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Abstract

We call a matrix completely mixable if the entries in its columns can be permuted so that all row sums are equal. If it is not
completely mixable, we want to determine the smallest maximal and largest minimal row sum attainable. These values provide a
discrete approximation of of minimum variance problems fordiscrete distributions, a problem motivated by the question how to
estimate theα-quantile of an aggregate random variable with unknown dependence structure given the marginals of the constituent
random variables. We relate this problem to the multidimensional bottleneck assignment problem and show that there exists a
polynomial 2-approximation algorithm if the matrix has only 3 columns. In general, deciding complete mixability isNP-complete.
In particular the swapping algorithm of Puccetti et al. [1] is not an exact method unlessNP Ď ZPP. For a fixed number of columns
it remainsNP-complete, but there exists a PTAS. The problem can be solvedin pseudopolynomial time for a fixed number of rows,
and even in polynomial time if all columns furthermore contain entries from the same multiset.
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1. Introduction

The problem we are considering is the following: Given a
matrix A P Rmˆd, we are interested in the best way of permut-
ing entries in each column (independently) so that the maximal
row sum is minimized, or so that the minimal row sum is max-
imized. Givend permutationsΠ “ pπ1, . . . , πdq P Spmqd we
denote byAΠ the matrix obtained fromA by permuting column
j by π j, i.e.AΠi, j “ A

π
´1
j piq, j. The optimization problem is then

γpAq :“ min
ΠPSpmqd

max
1ďiďm

#

d
ÿ

j“1

AΠi, j

+

(1)

and

βpAq :“ max
ΠPSpmqd

min
1ďiďm

#

d
ÿ

j“1

AΠi, j

+

. (2)

We note that aggregation operations other than` are con-
ceivable (e.g., min,max,ˆ), but will not be treated here.

This problem is motivated by an application in quantitative
finance, but in fact arises whenever one needs to estimate thein-
fluence of stochastic dependence on a statistical problem: Con-
sider an aggregate random variableL of the formL “

řd
i“1 Li ,

where the random variablesLi are possibly not independent.
Denote byFLpxq “ PpL ď xq the distribution function ofL.
We are interested in computing theα-quantile (Value-at-Risk,
VaRα) F´1

L pαq “ inftx P R : FLpxq ě αu, for α P p0, 1q. Of-
ten we have no data on the joint distributionL, but only on the
marginal distributionsF j of the constituent random variables

L j , and we also lack information on the dependence structure
between them.

In the following we will assume that the marginal distribu-
tions are discrete, or have been approximated from below and
from above as described in [1]: ForFi the generalized inverse
is F´1

j pαq “ suptx P R : F jpxq ď αu. Consider a discretiza-

tion in N ` 1 points. Compute the valuesq j
r “ F´1

j pr{Nq for
r P t0, 1, . . . ,Nu. Denoting by 1ra,bq the characteristic function
on the intervalra, bq,

F jpxq “
1
N

N´1
ÿ

r“0

1rqj
r ,`8qpxq andF jpxq “

1
N

N
ÿ

r“1

1rqj
r ,`8qpxq,

provide discrete approximations ofF j with F j ě F j ě F j.
Dependence among the individualF j will manifest itself in

the way the valuesq j
r “ F´1

j pr{Nq are appearing in the matrix

A “

¨

˚

˝

q1
0 ¨ ¨ ¨ qd

0
...

...

q1
N ¨ ¨ ¨ qd

N

˛

‹

‚
. In particular, the row sums may vary

significantly: Considerd “ 2 and the uniform discrete distri-
bution ont0, . . . ,Nu. If L1 andL2 are comonotonic (i.e. there
is perfect positive dependence among the random variables),
thenpq1

0, . . . , q
1
Nq “ pq2

0, . . . , q
2
Nq with row sumst0, 2, . . . , 2Nu.

If, on the other hand,F1 and F2 are countermonotonic (per-
fect negative dependence among the random variables), then
pq1

0, . . . , q
1
Nq “ pq2

N, . . . , q
2
0q, and all row sums are equal toN. If

we want to find an upper bound forF´1
L pαq we need to consider
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matrices with entriesq j
r for r

N ě α, and for lower bounds ma-

trices constructed fromq j
r for r

N ď α and each time minimize
the variance of the row sums ofA. This intuition is made ex-
act by a representation theorem of Rüschendorf [2, Theorem2],
showing that for discrete distribution functions, and due to the
uniform discretization inherent in our definition ofF j andF j ,
solving the minimum variance problem amounts to determining
γpAq´βpAq for the matrixA, since it is enough to minimize over
the set of all rearrangements of theF j . We refer to [1, 3, 4, 5]
for recent applications and to [2] and [6, 7] for more detailson
the general concept of rearrangements of functions.

