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Abstract

Congestion games have extensively been studied till recently. It is shown by Fotakis (2010) that for every congestion game on
an extension-parallel network, any best-response sequence reaches a pure Nash equilibrium of the game in n steps, where n is the
number of players. We show that the fast convergence of best-response sequences results from M-convexity (of Murota (1996))
of the potential function associated with the game. We also give a characterization of M-convex functions in terms of greedy
algorithms.
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1. Introduction

Congestion games (or finite potential games) have exten-
sively been studied in the literature (e.g., [1, 8, 11, 12, 14]).
An interesting special class of congestion games on networks,
which is called congestion games on extension-parallel net-
works, is considered by Holzman and Law-yone [12] (see
also [6, 14, 19]). Fotakis [8] showed a fast convergence behav-
ior of the best-response dynamics for such games. That is, for
every congestion game on an extension-parallel network, any
best-response sequence converges to a pure Nash equilibrium
of the game in n steps, where n is the number of the players.
However, the underlying structure that brings the fast conver-
gence has not yet fully been understood.

In the present paper we show that the fast convergence of
best-response sequences results from M-convexity of the po-
tential function associated with the game. M-convex functions
were introduced by Murota [16, 17] based on Dress and Wenzel
[4, 5]. The convex conjugate (or Legendre transform) of an M-
convex function is called an L-convex function [17] (also see
[7]). It has been recognized that L-/M-convex functions appear
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in various fields of operations research, economics, mathemat-
ics, and others (see, e.g., [2, 10, 18, 25]). We now find yet
another interesting instance of M-convexity structure in con-
gestion games.

The present paper is organized as follows. We briefly re-
view congestion games in Section 2 and M-convex functions
in Section 3. In Section 4 we examine the best-response dy-
namics for congestion games on extension-parallel networks
and show that the essence of the fast convergence of the best-
response dynamics is due to the M-convexity structure of the
games. It is revealed in Section 5 that the best-response dynam-
ics corresponds to a greedy algorithm for minimizing M-convex
functions, which is a natural generalization of the greedy algo-
rithm due to Dress and Wenzel [4] for valuated matroids. We
also show a characterization of M-convex functions in terms of
greedy algorithms.

2. Congestion Games

A congestion game [20] is a tuple Γ = (N, A, (P(i) | i ∈
N), (ca | a ∈ A)), where

(a) N is a finite nonempty set of players,

(b) A is a set of resources,

(c) for each i ∈ N, P(i) is a set of subsets of A, i.e., P(i) ⊆ 2A,

(d) for each resource a ∈ A, ca : Z≥0 → R≥0 is a nondecreas-
ing function satisfying ca(0) = 0.

Each player i ∈ N selects a set Pi ∈ P(i), which forms a strategy
configuration P = (Pi | i ∈ N). The congestion induced by P at
resource a ∈ A is

νP(a) = |{i ∈ N | a ∈ Pi}|. (1)

Then, the incurred individual cost of player i is given by the
sum of congestion costs over the resources that player i uses,
i.e.,

πi(P) =
∑
a∈Pi

ca(νP(a)). (2)
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For any player i ∈ N and strategy Q ∈ P(i) let (P−i,Q) be the
strategy configuration obtained from P by replacing Pi by Q.

A potential function associated with a strategy configuration
P = (Pi | i ∈ N) of the congestion game Γ is introduced by
Rosenthal [20] as follows:

Φ(P) =
∑
a∈A

ĉa(νP(a)), (3)

where ĉa(·) represents a function of accumulated congestion
costs given by

ĉa(k) =
k∑
ℓ=0

ca(ℓ) (∀a ∈ A, ∀k ∈ Z≥0). (4)

We then have the following fundamental relation

Φ(P−i,Q) − Φ(P) = πi(P−i,Q) − πi(P) (5)

for any strategy configuration P, i ∈ N, and Q ∈ P(i). (A game
having this property is called a potential game.) Hence local
minima of potential Φ are exactly pure Nash equilibria of con-
gestion game Γ, as shown by Rosenthal [20]. It is shown ([15])
that the class of congestion games coincides with the class of
finite potential games.

3. M-convex Functions

The concept of M-convex function was introduced by Murota
([16, 17]). We briefly review some fundamental properties of
M-convex functions.

