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A tight bound on the speed-up through storage

for quickest multi-commodity flows⋆
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Abstract. Multi-commodity flows over time exhibit the non-intuitive
property that letting flow wait can allow us to send flow faster over-
all. Fleischer and Skutella (IPCO 2002) show that the speed-up through
storage is at most a factor of 2, and that there are instances where the
speed-up is as large as a factor of 4/3. We close this gap by presenting
a family of instances for which the speed-up factor through storage con-
verges to 2.
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1 Introduction

Multi-commodity flows over time are a useful tool for modelling problems that
involve non-instantaneous transportation through some kind of network. Some
recent examples for such problems include aircraft routing [1], cloud comput-
ing [2,3], road traffic networks [4], disaster management [5,6], evacuations [7],
logistics [8,9], packet routing [10] and shared-ride systems [11].

During transportation from a source to a destination, depending on the par-
ticular application, making stops before reaching the destination might be fea-
sible or not. For example, if the underlying network is a street network, we can
only stop if parking space is available. Similarly, storage of data is possible in
telecommunication networks only if buffers are present. Since keeping buffers or
parking spaces available costs money, the question arises how much worse the
situation becomes if we forbid storage compared to the setting where storage is
allowed. We will refer to making stops during transportation as storage – this is
sometimes referred to as holdover or waiting as well.
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2 Quickest multi-commodity flows

We start by defining the quickest multi-commodity flow problem. For a more
detailed introduction to the area of flows over time as well as for further pointers
to the literature, we refer to [12,13].

We consider a network given by a directed graph G = (V,A) with a set of
nodes V and a set of arcs A. Each arc a ∈ A has a capacity ua ≥ 0 specifying
the maximum rate at which flow may enter it at any point in time, and a transit
time τa ≥ 0 indicating how long flow needs to traverse from its start to its end
node. Furthermore, we are given a set of k commodities K = {0, 1, . . . , k − 1}
with source nodes si ∈ V , sink nodes ti ∈ V , and demands di ≥ 0 for every
commodity i ∈ K.

We are interested in finding a quickest flow, that is, a flow over time that
fulfills all supplies and demands as quickly as possible, i. e., within minimum
time horizon T . More formally, a multi-commodity flow over time f with time
horizon T > 0 is a function f : (A × K) → ([0, T ) → R≥0) that assigns a
Lebesque-integrable flow rate function f i

a : [0, T ) → R≥0 to every arc a ∈ A and
every commodity i ∈ K, subject to capacity and flow conservation constraints
that we specify below.

The value f i
a(ξ) determines the flow rate of commodity i into arc a at time ξ.

The flow rate specifies, as its name indicates, the rate at which the flow is
entering the arc. This could for example be the number of cars entering a road
per time unit at a given point in time. Due to the transit times, flow entering
an arc a = (v, w) at time ξ will arrive at node w only at time ξ + τa. While
these flow rate functions are only defined on [0, T ), for the sake of convenience
we set f i

a(θ) := 0 for θ ∈ R \ [0, T ), i ∈ K, a ∈ A.
We can now specify the constraints on the flow rates. Capacity constraints

make sure that the flow rates assigned to the commodities never violate the arc
capacities:

∑

i∈K

f i
a(θ) ≤ ua for all a ∈ A, θ ∈ [0, T ). (1)

Flow conservation constraints ensure that flow of a commodity can only emerge
from its corresponding source node:

∑

a=(·,v)∈A

∫ θ−τa

0

f i
a(ξ) dξ −

∑

a=(v,·)∈A

∫ θ

0

f i
a(ξ) dξ ≥ 0

for all i ∈ K, v ∈ V \ {si}, θ ∈ [0, T ).

(2)

Finally, in the end, at time T , all flow must have reached its corresponding sink
node:

∑

a=(·,v)∈A

∫ T−τa

0

f i
a(ξ) dξ −

∑

a=(v,·)∈A

∫ T

0

f i
a(ξ) dξ =











di if v = ti,

−di if v = si,

0 otherwise,

for all i ∈ K.

(3)



A feasible solution to the quickest multi-commodity flow problem is a flow over
time f with time horizon T that satisfies constraints (1), (2), and (3). The
objective is to minimize the time horizon T .