Example1 ([8]). Under the Basel II and III regulatory frame-
work for banking supervision, large international banks are al-
lowed to come up with internal models for the calculation of
risk capital. For operational risk the so-called Loss Distribution
Approach gives them full freedom concerning the stochastic
modeling assumptions used. The resulting risk capital mustcor-
respond to a 99.9%-quantile of the aggregated loss data overa
year. This corresponds to computing the Value-at-Risk VaR0.999pLq

atα “ 0.999 for an aggregate loss random variableL “
řd

i“1 Li ,
but makes no requirements on the interdependence between the
individual loss random variablesLi corresponding to the indiv-
dual business lines: Assumptions made in the calculation must
only be plausible and well founded. Estimating the upper bound
and lower bound of the VaR over all possible dependence struc-
tures is hence relevant both from the regulator’s point of view,
as well as from the bank’s point of view, to estimate worst case
hidden risks in the models presented under the Loss Distribu-
tion Approach.

Besides computing (or approximating)γpAq andβpAq, one
is also interested in deciding whether for a given matrixγpAq “
βpAq. We will call such a matrixcompletely mixable, in analogy
with the definition of this concept by Wang and Wang [4] for
distribution functions.

In this paper we show that deciding complete mixability
is a stronglyNP-complete problem, even for a fixed number
of columns, but can be solved using dynamic programming in
pseudopolynomial time for a fixed number of rows. We show
that the algorithm proposed by Puccetti et al. in [1] to com-
puteγpAq andβpAq is not an exact method unlessNP Ď ZPP,
despite its impressive computational success [8]. Finally, for
matrices in fixed (column) dimension we present a polynomial-
time approximation scheme.

2. Complexity

It is known that for two columns the complete mixability
problem is solvable explicitly (see the references in [9]).This is
also apparent by recognizing that the computation ofγpAq can
be understood as solving a multidimensional bottleneck assign-
ment problem. The multidimensional bottleneck assignment
problem asks for the computation of

min
π1,...,πd

max
1ďiďm

cπ1piq,...,πdpiq

for a mˆ ¨ ¨ ¨ ˆ m
looooomooooon

d

cost tableC. Definingci1,...,id “ Ai1,1 ` ¨ ¨ ¨ `

Aid,d we see thatγpAq can be computed by solving a multi-
dimensional bottleneck assignment problem. Using Observa-
tion 1 below we can similarly computeβpAq and thus check
complete mixability.

In dimension 2, the bottleneck assignment problem models
the following problem: Given a set of workers and a set of tasks,
where the time of workeri performing taskj is ci j , find a simul-
taneous assignment of all workers to all tasks such that the max-
imal time spent by any worker (the bottleneck of the schedule)
is minimized. Fulkerson et al. showed that the 2-dimensional
bottleneck assignment problem can be transformed into a linear
assignment problem [10], and thus is polynomially solvable.

The multi-dimensional bottleneck assignment problem of
assigning (equal-sized) crews of workers to (equal-sized)groups
of tasks is much harder. Even restricted versions of the 3-
dimensional version do not admit a polynomial time approxi-
mation scheme [11].

By addingµ “ ´ min1ďiďm,1ď jďd Ai j to each entry ofA we
can always shift the matrix to make the smallest entry equal to
zero, changing all row sums bỳµ ¨d. For convenience we will
hence restrict our attention to integral, nonnegative matrices.
Assuming integrality is not a major restriction, since rational
matrices can without loss of generality be scaled to become in-
tegral, and rational matrices provide a dense subset of the real
matrices that could arise in discretizing distribution functions.

First note thatβ andγ are related as follows:

Observation 1. Let A P Zmˆd, and l :“ max1ďiďm,1ď jďd Ai j

its largest entry. Define A1 by A1
i j “ l ´ Ai j . ThenβpAq “

d ¨ l ´ γpA1q.

Hence we only ever need to consider one of the two values.
To see that deciding complete mixability ofA and computingβ
or γ are actually polynomially equivalent we only need the fol-
lowing obvious necessary condition that will also prove useful
later on.

