) < fN < 2.

Algorithm analysis.We show now that Algorithm 1 produces (ii) Let z be a feasible point satisfyingil/(l +¢e) <71 <

a 3-approximation of the size of a smallesPareto set. Let q&*l/(l + ). We need to show that is (1 + &)-dominated
Q = {qg%,....g% andR = {rl,...,rs} be the sets of feasible by d, i.e. thatz, > d,/(1+ ¢). From Lemma 1i{) we have
points produced by the algorithm. We show in the following22 > ma>(f_2i_l
that setQ is ane-Pareto set, then that its size is at most three ; —i i
times the size oP}, ane-Pareto set of minimal size. The proof haved, S (1+9) f:ilje’nce, from the definition oy (step 11),
is essentially the same as the one in [3] for the 2-approxanat we getq, < maxXf, ,r,/(1+9)} < (1+&)z.

algorithm. We first show some preliminarily results regagdi  (jii) The stopping condition of the algorithm (step 8)f_'l§ =

points inQ andR. ®/(L+e) < flmin_ O

, riz/_(l +0)}. Furthermore from Lemma 2j(we

Lemmal. Foralli =2,...,swe havdi) ril < qi1*1(1+ 6)/(1+ We show now that the size §fis at most three times the size
£) and(ii) for each feasible point z withy = q'lfl/(l + &), we  of an optimale-Pareto set.
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Proposition 3. Set Q is such thdQ)| < 3opt,. algorithm based on the routin@AP, that establishes a 3-
approximation of the size of a smallesPareto set and it needs
Proof: LetP; = {p,...,p*} be an optimalk-Pareto set, O(opt. - log(m/s)) routine calls. Since algorith@GZAGand
where its pointgp™ for i = 1,...,k are in increasing order of our algorithm run in polynomial time for the same class of
their coordinates offy and decreasing order of their coordinatesproblems and give the same approximation ratio of a smallest
on f;. We have to show th#®| < 3k. For this purpose, we show g-Pareto set we can compare them with regard to their run-
by induction oni that if the algorithm selects a feasible point ning times. The running time of a generic algorithm is de-
q¥2 then there_ must exi_st a poipt! in P;, if the algorithm  fined as the product between the number of routine calls and
selects a pointlﬁ*l thenpi'(1+¢6) > _qf'*l and if the algorithm  the running time of the routine called. This way, the running
selects a poing® then Py > (1+ 6)q§'. time of algorithmzIGZAGis O(opt. - log(m/¢)) - Teap, With
6§ = V1+& - 1 and the running time of our algorith®oft-
Greedyis O(0pt.) - Tsoftrestrigt With § = V1 + & — 1 whereTgap,
andTsofrestrie are the running times of the routin€AP; and
SoftRestrigtrespectively.
1 T, The running times of algorithnBoftGreedyandZIGZAGare
definitions off, andf, (step 11)and usingthat< V1+&-1,  comparable since we can solve the routBwtRestrict using
we haveri(1+e) = T, (1+6)?2< T . Using thatps! < T, and  ©(log(m/e)) calls toGAPy with &' = VI +6 - 1 (see the proof
Lemma 2-{i) we obtainp*il(1+ 5) > qi_ Since we haveﬁ < rfl% of Proposition 1). Moreover, if we can solve faster the nogiti
(steps 13 and 14) Lemma I)-{mplies thaqu < 2(1+6)/(1+e), SoftRestrigt, the running time of algorithrsoftGreedyill be
and so that the third statement is a consequence of the secod@aller than the one of algorith@2iGZAG Especially, if the
one, considering that< V1 + ¢ — 1. best known algorithm to solM8 AP; solvesSoftRestrictin the
Induction step. Assume the result is true until index1,  same time, we gain the time of the binary searches. It is the
we prove it for indexi. First, if the algorithm selects a point case for B-osiecive Seanning TREE since the algorithm in [8]
q3i*2’ we show thaP: contains a poinp*i_ By the termination that solvesSoftRestrigtis the best known to solV@AP;.
condition of the algorithm (step 8), we hagg=3 > (1 + &) f/""
and by the induction hypothesis thpf~* > (1 + 6)g3 3, it
follows thatp;'~! > (1+6)(1+&) f™". Thus, pointp*~* does not
(1 + &)-dominate the feasible points that have a minimum first
coordinate, and sB* must contain another poimt. To prove . ) R
i jectives raises specificftiiculties.