While for the case of a single commodity the quickest flow problem can be
solved efficiently (cf. [14,15]), the multi-commodity case is weakly NP-hard [16].
On the positive side, there is a fully polynomial time approximation scheme
(FPTAS) [17,18].

Notice that the flow conservation constraints (2) allow flow to arrive at an
intermediate node v, wait there for some time, and continue onwards (i. e., the
term on the left hand side of (2) might be positive at times). If storage of flow is
prohibited at intermediate nodes, we can simply enforce equality in (2) for v ∈
V \ {si, ti} at all times θ. Flows over time obeying these strict flow conservation
constraints are called flows over time without (intermediate) storage.

For the case of a single commodity, it follows from the work of Ford and
Fulkerson [14] that there is always a quickest flow that does not make use of
intermediate storage. On the other hand, Fleischer and Skutella [17,18] present
an instance of the quickest multi-commodity flow problem where prohibiting
intermediate storage increases the optimal time horizon by a factor of 4/3. On
the positive side, they show that, for any instance, the optimal time horizon
without storage is at most a factor of 2 larger than the optimal time horizon
with storage. Since then it has been an open problem to close this gap (see,
e. g., Exercise 10 in [12]). In the next section we present a family of instances
for which the ratio between the optimal time horizon without and with storage,
respectively, converges to 2. That is, the speed-up through storage can be as
large as a factor of 2 and this bound is tight.

3 Instances with a large speed-up through storage

Before we give a formal definition of our family of instances, we first provide an
intuitive description; see also Figure 1. Imagine a single lane roundabout traffic
packed with cars where each car wants to make one full turn on the roundabout
before leaving it. In an ideal world, these cars drive at uniform speed without
interfering with one another and complete their turns simultaneously, then leave
the roundabout after, shall we say, 10 seconds. Now we add another car to this
scenario that is waiting to enter the roundabout at some point P in order to
make a full turn as well. If the other cars are not willing to stop and wait, the
new car has to wait until everyone else is done (as there are no gaps between
cars) and only then take its turn to finish after 20 seconds. If however, every car
is willing to shortly leave the roundabout at P in order to re-enter after only
a short stop, the new car can join immediately and everyone is done after only
slightly more than 10 seconds.

Let G = (V,A) be a directed cycle with k nodes V = {v0, v1, . . . , vk−1}
and arcs aj = (vj , v(j+1) mod k), j = 0, . . . , k − 1. All arcs have unit capacities
and transit times. There are k commodities K = {0, 1, . . . , k − 1} with si = vi
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Fig. 1. A single lane roundabout traffic (left) and the corresponding network G (right).
All arcs have unit capacities and transit times.

and ti = v(i−1) mod k, for i = 0, . . . , k− 1. Commodity 0 has demand d0 := 2 and
all remaining commodities have unit demand di := 1, i = 1, . . . , k − 1.

Lemma 1. If storage of flow at intermediate nodes is permitted, all demands
can be sent within time horizon k + 1.

Proof. The following multi-commodity flow over time f sends all demands within
time horizon k + 1.

– For commodity 0, we send flow at rate 1 into the path s0 = v0 → v1 →
· · · → vk−1 = t0 during the time interval [0, 2). This flow does not wait at
any node and thus arrives at its sink t0 before time 2 + (k − 1) = k + 1.

– For commodities i = 1, . . . , k − 1, we send flow at rate 1 into the path
si = vi → · · · → vk−1 → v0 → · · · → vi−1 = ti during the time interval
[0, 1). For i > 1, flow of commodity i only waits at node v0 for one time unit
before proceeding towards v1. These flows thus arrive at their sinks before
time 1 + (k − 1) + 1 = k + 1.

By definition, the flow over time f sends all demands and satisfies flow con-
servation constraints. Thus, we only need to check the capacity constraints. By
our choice of flow rates, capacity violations can only occur if two commodities
send flow into an arc at the same time. This is prevented by the waiting of
commodities 2, . . . , k − 1 in v0, thus completing the proof.

It remains to lower bound the time horizon necessary to send all demands
without storage.

Lemma 2. If storage of flow at intermediate nodes is forbidden, the minimal
time horizon necessary to send all demands is larger than 2k − 2.