Observation 2. Let A P Zmˆd. A is completely mixable if and
only if γpAq “ βpAq “ 1

m

řm
i“1

řd
j“1 Ai j .

It turns out that this is sufficient for showing linear time
decidability of complete mixability if the entries ofA are re-
stricted to at most two values: Those can be mapped tot0, 1u,
and then the algorithm used in the proof below provides a linear
time check for complete mixability:

Theorem 1. Let AP t0, 1umˆd. A is completely mixable if and
only if m |

ř

1ďiďm,1ď jďd Ai j . The permutation achieving the
complete mix can be computed in linear timeOpm ¨ dq.

Proof. “ñ” Let s “
řm

i“1

řd
j“1 Ai j . If m ∤ s thenA cannot be

completely mixable.
“ð” Assumem |

ř

1ďiďm,1ď jďd Ai j . We need to permute
the columns ofA such that exactlys

m P t0, . . . , du “ r entries
in each row have value 1.

This can always be done: Define fori P t1, . . . ,mu thede-
fect δpiq “ r ´

řd
j“1 Ai j andφ “

řm
i“1 |δpiq| the total defect.

2



Clearly, φ “ 0 if and only if all row sums of the matrix are
equal tor.

Starting with j “ 2 defineS j “ ti P t1, . . . ,mu : δpiq ą
0,Ai j “ 1u andD j “ ti P t1, . . . ,mu : δpiq ă 0,Ai j “ 0u.
If S j ‰ H and D j ‰ H let t j “ mint|S j |, |D j |u and swap
the entries of columnA¨ j indexed by the largestt j entries ofS j

with those indexed by the smallestt j entries ofD j . Repeat in
increasing order, for allj ď d.

Clearly, throughout the procedure the defect of rows with
positive defect can only decrease, and the defect of rows with
negative defect can only increase; the total defect decreases by
2t j ą 0 for each swap. Assume that the procedure stops in
the last column with a matrix that has nonzero total defectφ.
Then there must be a rowi1 with positive defectδi1 and a rowi2
with negative defectδi2, sincer “ s{m. Consider some column
index l such thatAi1l “ 1 andAi2l “ 0. Then the indexi1
was inSl , andi2 was inDl (because the absolute defects of the
rows can only have decreased in later steps), but they were not
swapped, a contradiction.

Note that when the algorithm declaresA ‘not completely
mixable’, it has computed a permutation achieving maximal
row sum.

We note in passing that ifA P Zmˆd1 and B P Zmˆd2 are
completely mixable, then so iśA andpABq P Zmˆpd1`d2q. A
more interesting composition is the following:

Propositon 1 (glueing of completely mixable matrices). Let
A P Rm1ˆd1 and B P Rm2ˆd2 be completely mixable matrices
that have been permuted to each have equal row sums. Then
the matrix

A ‘ B “ pCi j q 1ďiďm1m2
1ď jďd1d2

with Cm2pi´1q`k,d2p j´1q`l “ Ai j ` Bkl (i.e., the block matrix con-
structed by replacing every entry Ai j of A by a blockpAi j `
Bklq 1ďkďm2

1ďlďd2

) is completely mixable.

Proof. SinceA andB have identical row sumsσA andσB (re-
spectively), the row sum ofC is alwaysd2¨σA`d1¨σB, showing
complete mixability ofC.

In general checking complete mixability is hard:

Theorem 2. It is stronglyNP-complete to decide whether an
integral matrix A P Zmˆd is completely mixable. It remains
stronglyNP-complete for fixed d, and at least weaklyNP-
complete for fixed m.

Proof. Even ford “ 3 we are looking at a Numerical 3-dimensional
Matching problem, which is stronglyNP-complete [12, prob-
lem SP16] (the row sum that needs to be tested is given by Ob-
servation 2).

For m “ 2 we can reduce Number Partition to this prob-
lem: Let pn1, . . . , ndq P Zd be a multiset of integers, and let

s “
ř

i ni . ThenA “

ˆ

n1 . . . nd

0 . . . 0

˙

is completely mixable

if and only if pn1, . . . , ndq can be partitioned into two multisets
of equal size1

2 s. This problem is known to be (weakly)NP-
complete [13].