Let W be a finite nonempty set and f be a function f : ZW →
R ∪ {+∞}. The effective domain dom( f ) of f is defined by
dom( f ) = {x ∈ ZW | f (x) < +∞}. The epigraph epi( f ) of f is
defined by

epi( f ) = {(x, β) | x ∈ dom( f ), f (x) ≤ β ∈ R}. (6)

We call f convex-extensible if the lower envelope of the convex
hull of epi( f ) gives a convex function f̄ : RW → R∪{+∞} such
that f̄ (x) = f (x) for all x ∈ ZW . The function f̄ is called the
convex extension of f .

A function f : ZW → R ∪ {+∞} is called an M-convex func-
tion if its effective domain is nonempty and it satisfies the ex-
change axiom:
(M-EXC) ∀x, y ∈ ZW , ∀u ∈ W with x(u) > y(u), ∃v ∈ W with
x(v) < y(v) such that

f (x) + f (y) ≥ f (x − χu + χv) + f (y + χu − χv), (7)

where χu for u ∈ W is a unit vector in ZW such that χu(u) = 1
and χu(v) = 0 for v , u, and we allow +∞ ≥ +∞.

The following is a well-known characterization of M-convex
functions (see [16, 17] and also [9, 23]).

Proposition 1. Let f : ZW → R∪ {+∞} be a convex-extensible
function with a nonempty bounded effective domain. Let f̄ be
the convex extension of f . Then f is an M-convex function if and
only if for every non-vertical edge L of the epigraph epi( f̄ ) the
direction vector of the line segment obtained by the projection
((x, β) 7→ x onto RW ) of L belongs to {χu−χv | u, v ∈ W, u , v}.

Here any two direction vectors are identified with each other if
one is a non-zero scalar multiple of the other. (See Figure 1
for an example of M♮-concave function, a variant of M-concave
function, which admits direction vectors of {±χv | v ∈ W} in
addition to {χu−χv | u, v ∈ W, u , v}. Note that M-/M♮-concave
functions are negative of M-/M♮-convex functions.)
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Figure 1: An M♮-concave function g ([9, Figure 17.4]).

An M-convex function f is a special case of M♮-convex
function whose effective domain lies on a hyperplane x(W) (≡∑

v∈W x(v)) = k for some integer k. We call the integer k the
rank of f .

4. Congestion Games on Extension-parallel Networks

Suppose that we are given a directed graph G = (V, A) with a
vertex set V , an arc set A, and specified (distinct) source s and
sink t in V . Arc set A is regarded as a set of resources. Consider
a congestion game Γ = (N, A, (P(i) | i ∈ N), (ca | a ∈ A)), where
each P(i) is a set of elementary directed paths from source s
to sink t (st-paths) in graph G = (V, A) and every st-path is
regarded as a set of the arcs (resources) lying on the path.

An interesting special class of congestion games on net-
works is the class of congestion games on extension-parallel
networks ([12]). An extension-parallel network with a source
and a sink is constructed by finitely many repeated operations of
source/sink extension and parallel join defined below (see Fig-
ure 2), starting from finitely many networks, each consisting of
a single arc whose tail and head are, respectively, a source and
a sink.

(1) (source extension): Given a network G, construct a new
network G′ by adding a new arc a to a source of G in such
a way that the head of a is the source of G and the tail of a
is the source of the new G′.

(2) (sink extension): Given G, construct a new network G′ by
adding a new arc a to a sink of G in such a way that the
tail of a is the sink of G and the head of a is the sink of the
new G′.

(3) (parallel join): Given two distinct networks G1 and G2,
construct a new network G′ by identifying their respective
sources as a source of the new G′ and by identifying their
respective sinks as a sink of the new G′.
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Figure 2: (1) Source extension, (2) Sink extension, and (3) Parallel join.

In the sequel we consider a symmetric game Γ such that every
player’s strategy set P(i) is the set Pall of all paths from source
s to sink t in an extension-parallel network G.

Theorem 2 (Fotakis [8]). For any symmetric congestion game
Γ = (N, A, (P(i)(= Pall) | i ∈ N), (ca | a ∈ A)) on an extension-
parallel network, any sequence of strategies generated by the
procedure, Procedure(Best Response), given below reaches a
pure Nash equilibrium in n(= |N |) steps.

