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N Abstract

— We call a matrix completely mixable if the entries in its aolus can be permuted so that all row sums are equal. If it is not
completely mixable, we want to determine the smallest makand largest minimal row sum attainable. These valuesigeay
discrete approximation of of minimum variance problemsdiscrete distributions, a problem motivated by the queshiow to

<" estimate ther-quantile of an aggregate random variable with unknown degece structure given the marginals of the constituent

(Nl random variables. We relate this problem to the multidinmmred bottleneck assignment problem and show that therstiseai
polynomial 2-approximation algorithm if the matrix hasyBlcolumns. In general, deciding complete mixabilithi®-complete.

In particular the swapping algorithm of Puccetti etlal. flhbt an exact method unleS§d < ZPP. For a fixed number of columns

O it remainsN'P-complete, but there exists a PTAS. The problem can be saiyeskudopolynomial time for a fixed number of rows,

’ ‘and even in polynomial time if all columns furthermore camtentries from the same multiset.

L
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1. Introduction L;, and we also lack information on the dependence structure
A between them.
— + The problem we are considering is the following: Givena  |n the following we will assume that the marginal distribu-
LO) matrix A e R™¢, we are interested in the best way of permut-tions are discrete, or have been approximated from below and

N~ ing entries in each column (independently) so that the makim frqm above as described inl [1]: F& the generalized inverse
row sum is minimized, or so that the minimal row sum is max-iS Fr Y(@) = sup{x e R : Fj(X) < a}. Consider a discretiza-

’ imized. Givend permutationd] = (71,...,74) € G(m)? w

. i -1
[N~ 'denote byA™ the matrix obtained from by permuting column t|on in N + 1 points. Compute the valuep — F (r/N) for

© jbynj, ie. A. _ A _,.., .. The optimization problem is then ' € {0,1,...,N}. Denoting by 1,1, the characteristic function
< M.5° on the interva(a, b),
—i d
% A):= min max L 1 1'% 18
2 (A Me&(m)d 1<i<m{Z“lA"J} @ i =N Z +OO) andF =N Z +OO)
>§ and . - -
© BA) = max  min Z INES @) provide discrete approximations Bf with Fj; > Fj > F;.
Me& (m)d 1<i<m . Dependence among the individug| will T mamfest itself in

]‘ _ —1 . . .
We note that aggregation operations other thaare con- the way the valueg; = F;(r/N) are appearing in the matrix

ceivable (e.g., miymax x), but will not be treated here. % - qg

This problem is motivated by an application in quantitativeA = | : . |. In particular, the row sums may vary
finance, but in fact arises whenever one needs to estimaite- the a, - o
fluence of stochastic dependence on a statistical problem: C significantly: Consided — 2 and the uniform discrete distri-
sider an aggregate random variablef the formL = > Li,  pution on{0,..., N}. If Ly andL, are comonotonic (i.e. there

where the random variablds are possibly not independent. is perfect positive dependence among the random variables)
Denote byF (x) = P(L < x) the distribution function ot. then(cg, ...,q%) = (G3.. ... %) with row sums{0,2,...,2N}.

We are inltereste_d in computing thequantile (Value-at-Risk, |f, on the other handF; and F, are countermonotonic (per-
VaR,) F (o) = inf{xe R : FL(X) > a}, fora e (0,1). Of-  fect negative dependence among the random variables), then
ten we have no data on the joint distributibnbut only on the (qo’ o qN) (qw o qo) and all row sums are equalhb If

marginal distributiond=; of the constituent random variables \ye want to find an upper bound 6" (@) we need to consider
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matrices with entrieq! for § > «, and for lower bounds ma- foramx --- x mcost tableC. Definingci,

| S
trices constructed frorg} for 4 < a and each time minimize d
the variance of the row sums @& This intuition is made ex- Ai.d We see thaty(A) can be computed by solving a multi-
act by a representation theorem of Riischendbrf[2, The@iem dimensional bottleneck assignment problem. Using Observa
showing that for discrete distribution functions, and dughie ~ tion[I below we can similarly compufg(A) and thus check
uniform discretization inherent in our definition Bf andF;, ~ complete mixability. _

solving the minimum variance problem amounts to deternginin 1 dimension 2, the bottleneck assignment problem models
y(A)—B(A) for the matrixA, since it is enough to minimize over the foIIOW|n.g problem: leen a sgt of Wor.k.ers an_d ase’F ofgask
the set of all rearrangements of the We refer to[[fL[3/14,15] where the tlme of workdrperforming taskj is ¢j, find a simul-