We note that, as is the case for manyNP-hard problems,
there can not be a polynomial time approximation algorithm
computing an approximate valueγ1pAq that achieves an addi-
tive error |γ1pAq ´ γpAq| ď K for some constantK: For a
given completely mixable matrixA P Zmˆd the matrix ob-
tained by appending the columnpK1, 2K1, . . . ,mK1qJ with K1 ě
max 2da˚,K (wherea˚ denotes the largest entry ofA) has all
row sums separated by at leastK1, so approximatingγpAq to
within K amounts to deciding complete mixability.

Clearly, when bothd andm are fixed the problem is trivial
by enumeration. For fixedm and variabled a dynamic pro-
gramming algorithm similar to the one for Number Partition
of Garey and Johnson [12] can be devised to check complete
mixability:

Lemma 1. There is a pseudopolynomial algorithm to decide
complete mixability for matrices AP Zmˆd

ě0 if the number of
rows m is fixed.

Proof. We can enumerate all possible values appearing as row
sums asv1, . . . , vN, with N ď d ¨ max1ďiďm,1ď jďd Ai j . Build a
dynamic programming tableBwith Boolean entriesBpi, j, v1, . . . , vNq,
whereBpi, j, . . . , r, . . . q is True if and only if valuer can be con-
structed as a (partial) row sum in rowi with j columns: Iterate
over the columns ofA succesively and updateB using each of
the (fixed number of) permutations that can be applied to col-
umn j of A. ThenA is completely mixable ifBpi, d, . . . , r, . . . q is
True for all rowsi, wherer is the target row sum1

m

ř

i, j Ai j .

The results in [11] for the bottleneck 3-assignment problem
with costs defined by distances (B3AP-per) yield a 2-approxi-
mation for determiningγpAq andβpAq.

Lemma 2. For A P Zmˆ3
ě0 there exists a polynomial 2-approxi-

mation algorithm for computingγpAq.

Proof. For convenience we will in this proof assume that the
matrix A is indexed bypi, jq with 0 ď i ď m´ 1 and 0ď j ď
d ´ 1. We construct an instance of B3AP-per as follows: Let
I “ t0, . . . , 3m ´ 1u denote the indices of all elements ofA
in column-major order, i.e. indexl P I selects elementpt l

3u, l
mod 3q of A, and define the setsR “ t3k ` 1 | k ă mu, G “
t3k ` 2 | k ă mu, andB “ t3k ` 3 | k ă mu such thatI “ RY
G Y B. Define distpi, jq “ 1

2pA
pt

i
3uq,pi mod 3q

` A
pt

j
3uq,p j mod 3q

q.

Then dist satisfies the triangle inequality and is symmetric. It
does not necessarily satisfy distpi, iq “ 0, so is not a proper
metric. Nevertheless, Theorem 1 of [11] holds with the original
proof, as only symmetry and triangle inequality are exploited,
and distpi, jq is only ever evaluated between pairs of different
index sets fromtR,G, Bu, i.e. t i

3u ‰ t j
3u.With our definition of

distpi, jq

ci jk “ distpi, jq ` distp j, kq ` distpk, lq
“ 1

2

`

pAi1 ` A j2q ` pA j2 ` Ak3q ` pAk3 ` Ai1q
˘ ,

since costs need only be defined fori P R, j P G, k P B. Then
determiningγpAq is exactly the B3AP-per problem of [11].
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3. The swapping algorithm

As noted by Puccetti and Rüschendorf [1], it is sometimes
easy to check that a matrix can be permuted so as to increase its
smallest row sum. We need the following definition:

Definition 1. For A P Zmˆd let Ar js denote the matrix obtained
from Aby dropping itsj-th column, i.e.Ar js “ pA¨1 . . .A¨p j´1qA¨p j`1q . . .A¨dq.

For x, y P Zm denote byx ê y that x and y are oppo-
sitely ordered, i.e.there exists a permutationπ P Spmq such
thatxπp1 ď ¨ ¨ ¨ ď xπm andyπp1q ě ¨ ¨ ¨ ě yπpmq.

Lemma 3 (Theorem 3.1 of [1]). Let A P Zmˆd. If there ex-
ists a column index j such thatp

ř

l Ar js
1l , . . . ,

ř

l Ar js
ml q

J{ê A¨ j ,
then column Äj can be permuted such that opposite ordering is
achieved, and the minimal row sum of A does not decrease.

For completeness we give the following proof.