Procedure(Best Response)
1. Start from any strategy configuration P = (Pi | i ∈ N).

Let (i1, i2, · · · , in) be any permutation of N.
2. For each i = i1, i2, · · · , in do the following.

Let P̂ ∈ Pall be a minimizer ofΦ((P−i, P)) in P ∈ Pall.
Put P ← (P−i, P̂).

3. Return P.

It should be noted that minimizers of Φ((P−i, P)) in P ∈ Pall

are exactly minimizers of the individual cost πi(P−i,Q) in P ∈
Pall, due to (5). Hence each choice of a minimizer P̂ ∈ Pall for
i ∈ N in Step 2 is called a best response of player i.

More precisely, Fotakis [8] shows that, for extension-parallel
networks, whenever the strategy of a player i ∈ N is its
best response with respect to the current state, then even af-
ter some other player changes its strategy to a best response
strategy, the strategy of player i will remain a best response
strategy. One way to rephrase Fotakis’ result, is by stating that
Procedure(Best Response) always leads to a pure Nash equilib-
rium, no matter what permutation is chosen in the first step.

We will now show how the correctness of the procedure,
Procedure(Best Response), can be derived from results on M-
convexity, thus implying Fotakis’ result.

Each strategy configuration P = (Pi | i ∈ N) is made to
correspond to a vector xP ∈ ZP

all
given by

xP =
∑
i∈N

χPi , (8)

where χPi is a unit vector in ZPall
such that χPi (P) = 1 if P = Pi

and = 0 otherwise. (Note that P is not uniquely determined by
xP in general.)

For each arc a ∈ A denote by Qa the set of paths P ∈ Pall

containing arc a. Then we have the following

Lemma 3. The family of path sets Qa (a ∈ A) is laminar, i.e.,
for any distinct a, a′ ∈ A we have Qa ∩ Qa′ = ∅, Qa ⊆ Qa′ , or
Qa ⊇ Qa′ .

(Proof) Suppose that during the construction of the extension-
parallel graph G = (V, A) arc a belongs to a graph G1 and arc a′

to another graph G2 and the operation of parallel join is made
for G1 and G2, then there is no st-path that contains both a and
a′. Hence Qa ∩ Qa′ = ∅. On the other hand, if arc a belongs to
a graph G1 and arc a′ is used for a source/sink-extension of G1,
then we have Qa ⊆ Qa′ . □

Remark 1. The laminarity structure has been recognized as a
rooted tree structure ([11, 13]) such that the set of non-root ver-
tices of the rooted tree is the resource set (arc set) A of G and
the set of non-root vertices of every path in the tree from the
root to a leaf is the arc set of a respective path in G from the
source to the sink. The tree structure described in [11, 13] is
closely related to the Tutte decomposition tree of a 2-connected
graph into 3-connected components, cycles, and graphs of par-
allel arcs (see [26]), where only the latter two kinds of compo-
nents appear (even for series-parallel graphs). Here, for a given
extension-parallel (or, more generally, series-parallel) graph G
with source s and sink t, we should define a graph G′ obtained
by adding to G a reference arc from s to t and consider the Tutte
decomposition tree of G′.

For a given strategy configuration P = (Pi | i ∈ N), using the
vector xP ∈ ZP

all
in (8), the potential function value Φ(P) in (3)

is equal to

Φ(P) =
∑
a∈A

ĉa(νP(a)) =
∑
a∈A

ĉa(xP(Qa)) ≡ Φ̃(xP) (9)

regarded as a function, denoted by Φ̃(·), in xP, where xP(Qa) =∑
P∈Qa

xP(P) for each a ∈ A. Note that Φ̃(xP) is the sum over
all a ∈ A of scalar, discrete convex functions ĉa(·) on integers,
and the sets Qa (∀a ∈ A) form a laminar family. It follows that
the function Φ̃(x) in x ∈ ZPall

is what is called a laminar convex
function with its effective domain ∆n = {x ∈ ZP

all

≥0 | x(Pall) = n},
where n = |N|. This implies the following (see [3, 17]).

Lemma 4. The function Φ̃(x) with its effective domain ∆n is an
M-convex function.