for recent applications and 0 [2] arid [6, 7] for more detais .taneo_us assignment of all workers to all tasks such that the m
the general concept of rearrangements of functions. imal time spent by any worker (the bottleneck of the schedule
is minimized. Fulkerson et al. showed that the 2-dimendiona
bottleneck assignment problem can be transformed inteeadin
ol X assignment problem [10], and thus is polynomially solvable
lowed to come up with internal models for the calculation of  Thao multi-dimensional bottleneck assignment problem of

risk capital. For operational risk the so-calleq Loss Dlisttion _assigning (equal-sized) crews of workers to (equal-sigeal)ps
Approach gives them full freedom concerning the stochastig ta4sks is much harder. Even restricted versions of the 3-

modeling assumptions used. The resulting risk capital €St gimensional version do not admit a polynomial time approxi-
respond to a 99.9%-quantile of the aggregated loss dataaover, -tion schemeé [11].

year. This corresponds to computing the VaIue-at-Ris(l;o\éaRL) By addingu = — MiM<i<mi<j<d Aij to each entry oA we
ata = 0.999foran aggregate loss randomvaridble >i_; Li,  can always shift the matrix to make the smallest entry equal t
but makes no requirements on the interdependence between tharo, changing all row sums by - d. For convenience we will
individual loss random variablas corresponding to the indiv- - hence restrict our attention to integral, nonnegative ivesr
dual business lines: Assumptions made in the calculatiost mu Assyming integrality is not a major restriction, since oatl
only be plausible and well founded. Estimating the uppenigou  matrices can without loss of generality be scaled to become i
and lower bound of the VaR over all possible dependence-strugeqgral, and rational matrices provide a dense subset ofte r

tures is hence relevant both from the regulator's point 8Wi  matrices that could arise in discretizing distributiondtions.
as well as from the bank’s point of view, to estimate worsecas  First note thag andy are related as follows:

hidden risks in the models presented under the Loss Distribu
tion Approach. Observation 1. Let Ae Z™9, and | := maX<i<mi<j<d Aj
its largest entry. Define Aoy A; = | — Aj. Theng(A) =

o= At

.....

Examplel ([8]). Under the Basel Il and Ill regulatory frame-
work for banking supervision, large international banies alr

Besides computing (or approximating)A) andg(A), one

is also interested in deciding whether for a given magfik) = d-1—y(A).

B(A). We will call such a matrixompletely mixablén analogy Hence we only ever need to consider one of the two values.
with the definition of this concept by Wang and Wang [4] for ¢ see that deciding complete mixability Afand computing
distribution functions. ory are actually polynomially equivalent we only need the fol-

~ In this paper we show that deciding complete mixability |oing obvious necessary condition that will also provefuse
is a stronglyN'P-complete problem, even for a fixed number |ater on.

of columns, but can be solved using dynamic programming in

pseudopolynomial time for a fixed number of rows. We showObservation 2. Let Ae Z™9. A is completely mixable if and
that the algorithm proposed by Puccetti et al. [in [1] to com-only ify(A) = B(A) = 2™, 3| Aj.

putey(A) andB(A) is not an exact method unles&? = ZPP,
despite its impressive computational success [8]. Finédly
matrices in fixed (column) dimension we present a polynomial
time approximation scheme.

It turns out that this is dticient for showing linear time
decidability of complete mixability if the entries & are re-
stricted to at most two values: Those can be mapp€6,tb},
and then the algorithm used in the proof below provides aline
time check for complete mixability:

2. Complexit
prexity Theorem 1. Let Ae {0,1}™9. A is completely mixable if and

It is known that for two columns the complete mixability only if m | >3 i mi<j<aAj. The permutation achieving the
problem is solvable explicitly (see the referenceslin [Jpisis ~ complete mix can be computed in linear tiggn - d).
also apparent by recognizing that the computation(#f) can
be understood as solving a multidimensional bottlenedigass
ment problem. The multidimensional bottleneck assignmen
problem asks for the computation of

Proof. “=" Let s = 3", Y | Aj. If m¢ sthenA cannot be
i:ompletely mixable.
“<=" Assumem | 3 icmi<j<a Aj- We need to permute
the columns ofA such that exactly? € {0,...,d} = r entries
MiN_ MaXx Gy, (). .xq(i) in each row have value 1. .
w7 ISISm This can always be done: Define fioe {1,..., m} thede-
fecto(i) = r — Z?:l Ajandg = > |6(i)| the total defect.