Proof. Let p
ř

l Ar js
1l , . . . ,

ř

l Ar js
ml q

J “: x{ê y :“ A¨ j . Then there
exists a pair of indicesi1, i2 such thatxi1 ď xi2 andyi1 ď yi2.
Thereforexi1 ` yi1 ď xi1 ` yi2 andxi1 ` yi1 ď xi2 ` yi1. Hence

mintxi1 ` yi1, xi2 ` yi2u “ xi1 ` yi1 ď mintxi1 ` yi2 , xi2 ` yi1u,

and thus swappingyi1 Ø yi2 cannot decrease the minimal row
sum ofA.

We note that if bothxi1 ă xi2 andyi1 ă yi2, and there are no
duplicate entries inx andy, then the minimal row sum ofA will
actually increase by at least 1 ifi “ argmini1,i2txi1 `yi1, xi2 `yi2u
is chosen minimally.

In [1] this is taken as a rationale to propose the following
algorithm:

Algorithm 1 Swapping Algorithm
1: procedureAntisortColumns(A)
2: while D j : p

ř

l Ar js
1l , . . . ,

ř

l Ar js
ml q

J{ê A¨ j do

3: x Ð p
ř

l Ar js
1l , . . . ,

ř

l Ar js
ml q

J

4: y Ð A¨ j

5: selectpi1, i2q from tpi1, i2q | xi1 ă xi2 ^ yi1 ă yi2u
6: swapAi1 j Ø Ai2 j

7: end while
8: end procedure

It is then stated and confirmed experimentally that running
this algorithm on many randomly permuted copies of the matrix
A will usually determine very good bounds forβpAq andγpAq,
and is often very fast. In [8] it is admitted that no analytic proof
of convergence to the optimum is known, even when randomly
permuting the starting matrix, despite the promising practical
results. This is to be expected:

Lemma 4. The swapping algorithm 1 of [1] does not run in
expected polynomial time unlessNP Ď ZPP.

Proof. Consider an instance of the complete mixability prob-
lem. Apply the swapping algorithm. Assume that the expected

number of times that the input matrix has to be randomly per-
muted before the swapping algorithm correctly decides com-
plete mixability were of polynomial size. Since we have shown
in Theorem 2 that the problem is stronglyNP-complete this
would yield a zero-error probabilistic polynomial time algo-
rithm [14] for all problems inNP. This would implyNP Ď
ZPP.

In fact, the algorithm may terminate with an approximation
error ofOpmaxi j Ai j q (Lemma 6).

For some matrices, however, Lemma 3 actually guarantees
a positive increase of the minimal row sum: As noted at the end
of the proof of Lemma 3, swapping entries in a column, sayj,
to achieve opposite ordering will actually increase the minimal
row sum by at least 1, unless there are duplicate entries inj or
duplicate row sums in the matrixAr js. This yields

Observation 3. Let A P Zmˆd be a matrix where all columns
have m different entries, and for which allpd ´ 1q-column sub-
matrices obtained by deleting a single column have the property
that for all possible permutation of column entries their m row
sums have m distinct values. ThenγpAq andβpAq can be deter-
mined in pseudopolynomial time using the swapping algorithm.

It is not unlikely that a matrix with entries drawn uniformly
at randomly from a large domain with few rows has no duplicate
row sums (Lemma 5), but it seems very hard to trace how this
probability evolves after a few steps of swapping.

Lemma 5. Let A P Zmˆpd`1q
ě0 be a matrix where each column

contains m entries drawn uniformly at random fromt1, . . . ,Nu.
Then the probability p‰pAq for a d-column submatrix of A to
have m distinct row sums is

p‰pAq ě 1 ´ Op m2

N q.

Proof. Consider ad-column submatrixM. Each entry ofM is
a random variable, independently drawn fromt1, . . . ,Nu. We
consider the entries ofM drawn from 1, . . . ,N row by row.
Hence the probability of obtaining sums in one row is
PrrMi1 ` ¨ ¨ ¨ ` Mid “ ss “

pps,dq

Nd , wherepps, dq is the num-
ber of partitions ofs into exactlyd parts. The probability of not

obtaining sums is Nd´pps,dq

Nd .
Matrix M hasm rows; using the binomial distribution for-

mula the probability of obtaining sums in m one-row trials is
thus

Prrrow sumsat least twice inMs

“ 1 ´
´

Nd´pps,dq

Nd

¯m
´ mpps,dq

Nd

´

Nd´pps,dq

Nd

¯m´1
.