. i —3i-1 .
the s_econdl stzgit_ezment we first show t_b?ts 2. Smce trle A first type of dfficulties is related to the power or availabil-
feas!ble po_mr must. be*i (& s)-dom:pateg_lgy a point oP; ity of the routines. In [12], Vassilvitski and Yannakakisosted
andin parncularE;S/ionmp ,_\g\i/ihavepz <1z "(L+e). From o any generic algorithm based on rout@4P; cannot es-
the definitions off,” ~andf, (step 11) and using that< tablish ac-approximation of the size of a smallesPareto set
T+ e-1, we have¥2(1+¢) < T, (1+6)2< T ' Using forany constant. UsingSoftRestritinstead ofGAP; leads to
i the same result since the two routines are polynomiallyvequi
alent (see Proposition 1, whose proof for 2 objectives can be
generalized straightforwardly fgr objectives).

Therefore, in order to obtain stronger results, it is neces-
sary to resort to routines involving less tolerance, sucthas
extended versions, fop objectives, ofRestrict or DualRe-

Combining the previous results, we obtain the main result oftricts. First remark that extendeRestricy is more demand-
this section. ing than extende®ualRestricy since the tolerancéis repre-

sented only once in the objective to be minimizedRiestric
Theorem 2. Algorithm 1 computes am-Pareto set of size Wwhereas it is present in thg— 1 constraints irDualRestric.
less than or equal tdBopt, using Qopt,) routine calls to This is confirmed by known results [6], where it is shown that,

SoftRestrigt, whens < V1 + ¢ — 1. for p > 3, there is no polynomial-time routinRestrict for
classical problems like Mri-oBiecTivE SHORTEST PatH, MuLTI-

Proof : The resultis a direct consequence of Propositions 2 andBIECTIVE SPANNING TREE, MULTI-OBJECTIVE PERFECT M ATCHING,

3. Since the algorithm usesQ@ times the routin&oftRestrigt, ~ whereas, for instance, there exists a polynomial-timeimeut

the number of routine calls is bounded bygg.. O  DualRestricy for Mutri-oBiecTivE SpANNING TREE. Therefore,
an interesting problem is to devise a generic procedurene ge

Comparison to existing algorithmsFor the class of problems erate anc-Pareto set of smallest size forpacriteria problem,

admitting a routinegGAP that runs in polynomial time, the al- usingDualRestric}.

gorithm of Vassilvitski and Yannakakis presented in [12kwa A second type of dficulties is related to the way of exploring

the only one ensuring some guarantee on the size of the rebjective spaces with more than two objectives. It should be

turnede-Pareto set. This algorithm, call@liGZAGis a generic  noticed that, in the bi-objective case, non-dominatedisaian

5

Initialization (i = 1). The first statement trivially holds. To

prove the second statement we first show {ijat< f_zz. Since
the feasible point! must be (+ &)-dominated by a point oP*
and in particular by poinp™!, we havep;! < r}(1+s). Fromthe

4. Morethan two objectives

Computing smalk-Pareto sets for problems wifh> 3 ob-

thatpy < (A and Lemma 2i{() we obtainp;/(1 +6) > ¢,
Since we have < r} (steps 13 and 14) Lemma I}-{mplies
thatg? < g3 ~1(1+6)/(1+¢), and so that the third statement is a

consequence of the second one, consideringitkat'l + s— 1.



be sorted such that their objective values are increasiogén

Let¢é = Ui{Z} andl’ = U, I” = UT!. We can sei, b, c

objective and decreasing in the other objective. This oisler suficiently large to have the following (1 £€)-dominance rela-
used in algorithms generating smalPareto sets, including our tions:

algorithm SoftGreedy. The non-existence of such an order fo o _ _

p > 3 makes the exploration of the objective space much more(l) foranyz,zZ e ¢, 7 <, 2

difficult.

Owing to the previous dficulties, we focus in this section on

the simple case where the feasible points are given explioit

(i) foranyi, j=1,...,logn—-1, foranyzeT; ul"’j,zi < zif
and only ifi = j

the input. In this case, we can easily filter out the dominatediii) foranyzz eT',z<,Z

points and thus we consider in the following that the input-co

tains non-dominated points only.