Clearly,¢ = 0 if and only if all row sums of the matrix are We note that, as is the case for makyP-hard problems,
equal tor. there can not be a polynomial time approximation algorithm
Starting withj = 2 defineS; = {i e {1,....,m} : §(i) >  computing an approximate valyé(A) that achieves an addi-

0,Aj = 1} andD; = {ie {1,....m} : 6(i) < O,A; = 0}. tive error|y'(A) — y(A)] < K for some constanK: For a
If S; # & andD; # & lett; = min{|S;|,|Dj|} and swap given completely mixable matriA € Z™d the matrix ob-
the entries of columd j indexed by the largest entries ofS;  tained by appending the coluni’, 2K, ..., mK’) T with K’ >
with those indexed by the smallestentries ofD;. Repeatin maxaa*, K (wherea* denotes the largest entry 8) has all
increasing order, for alj < d. row sums separated by at led&t, so approximating/(A) to
Clearly, throughout the procedure the defect of rows withwithin K amounts to deciding complete mixability.
positive defect can only decrease, and the defect of rows wit  Clearly, when bottd andm are fixed the problem is trivial
negative defect can only increase; the total defect deesdas by enumeration. For fixedh and variabled a dynamic pro-
2tj > 0 for each swap. Assume that the procedure stops igramming algorithm similar to the one foruMBer PartITION
the last column with a matrix that has nonzero total defect of Garey and Johnson [12] can be devised to check complete
Then there must be a rowwith positive defect;, and a rowi, mixability:
with negative defeds;,, sincer = s/m. Consider some column . . . .
index| such thatA, = 1 andA, = 0. Then the index, Lemma 1. 'I_'her(_e_ls a pseud_opolynon:nlii(Ij z_ilgorlthm to decide
was inS;, andi, was inD; (because the absolute defects of theCOMPlete mixability for matrices & Z2," if the number of
rows can only have decreased in later steps), but they wére nfPWs m is fixed.

swapped, a contradiction. U Proof. We can enumerate all possible values appearing as row

Note that when the algorithm declarésnot completely ~ SUMS a8%/1,.... W, With N < d - max<i<mi<j<d Aj- Build a

mixable’, it has computed a permutation achieving maximadynamic programming tabBwith Boolean entrie8(i, j, vi, ..., W),
rOW SUM. whereB(i, j,...,r,...) is Trueif and only if valuer can be con-

We note in passing that ik € Z™% andB e Z™% are structed as a (partial) row sum in rowvith | columns: Iterate
completely mixable, then so isA and(AB) € Z™ (di+dz) - A over t_he columns oA succeswe]y and updatgusing e.ach of
more interesting composition is the following: the (flxed number.of) permutations that.ca.n be applied to col-

umnj of A. ThenAis completely mixable iB(i, d,...,r,...)is
Propositon 1 (glueing of completely mixable matricesjet  True for all rowsi, wherer is the target row surﬁi Zi’j A O
A € R™*% and Be R™*% be completely mixable matrices

that have been permuted to each have equal row sums. Then The results inl[11] for the bottleneck 3-assignment problem
the matrix with costs defined by distanceB3AP-per) yield a 2-approxi-

A® B = (Cij) 1<i<mm, mation for determining/(A) andB(A).
1<j<dpdp
Lemma 2. For Ae 2’233 there exists a polynomial 2-approxi-

with i - = A + By (i.e., the block matrix con- k - > :
Crme(i-+kaa(i-n+1 = A a mation algorithm for computing(A).

structed by replacing every entry;;fof A by a block(Ajj +
Bi) 1<k<m, ) is completely mixable.
d:

1<i<dp

Proof. For convenience we will in this proof assume that the
matrix A is indexed by(i, j) with0 < i <m-1and 0< j <

d — 1. We construct an instance of B3ABr as follows: Let

I = {0,...,3m — 1} denote the indices of all elements Af

in column-major order, i.e. indelxe | selects elemer(qéj,l
mod 3 of A, and definetheseR = {3k +1 |k <m}, G =
{3k+2 |k <m},andB = {3k + 3| k < m} such that = Ru
Theorem 2. It is strongly NP-complete to decide whether an G U B. Define disti, j) = 3(A |

. +A ).
31), d ES
integral matrix Ae Z™9 is completely mixable. It remains (I3]0 mod 9 (15D.G mod 3