Therefore the probability forM to have distinct row sums is

PrrM has distinct row sumss

“ 1 ´ PrrDs : row sumsat least twice inMs

4



and since we can have at mostm row sums,

ě 1 ´ mPrrmost likely duplic. rowsums˚ at least twice inMs

“ 1 ´ m

ˆ

1 ´

ˆ

Nd ´ pps˚, dq

Nd

˙m

´m
pps˚, dq

Nd

ˆ

Nd ´ pps˚, dq

Nd

˙m´1
¸

where, to upper bound the probability of duplicates, we needto
lower boundpNd ´ pps˚, dqq

ě 1 ´ m

ˆ

1 ´
pNd ´ Nd´1qm

Ndm

´mpps˚, dq
pNd ´ Nd´1qm´1

Ndm

˙

ě 1 ´ m

˜

1 ´
OpNdm ` p´1qm´1Ndpm´1qq

Ndm

´m ¨ 1 ¨
OpNdpm´1q ` p´1qm´2Ndpm´2qq

Ndm

¸

ě 1 ´ Op m2

N q

where for the partition ofs into d parts we use the trivial lower
bound of 1 and the generous upper boundpps, dq ď ps ´ d `
1qd´1 which is obtained as follows: To partitions˚ we need
to use at least 1 unit in each of thed parts. We now still can
distributes˚ ´ d units intod bins; we can choose freely from
t0, . . . , s˚ ´ du for d ´ 1 bins, then the amount for the last bin
is determined.

4. Matrices of consecutive integers

Definition 2. Let d,N P Zě0 and a “ p1, . . . ,NqJ. Every
matrix AΠ obtained through permutationsΠ P SpNqd of the
columns fromA “ pa, . . . , aq P ZNˆd will be called pN, dq-
complete consecutive integers matrix.

We will now show that for such matrices and certain choices
of N (givend) the values ofβ andγ can be computed explicitly,
and that these yield bounds for arbitrary values ofN. Further-
more, we will demonstrate that the swapping algorithm of [1]
(Algorithm 1) on these instances does not have a constant factor
approximation guarantee (it is at leastOpNq).

Theorem 3. Let A P ZNˆd
ě0 be apN, dq-complete consecutive

integers matrix and N“ dk for some0 ă k P Z. Then A is
completely mixable and

γpAq “ βpAq “ d `
d´1
ÿ

i“0

k
ÿ

j“1

i ¨ d j´1 “: adpkq.

Proof. Fork “ 1 the matrixA “

¨

˚

˚

˚

˝

1 2 . . . d
...

... . .
.

:
d ´ 1 d d ´ 2

d 1 . . . d ´ 1

˛

‹

‹

‹

‚

is

a permutation that shows that thepd, dq-complete consecutive

integers matrix is completely mixable with uniform row sum
řd

i“0 i “ d `
řd´1

i“0 i “ d `
řd´1

i“0 i
ř1

j“1 d0 “ adp1q.
Assume that the statement holds fork P Zě0, i.e. that a

pdk, dq-complete consecutive integers matrixA of sizedk ˆ d
has been reordered into a matrixA1 with identical row sums
adpkq. We will useA1 to construct a matrixA2 with dk`1 rows
that is a reordering of thepdk`1, dq-complete consecutive in-
tegers matrix of sizedk`1 and has row sumsadpk ` 1q: We
use the glueing operation of Proposition 1 betweenA1 andB “

dk

¨

˚

˚

˚

˚

˝

0 1 . . . d ´ 1

1 2 . .
.

0
... . .

.
. .
. ...

d ´ 1 0 . . . d ´ 2

˛

‹

‹

‹

‹

‚

(which has constant row sum

dk dpd´1q
2 ), to obtainA2 “ A1 ‘ B, which has row sumadpkq `

ř

0ďiăd i ¨ dk “ adpk ` 1q.

Corollary 1. Let A P ZNˆd
ě0 be apN, dq-complete consecutive

integers matrix. Then

adptlogdpNquq ď βpAq ď γpAq ď adprlogdpNqsq.

In particular, by underestimatingβpAq as adptlogdpNquq and
overestimatingγpAq as adprlogdpNqsq we make an additive er-
ror of at most

řd´1
i“0 i ¨ drlogdpNqs´1 (which is roughlyd2N

2 ).

Lemma 6. Let A be apN, 3q-complete consecutive integers ma-
trix where all permutations are the identity. Then the swapping
algorithm will terminate after one reordering step with a matrix
with row sums in the range ofrN`2, . . . , 2N`1s. In particular,
if N “ 3k and A is hence completely mixable the solution is has
additive errorOpNq.