Proof. We assume by contradiction that there is a flow over time f with time
horizon T = 2k − 2 that routes all demands without storage at intermediate
nodes. Since the flow paths of all commodities have transit time k − 1, flow of



any commodity must leave its source before time k− 1 and cannot reach its sink
before time k− 1. In particular, flow cannot enter the last arc on its path before
time k−2. As a consequence, since flow may not wait at intermediate nodes and
arc transit times are unit, all flow must be sent into some arc on its path within
the time interval [k − 2, k − 1), that is,

k−1
∑

j=0

∑

i∈K

∫ k−1

k−2

f i
aj
(ξ) dξ ≥

∑

i∈K

di = k + 1 .

On the other hand, by capacity constraints,
∑

i∈K f i
aj
(ξ) ≤ uaj

= 1 such that

k−1
∑

j=0

∑

i∈K

∫ k−1

k−2

f i
aj
(ξ) dξ ≤ k .

This contradiction concludes the proof.

Together, Lemma 1 and Lemma 2 yield the following theorem.

Theorem 1. There is a family of quickest multi-commodity flow instances for
which the ratio between the optimal time horizon without and with intermediate
storage, respectively, converges to 2.

We mention another interesting consequence of the family of instances dis-
cussed above. If we reduce the demand of commodity 0 to d0 := 1, then there is
a quickest flow with time horizon k which does not use storage at intermediate
nodes. However, as soon as we increase d0 to 1+ ε for any ε > 0, the same argu-
ments as in the proof of Lemma 2 show that, if storage is prohibited, the optimal
time horizon jumps above 2k− 2. Thus, in contrast to the setting where storage
is permitted (see Lemma 4.8 in [18]), the optimal time horizon is no longer a
continuous function of the positive demand values if storage is prohibited.
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sit times, in: O. Günlük, G. J. Woeginger (Eds.), Proceedings of the 14th Con-
ference on Integer Programming and Combinatoral Optimization (IPCO ’10),
Vol. 6655 of Lecture Notes in Computer Science, Springer, 2011, pp. 362–375.
doi:10.1007/978-_3-_642-_20807-_2_29.

11. M. Braun, S. Winter, Ad-hoc solution of the multicommodity-flow-over-time prob-
lem, IEEE Transactions on Intelligent Transportation Systems 10 (2009) 658–667.
doi:10.1109/TITS.2009.2026443.

12. M. Skutella, An introduction to network flows over time, in: Research
Trends in Combinatorial Optimization, Springer, 2009, pp. 451–482.
doi:10.1007/978-_3-_540-_76796-_1_21.

13. M. Groß, Approximation algorithms for complex network flow over time problems,
Ph.D. thesis, TU Berlin (2014).

14. L. R. Ford, D. R. Fulkerson, Constructing maximal dynamic flows from static flows,
Operations Research 6 (1958) 419–433.

15. R. E. Burkard, K. Dlaska, B. Klinz, The quickest flow problem, Zeitschrift für
Operations Research – Methods and Models of Operations Research 37 (1993)
31–58.

16. A. Hall, S. Hippler, M. Skutella, Multicommodity flows over time: Efficient algo-
rithms and complexity, Theoretical Computer Science 379 (2007) 387–404.

17. L. Fleischer, M. Skutella, The quickest multicommodity flow problem, in: W. J.
Cook, A. S. Schulz (Eds.), Proceedings of the 9th Conference on Integer Program-
ming and Combinatorial Optimization (IPCO ’02), Vol. 2337 of Lecture Notes in
Computer Science, Springer, 2002, pp. 36–53. doi:10.1007/3-_540-_47867-_1_4 .

18. L. Fleischer, M. Skutella, Quickest flows over time, SIAM Journal on Computing
36 (2007) 1600–1630.

http://dx.doi.org/10.1109/TASE.2011.2159838
http://dx.doi.org/10.1109/SOLI.2009.5203944
http://dx.doi.org/10.1109/ITSC.2006.1706809
http://dx.doi.org/10.1016/j.tre.2011.03.001
http://dx.doi.org/10.1007/978-3-642-20807-2_29
http://dx.doi.org/10.1109/TITS.2009.2026443
http://dx.doi.org/10.1007/978-3-540-76796-1_21
http://dx.doi.org/10.1007/3-540-47867-1_4

	A tight bound on the speed-up through storage for quickest multi-commodity flows 