As will be discussed in the next section, the M-convexity
of Φ̃ implies the validity of Theorem 2, the n step con-
vergence of the best-response sequence, due to Fotakis [8].
Procedure(Best Response) can be regarded as a specialized ver-
sion of a greedy algorithm for M-convex functions.

5. A Greedy Algorithm for M-Convex Functions

We give a greedy algorithm for M-convex functions, which is
a natural generalization of the greedy algorithm given by Dress
and Wenzel [4] for valuated matroids. The greedy algorithm
given in this section is slightly different from the existing al-
gorithms given by Shioura [21, 22] and Tamura [24] (also see
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[17]). We show the validity of our greedy algorithm by adapting
Dress and Wenzel’s proof in [4] for valuated matroids.

For a finite nonempty set W let us consider an M-convex
function f : ZW → R ∪ {+∞} having a nonempty bounded
effective domain dom( f ) = {x ∈ ZW | f (x) < +∞}. Suppose
that the effective domain is included in the nonnegative orthant,
i.e., dom( f ) ⊂ ZW

≥0 and that x(W) (=
∑

v∈W x(v)) = n ≥ 1 for
all x ∈ dom( f ), where we recall that n is equal to the rank of
f . Also define N = {1, 2, · · · , n}. It should be noted that W cor-
responds to the set Pall of all st-paths and σ(i) appearing in the
algorithm given below corresponds to player i’s initial strategy
Pi ∈ Pall.

Greedy Algorithm

1. Start from any x = x0 ∈ dom( f ).
Choose any mapping σ : N → W such that x =

∑
i∈N χσ(i).

2. For each i = 1, 2, · · · , n do the following.
Find an element w∗ of W such that
(*) f (x−χσ(i)+χw∗) = min{ f (x−χσ(i)+χw) | w ∈ W}.
Put x← x − χσ(i) + χw∗ .

3. Return x (a minimizer of f ).

Remark 2. We have assumed that the effective domain dom( f )
is included in the nonnegative orthant ZW

≥0, but this is equivalent
to assuming that we are given a lower bound vector b ∈ ZW of
dom( f ) such that b ≤ x for all x ∈ dom( f ). Since the translation
x 7→ x − b keeps M-convexity, we can apply the algorithm to
the function f (x + b) in x.

Theorem 5. The greedy algorithm described above computes
a minimizer of any M-convex function f with dom( f ) ⊆ ZW

≥0 in
n steps, where n is the rank of f .

(Proof) Let xi be the x obtained after the ith execution of Step 2
for i = 1, 2, · · · , n. Also denote by w∗i the element w∗ ∈ W found
at the ith execution of Step 2. It suffices to prove the following
local optimality (see [17]):

∀u, v ∈ W : f (xn − χu + χv) ≥ f (xn). (10)

We show that for any M-convex function f : ZW → R∪{+∞}
of rank n ≥ 1, the greedy algorithm obtains x = xn satisfying
(10), by induction on the rank n of f , where recall that the ef-
fective domain of f lies on the hyperplane x(W) = n. Note that
we fix W in the following arguments.

For any M-convex function of rank n = 1, (10) holds. Hence,
let k be an integer with k ≥ 1 and suppose that for any M-convex
function of rank n = k the greedy algorithm obtains x = xn

satisfying (10), i.e., the greedy algorithm finds a minimizer of
any M-convex function f when x(W) = k for all x ∈ dom( f ).

Now suppose n = k + 1. Since f remains to be M-convex
by the restriction of its effective domain B = dom( f ) to B1 =

B ∩ {x ∈ ZW | x(σ(n)) ≥ 1}, it follows from the induction
hypothesis that

xn−1 is a minimizer of f restricted on B1. (11)

Let y ∈ dom( f ) be a minimizer of f . Notice that if y ∈ B1
then xn is indeed a minimizer of f since f (xn) ≤ f (xn−1) = f (y),

where the equality follows from (11). Thus, suppose y(σ(n)) =
0. Then xn−1(σ(n)) > y(σ(n)). By the exchange axiom of M-
convex functions there exists j ∈ N \ {σ(n)} such that y( j) >
xn−1( j) and

f (xn−1)+ f (y) ≥ f (xn−1−χσ(n)+χ j)+ f (y+χσ(n)−χ j).(12)

Since y + χσ(n) − χ j ∈ B1, it follows from (11) that

f (y + χσ(n) − χ j) ≥ f (xn−1). (13)

Also, since xn−1 − χσ(n) + χ j is a candidate for xn, we get

f (xn−1 − χσ(n) + χ j) ≥ f (xn). (14)

It follows from (12)–(14) that f (y) ≥ f (xn), i.e., xn is a mini-
mizer of f . □

Remark 3. Consider N as the set of players and identify W
with the set Pall of all st-paths in an extension-parallel network
G, and f with Φ̃ in (9). Then the greedy algorithm for f be-
comes Procedure(Best Response). It may also be worth men-
tioning that the number n of steps is independent of the size of
W.