Proof. Starting withA “

¨

˚

˝

1 1 1
...
...
...

N N N

˛

‹

‚
the swapping algo-

rithm will invert the order of the first column to obtainA1 “
¨

˚

˝

N 1 1
...
...
...

1 N N

˛

‹

‚
. This matrix satisfies the rule that each column

is sorted anti-monotonously wrt. the sums of the other two
columns, so the algorithm stops. The row sums areN ` 2,N `
3, . . . , 2N, 2N ` 1.

Since forN “ 3k we know that there exists a reordering of
A such that all row sums are 3̀

řk
i“1 3i this shows an approx-

imation error of at leastOpNq.

5. Matrices with restricted domain

Matrices of consecutive integer entries are just a special
case of matrices where all columns contain the same multiset
of entriesM “ tv1, . . . , vmu. If the number of different entries
in M is fixed, these matrices yield tractable instances for vari-
abled, much like anN-fold system.

Lemma 7. Let A P Zmˆd such that the entries of each column
come from the same multiset M“ ta1, . . . , amu, and assume m
is fixed. ThenγpAq can be computed in polynomial time.

5



Proof. Since the multisetM is fixed, there are only a fixed num-
ber of different ways to rearrange a column by permutations.
For each of thesek arrangements of the setM denote the per-
mutation byπl , 1 ď l ď k. Then

minΓ
¨

˚

˝

vπ1p1q
...

vπ1pmq

˛

‹

‚
xπ1 ` ¨ ¨ ¨ `

¨

˚

˝

vπkp1q
...

vπkpmq

˛

‹

‚
xπk ď

¨

˚

˝

Γ

...

Γ

˛

‹

‚

řk
l“1 xπl “ d

xπl P Zě0 for 1 ď l ď k

is an integer programming problem in fixed dimensionk, mod-
eling that we have to choosed rearrangements of the setM
(one for each column ofA) that can be solved in polynomial
time [15].

Instead of instances with the same multiset of values in ev-
ery column we can also consider instances where all matrix en-
tries come from a fixed set of values, generalizing the two-value
case of Lemma 1.

Theorem 4. Let M “ tv1, . . . , vsu Ď R be a fixed set of values
and A P Mmˆd. For every fixed number of columns d one can
computeγpAq in polynomial time.

Proof. If M is fixed then for fixedd there are at mostsd possible
row vectorsr1, . . . , rsd composed of values fromM. We define
the binary valueuk

i j to be 1 if and only ifprkq j “ vi , i.e. if in
row vectork the valuevi appears in thej-th column.

For a given matrixA P Mmˆd we can count the number of
occurences of valuevi in column j in polynomial time. Denote
these values byoi j .

Introduce binary variablesp1, . . . , psd to indicate whether
patternk occurs in the permuted version ofA, and integer vari-
ablesq1, . . . , qsd counting how often it appears. Then the fol-
lowing integer program in fixed dimensionsd can be used com-
puteγpAq:

minΓ
p
řd

j“1prkq jqpk ď Γ for all k
řsd

k“1 pk ď m
pi ď qi for all k
qi ď mpi for all k

řsd

k“1 uk
i j qk “ oi j for all i, j

pi P t0, 1usd
, qi P Zsd

Corollary 2. There exists a polynomial approximation scheme
for every fixed d to computeγpAq for A P Rmˆd ě 0 with
multiplicative errorp1 ` ǫq for everyǫ ą 0.

Proof. Define a grid of widthǫ a˚

d wherea˚ is the largest en-

try of A. Consider the setM “ t0, ǫ a˚

d , 2ǫ
a˚

d , . . . , r
d
ǫ
sǫ a˚

d u
and round the entries ofA up to next value inM to obtain
an approximating instancēA. Then by Lemma 4 the approx-
imating instance can be solved in polynomial time sinceM has

r d
ǫ
s ` 1 entries, a number only depending on the fixedd and
ǫ. The objective value of the approximate solution is at most
dǫ a˚

d ď ǫγpAq larger thanγpAq, sincea˚ ď γpAq, yielding a
p1 ` ǫq-approximation.
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[1] G. Puccetti, L. Rüschendorf, Computation of sharp bounds on the
distribution of a function of dependent risks, Journal of Com-
putational and Applied Mathematics 236 (7) (2012) 1833–1840.
doi:10.1016/j.cam.2011.10.015 .
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