_ Then dist satisfies the triangle inequality and is symmetitic
strongly NP-c_ompIete for fixed d, and at least weallyP- .o ot necessarily satisfy dist) = 0, so is not a proper
complete for fixed m.

metric. Nevertheless, Theorem 1 0f|[11] holds with the orédi
Proof. Even ford = 3 we are looking at a bericaL 3-pivensionaL Proof, as only symmetry and triangle inequality are exgldit
Marcuine problem, which is stronglyP-complete[12, prob- and disti, j) is only ever evaluated between pairs offeiient
lem SP16] (the row sum that needs to be tested is given by Ofiodex sets fron{R G, B}, i.e. | 3] # | 3].With our definition of

Proof. SinceA andB have identical row sumsa andog (re-
spectively), the row sum @@ is alwaysd,-o-a+d;-0g, Showing
complete mixability ofC. O

In general checking complete mixability is hard:

servatioi 2). dist(i, j)
Form = 2 we can reduce dBer ParTiTION tO this prob- o . _
lem: Let(ny,...,ng) € Z9 be a multiset of integers, and let Gk = ?'St(" j) + disi(j, k) + dist(k, 1) i
Ny N\ . _ = 3((A1+ A2) + (A2 + Ag) + (A + A))
s = >,ni. ThenA = (O O) is completely mixable
since costs need only be definedfar R, j € G,k € B. Then

if and only if (ny, ..., Nng) can be partitioned into two multisets
of equal size%s This problem is known to be (weaklyyP-
completel[13]. O

determiningy(A) is exactly the B3AP«r problem of [11]. O



3. The swapping algorithm number of times that the input matrix has to be randomly per-

] ) o ~ muted before the swapping algorithm correctly decides com-
As noted by Puccetti and Ruschendoff [1], it is sometimegyjete mixability were of polynomial size. Since we have show

easy to check that a matrix can be permuted so as to increase i Theoren{® that the problem is stronglyP-complete this
smallest row sum. We need the following definition: would yield a zero-error probabilistic polynomial time alg

Definition 1. For A e Z™ |et ALl denote the matrix obtained rithm [14] for all problems inA’P. This would imply NP <

from Aby dropping itsj-th column, i.e AUl = (Ay.. A (j_pA (1) P.FA.d). =

~ Forxy e Z" denote byx 1 y thatx andy are oppo- In fact, the algorithm may terminate with an approximation
sitely ordered i.e.there exists a permutatiane &(m) such error ofO(max; A;) (Lemmd®).
thatX, 1 < -+ < Xmm andyy(z) = -+ = Yr(m)- For some matrices, however, Lemfa 3 actually guarantees

Lemma 3 (Theorem 3.1 of [1]) Let A € Z™_ If there ex- a positive increase of the minimal row sum: As noted at the end
ists a column index | Suchhthagl A[f] 5 AH?)T% A, of the proof of Lemma&l3, swapping entries in a column, gay

] I* . to achieve opposite ordering will actually increase theimai
then column A can be permuted such that opposite ordering is i 9 y

hieved. and the minimal FAd td row sum by at least 1, unless there are duplicate entrig®in
achieved, and the minimal row sum ot A does NOL Aectease. - 4 plicate row sums in the matri’l. This yields

For completeness we give the following proof. Observation 3. Let Ae Z™9 he a matrix where all columns

Proof. Let (3 AH]’ Y [jl])T —: ¥ y:= Aj. Then there have m dfierent entries, and for which afd — 1)-column sub-

exists a pair of indice, i» such thati, < x, andyi, < Y. matrices obtalngd by deletlng asingle column h_ave theT ptepe

Thereforex, + yi, < X, +Yi, andx, + Yi, < %, + Yi.. Hence that for all possllblle permutation of column entries their oxwr
sums have m distinct values. The) andB(A) can be deter-

MiN{Xi, + Vi, X, + Vi, } = Xi, + Vi, < Min{X, + Yi,. %, + i, }» mined in pseudopolynomial time using the swapping algorith

Itis not unlikely that a matrix with entries drawn uniformly
at randomly from a large domain with few rows has no duplicate
row sums (Lemmal5), but it seems very hard to trace how this
probability evolves after a few steps of swapping.

and thus swapping, < yi, cannot decrease the minimal row
sum ofA.

We note that if bothg, < X, andyi, <V;,, and there are no
duplicate entries ixx andy, then the minimal row sum c& will

actually increase by atleast = argmin, , {X, +%i,. X: ¥} | emma 5. Let Ae 2™ @Y e a matrix where each column

. o >0
is chosen minimally. D contains m entries drawn uniformly at random fréty. . ., N}.