In this context, wherp = 3, the problem of finding as-

Pareto set of smallest size ésapproximable, for some con-

(iv) foranyzZ eI, 2, 7
(v) foranyzel,Z eI’,z4, Z andZ 4. z

We show in the following that the greedy algorithm selects

stantc [9]. Moreover, for any number of criteria, there exists o pointsZ, i = 1,...,logn — 1 in this order. The proof is by

an O(logn)-approximation since our problem reduces wxr S
Cover, for which the greedy algorithm provides &flogn)-
approximation. An interesting open question, raised bytuol
and Papadimitriou in [9], is to known whether thesedyal-

gorithm performs better on the very specific instances of ou
problem. We provide an negative answer in Theorem 3. Recaj},

induction oni.

Initialization (=1). Note thatl] = || = § — 1. From (v)
it follows that any point inlC U I (1 + &)-dominates at most
1 4 logn-2 points. From (i) and (i) point (1+ &)-dominates

xactly the points iF UT; UT], wherelf UT; UT]| = 5 +
gn— 1. In particular point* (1 + g)-dominates] + logn —

that thegreedyalgorithm iteratively selects the point that covers 1 points. Therefore, poird! is the first point selected by the

the largest number of non-covered points.
Note that for 2 criteria, theyreedyalgorithm gives a 2-

greedy algorithm.
Induction step. Assuming that the filist 1 points selected

approximation, but it is not really satisfying because the a by the greedy algorithm am, ..., 2%, we prove that the next
gorithm of Diakonikolas and Yannakakis [3] finds an optimal gne js point. The points (& £)-dominated by, .. ., z-1} are

solution when the points are given explicitly in the input.

exactly the points i U (uij;ll(l"j UTY)). Therefore, any point

iNnTCUT’ (1 + £)-dominates exactlyu'j‘ﬁ ;U r)=4-1

Theorem 3. For p > 3 objectives, when the feasible points are yoints that are not already covered. Panexactly (1+ &)-

given explicitly in the input, the solution set produced bg t
greedy algorithm foiSer Cover has a sizéd(logn) - opt. in the
worst case.

Proof: We prove the result fop = 3. The result clearly ex-

dominates, among the non-covered points, the pointsinl’;
where[l[; UT]| = %. Thus pointZ is selected by the greedy
algorithm at step.

Observe now, that the first point bf (1 + £)-dominates all

the points iné. Thus, from (iii) and (iv), it follows that a set

tends top > 4 since we can consider the same points extendedonstituted by the first point df; and any point i’ (1 + &)-
with the lastp - 3 coordinates to 0. In order to prove it, we give dominate theN points. Therefore, the greedy algorithm returns

a family of instances where the algorithm producé&mgn)-
approximation. Le#, b, ¢ be three nonnegative integens; 2
and consideN = 2/ + £ - 3 = n+ logn — 3 non-dominated
points in the criterion space, defined as follows.

For all i = 1,...,logn - 1 let Z =
(s b (1 + g)mrTtl) I be a
(lJrg)i/(Iognfl) > rglJrE)i/(logn.—l) s .8 / ’ I .
set of 5z points lying uniformly on the line
i1
from (a., W% 1, C(l + 8) Iogn—l) to (a(l +

&), . C(L+ &)™) if i # logn - 1 and be
the  singleton {(a, g rmeroe Le(l+g)mnt)} if
i = logn - 1, andI be a set of5% points lying uni-
formly on the line from (W - 1,b,c(1+ 8).0'9%) to
(- (L + £).¢(L+ £)%m) if i # logn - 1 and be the
singleton|(rryriimmor — 1.b. (1 + &) 1)} if i = logn - 1.

Note that if the coordinates of pointsare not rational, we
approximate its coordinates from below by rational onesrévio
over, if the coordinates of points inU I are not rational, we
approximate its coordinates from above by rational ones.

a set of points of size log— 1 while an optimal set of points
contains only two points. a

5. Conclusions

We investigated the problem of computing smalPareto
sets for multiobjective problems. While the situation isaal
for bi-objective problems, it remains challenging for pleshs
involving at least three objectives. In this latter caserewhen
the points are given explicitly in the input, it is NP-hardde-
termine are-Pareto set of minimal size, but there exists a 100-
approximation of the size of a smallesPareto set [9]. A natu-
ral open question is to narrow the large gap between lower and
upper bounds.
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