Remark 4. It follows from results in [22, 24] that as an algo-
rithm for minimizing an M-convex function f we can skip those
is which satisfy σ(i) ∈ {w∗ℓ | ℓ = 1, · · · , i − 1}, which is also
implicitly implied by the above proof of Theorem 5. This cor-
responds to the rule: keep the present strategy Pi if it is a best
one even if there exist multiple (other) best strategies. It is a
natural restriction of the behavior of the players in the case of
congestion games.

Similarly as in [4] for valuated matroids, we have a con-
verse of Theorem 5 and hence show the equivalence between
the greediness and M-convexity as follows.

Theorem 6. Let f : ZW → R ∪ {+∞} be a function having a
nonempty bounded effective domain B ⊂ ZW

≥0. For any d ∈ RW

define f d : ZW → R ∪ {+∞} by

f d(x) = f (x) + ⟨d, x⟩ (∀x ∈ ZW ), (15)

where ⟨d, x⟩ = ∑u∈W d(u)x(u). Suppose that f is convex-
extensible on RW . Then, f is an M-convex function if and only if
for every d ∈ RW , the Greedy Algorithm minimizes the function
f d.

(Proof) Since adding a linear function keeps M-convexity, The-
orem 5 implies the only-if part, and hence we show the if part.

Since f is convex-extensible, denoting by f̄ the convex ex-
tension of f , it suffices to prove that every non-vertical edge
vector of the epigraph of f̄ projected on RW belongs to {χu−χv |
u, v ∈ W, u , v}, due to Proposition 1.

Let L be an arbitrary non-vertical edge of the epigraph of f̄
and let L̂ be the projection of L on RW . Also let x1, x2 ∈ B be the
end points of L̂. Let z ∈ B be the point in (L̂ \ {x1}) ∩ B nearest
to x1. Then there exists a vector d ∈ RW such that x1 is the
unique minimizer of f d and {x ∈ B | f d(x) ≤ f d(z)} = {z, x1}.
Hence, starting from z, the Greedy Algorithm for f d must move
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to x1 by the first improving step. By the definition of the Greedy
Algorithm, the direction of the movement from z to x1, which
is a direction vector of L̂, belongs to {χu − χv | u, v ∈ W, u , v}.

□

The proof of the if part of Theorem 6 can easily be adapted
to that of the following fundamental fact on generic greedy al-
gorithms. We call a transformation from x ∈ ZW to x − χu + χv

for u, v ∈ W a basic local transformation.

Theorem 7. Let f : ZW → R ∪ {+∞} be a convex-extensible
function having a nonempty bounded dom( f ). Suppose that
there exists an algorithm P such that for every d ∈ RW and
every initial solution x0 ∈ dom( f ) Algorithm P finds a finite
sequence of solutions (x0, x1, · · · , xk) for some integer k ≥ 0
satisfying

(a) f d(x0) ≥ f d(x1) ≥ · · · ≥ f d(xk).

(b) For i = 1, · · · , k, each xi is obtained by a basic local trans-
formation of xi−1.

(c) xk is a minimizer of f d.

Then, f is an M-convex function.

It follows from the present theorem that the validity of al-
gorithms based on repeated basic local transformations such as
those given by [21, 22, 24] implies M-convexity of the objective
functions.

6. Concluding Remarks

We have revealed the M-convexity structure of congestion
games on extension-parallel networks, which explains the fast
convergence of the best-response dynamics shown by Fotakis
[8]. We believe that there are phenomena in congestion games
in general that can be viewed from M-convexity or other vari-
ants of discrete convexity (cf. [1, 27]). Finding and investigat-
ing such instances are left for future research.
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