In [1] this is taken as a rationale to propose the following Then the probability p(A) for a d-column submatrix of A to
algorithm: have m distinct row sums is

m?
Algorithm 1 Swapping Algorithm P=(A) = 1-0().

1: procedure AnTisORTCoLUMNS(A)

Proof. Consider al-column submatrixM. Each entry oM is

2 while3j: (3 AH] s 2 ALH)TWA'I' do a random variable, independently drawn frém. .., N}. We

3: X (X AE{],...,Z, “?)T consider the entries dfl drawn from 1...,N row by row.

4 y— A Hence the probability of obtaining sum in one row is

5: select(i, i) from {(i1,i2) | X, < Xi, A Yi, <V} P{Miz 4 -4+ Mg = 5| = p(,j;d), wherep(s,d) is the num-
6: swapA j <> Ay, ber of partitions ok into exactlyd parts. The probability of not
7. endwhile obtaining sumsis N=PD.

g: end procedure N

Matrix M hasm rows; using the binomial distribution for-
mula the probability of obtaining sumin m one-row trials is
It is then stated and confirmed experimentally that runninghus
this algorithm on many randomly permuted copies of the matri
A will usually determine very good bounds f8fA) andy(A), ) m ; 1
and is often very fast. In[8] it is admitted that no analytiogf =1- (N+§S’d)) — m% (N+d(s”d)) .
of convergence to the optimum is known, even when randomly
permuting the starting matrix, despite the promising pcatt Therefore the probability fok to have distinct row sums is
results. This is to be expected:

Pr{row sumsat least twice irM]

Pr{M has distinct row sunjs
Lemma 4. The swapping algorithia] 1 of [[1] does not run in  _ 1— Pf{3s: row sumsat least twice irM]
expected polynomial time unles&R < ZPP. '

Proof. Consider an instance of the complete mixability prob-
lem. Apply the swapping algorithm. Assume that the expected

4



and since we can have at mostow sums,

> 1 — mPr{most likely duplic. rowsuns* at least twice irM]

Crom(a (VoY
p(s*.d) (N9 — p(s*,d)\""
T ONd ( Nd ) )

where, to upper bound the probability of duplicates, we rieed
lower boundNY — p(s*,d))

(Nd _ Nd—l)m
(Nd _ Nd—l)m—l
—mp(S*,d)T
O(Ndm+ (71)m71Nd(mfl))
=>1-m (1 — Nam
O(Nd(mfl) + (71)m72Nd(m72))
-m-1- Ndm
>1-0(F)

where for the partition o§ into d parts we use the trivial lower
bound of 1 and the generous upper bouid d) < (s—d +
1)4-1 which is obtained as follows: To partitiosi we need
to use at least 1 unit in each of tdeparts. We now still can
distributes* — d units intod bins; we can choose freely from
{0,...,s* —d} for d — 1 bins, then the amount for the last bin

is determined. |
4. Matrices of consecutive integers
Definition 2. Letd,N € Z-o anda = (1,...,N)T. Every

matrix A" obtained through permutatiois € &G(N)¢ of the
columns fromA = (a,...,a) € ZN*9 will be called (N, d)-
complete consecutive integers matrix

We will now show that for such matrices and certain choices

of N (givend) the values o andy can be computed explicitly,
and that these yield bounds for arbitrary valuefNofFurther-

integers matrix is completely mixable with uniform row sum
Sloi=d+Nigi=d+ XN, d° = aa(D).

Assume that the statement holds for Z-, i.e. that a
(d¥, d)-complete consecutive integers matfvof sized® x d
has been reordered into a maté with identical row sums
aqg(k). We will useA’ to construct a matri®” with d“+* rows
that is a reordering of théd“+1, d)-complete consecutive in-
tegers matrix of sizel**! and has row sumag(k + 1): We
use the glueing operation of Propositidn 1 betwé&éandB =

0 1 d-1
dX ! 2 0 (which has constant row sum
d-1 0 d-2
d"&z_l)), to obtainA” = A’ @ B, which has row sunag(k) +

Yo<i<d -d* = ag(k + 1). O

Corollary 1. Let Ae Zx¢
integers matrix. Then

ad(|logg(N)]) < B(A) < ¥(A) < ad([logg(N)])-

In particular, by underestimating(A) as ay(|logy(N)]) and
overestimating/(A) as ai([logg(N)]) we make an additive er-
ror of at mosty" 5 i - d°%M)1-1 (which is roughly£N).

be a(N, d)-complete consecutive

Lemma 6. Let A be &N, 3)-complete consecutive integers ma-
trix where all permutations are the identity. Then the swagp
algorithm will terminate after one reordering step with atma
with row sums in the range N +2, ..., 2N+ 1]. In particular,

if N = 3and A is hence completely mixable the solution is has
additive errorO(N).

1 1 1
Proof. Starting withA = [ : : : | the swapping algo-
N N N
rithm will invert the order of the first column to obtail =
¢ |- This matrix satisfies the rule that each column
N
is sorted anti-monotonously wrt. the sums of the other two
columns, so the algorithm stops. The row sumshare 2, N +

more, we will demonstrate that the swapping algorithm of [1]3 5N 2N 41

(Algorithm[) on these instances does not have a constantfac

approximation guarantee (it is at le@xtN)).

Theorem 3. Let Ae Zggd be a(N, d)-complete consecutive
integers matrix and N= d* for some0 < k € Z. Then A is
completely mixable and

1 2 d
Proof. Fork = 1 the matrixA = : : : is
d-1 d d—2
d 1 d-1

a permutation that shows that the d)-complete consecutive
5

Since forN = 3% we know that there exists a reordering of
A such that all row sums areBZ!‘zl 3' this shows an approx-
imation error of at leasD(N). O

5. Matrices with restricted domain

Matrices of consecutive integer entries are just a special
case of matrices where all columns contain the same multiset
of entriesM = {vi,...,Vn}. If the number of derent entries
in M is fixed, these matrices yield tractable instances for vari-
abled, much like anN-fold system.

Lemma 7. Let Ae Z™9 such that the entries of each column
come from the same multiset M {ay, ..., am}, and assume m
is fixed. Thery(A) can be computed in polynomial time.



Proof. Since the multise is fixed, there are only a fixed num- [g] + 1 entries, a number only depending on the fixkdnd
ber of diferent ways to rearrange a column by permutationse. The objective value of the approximate solution is at most
For each of thesk arrangements of the st denote the per- de% < ey(A) larger thany(A), sincea* < y(A), yielding a

mutation byr, 1 < | < k. Then

minl
Vi, (1) Vi (1) r
: XIT1 + N + X]rk g :
Vi, (m) V;rk(mlz r
ZI:l Xy = d
Xn € Zso forl<I <Kk

(1 + €)-approximation.

O
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is an integer programming problem in fixed dimenstpmod-
eling that we have to choosgrearrangements of the sit
(one for each column o) that can be solved in polynomial
time [15]. O

Instead of instances with the same multiset of values in ev-(y
ery column we can also consider instances where all matrix en
tries come from a fixed set of values, generalizing the twiaeva

case of Lemma]1. 21

Theorem 4. Let M = {vy,...,Vs} < R be a fixed set of values
and Ae M™d. For every fixed number of columns d one can [3]
computey(A) in polynomial time.

Proof. If M is fixed then for fixedl there are at mosf possible 4]
row vectorsry, . .., rs composed of values fromal. We define

the binary valuel to be 1 if and only if(ri); = vi, i.e. if in

row vectork the valuev; appears in thg-th column. [5]

For a given matrixA ¢ M™9 we can count the number of
occurences of valug in columnj in polynomial time. Denote (6]
these values bg;;.

Introduce binary variablegs, ..., pg to indicate whether  [7]
patternk occurs in the permuted version Af and integer vari-
ablesqy, ..., gy counting how often it appears. Then the fol- 8]
lowing integer program in fixed dimensiaf can be used com-
putey(A): 9]

minT [10]
(Z?=l(rk)j)pk <T for all k
Zk5d=1 Pk <sm [11]
p <q for all k
g <mp for all k
v uak = o foralli, j [12]
pi € {0,1}¥, q € Z¢
[13]

O

Corollary 2. There exists a polynomial approximation schemel14]
for every fixed d to computgA) for A e R™d > 0 with

e 15
multiplicative error(1 + €) for everye > 0. 03]

Proof. Define a grid of widthe% wherea* is the largest en-
try of A. Consider the seM = {0,e2",2¢&7 ... [9]€q]

and round the entries ok up to next value inM to obtain
an approximating instanc& Then by Lemma&l4 the approx-

imating instance can be solved in polynomial time siMéas
6
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