
Sequential Scheduling on Identical Machines

Refael Hassin, Uri Yovel∗

June 30, 2014

Abstract

We study a sequential version of the well-known KP-model: Each of n agents has a job that needs to

be processed on any of m machines. Agents sequentially select a machine for processing their jobs. The

goal of each agent is to minimize the finish time of his machine. We study the corresponding sequential

price of anarchy for m identical machines under arbitrary and LPT orders, and suggest insights into the

case of two unrelated machines. Keywords: sequential price of anarchy, machine scheduling, congestion

games, load balancing, subgame-perfect equilibrium, makespan minimization.

1 Introduction

In this paper we study the following dynamic game. There are n agents, denoted A1, . . . , An, and m machines
(or processors). Agent Aj has a job that takes pj > 0 time units if processed by any of the machines. Agents
sequentially select one of the machines for processing their jobs, starting with A1 and ending with An.
While choosing a machine, an agent knows the choices made by his predecessors. Once a machine completes
processing all the jobs assigned to it, they are (instantaneously) delivered to their agents. The goal of each
agent is to have his job delivered at the earliest possible time. We study the corresponding sequential price
of anarchy, denoted SPoA, which is the cost-ratio of the worst subgame-perfect equilibria of such games to
the solution that minimizes the overall makespan of the system. The formal definitions are given below.

The above model is a sequential version of the well-known KP-model introduced by Koutsoupias &
Papadimitriou [9]. They consider a network consisting of m equal-capacity parallel links. There are n
agents, each of whom selects a link that will send his own amount of flow; all agents select their links
simultaneously. The delay suffered by an agent is proportional to the total flow through the link. The goal
of each agent is to minimize the expected delay of his flow, ignoring the effect of his choice on the other
players, and the solution concept is Nash Equilibrium. Our scheduling setting is completely analogous to
the network setting described above, i.e., jobs stand for traffic flows and machines stand for links; indeed, a
large part of the literature following [9] (some of which we describe below) uses that scheduling framework.

Despite its simplicity, this abstract model captures essential features of flow in the Internet – common
resources are shared by interacting agents who are assumed to act selfishly. However, it is far from clear
what the actual “game” played by the Internet users is; as phrased by Scott Shenker (cited, e.g., in [14])
“The Internet is an equilibrium; we just have to identify the game.” While the KP-model has been widely
studied and extended, it seems that in many cases, a more appropriate model should include some form of
sequentiality, since agents (or their jobs) may arrive at different times. Consequently, a new line of algo-
rithmic research has been initiated recently, which studies sequential versions of games whose simultaneous
counterparts are well-studied. Specifically, in their paper [11], Leme et al. define the notion of sequential
price of anarchy (SPoA) and analyze it in games of Machine Cost Sharing, of Unrelated Machine Scheduling,
and of Consensus and Cut. As in our model, in all of their settings the agents are indexed by their “order
of arrival” and they choose their actions sequentially, knowing only the choices made by their predecessors.
In this paper we focus on the common setting of identical machines and provide exact bounds.

∗Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978,

Israel. Email: {hassin,uyovel}@post.tau.ac.il

1

2

Overview of our results. In §3, we analyze the price of anarchy for m identical machines. Specifically,
we prove that SPoA is at most 2− 1

m
, and when m = 2 this bound is tight. We also prove that if the agents

are ordered in nonincreasing order of their job’s processing times (this is the well-known LPT rule), then
this bound on SPoA is reduced to 4

3 − 1
3m

. These bounds coincide with the approximation ratios of the
Greedy algorithm (i.e., each agent chooses a least loaded machine) in the classical List Scheduling model of
Graham [8]; however, their proofs are inherently different. Essentially, it is because in our model, the agents
are selfish, so they need not choose a least loaded machine (except for the last agent, who will always do
so). In fact, we demonstrate that the greedy strategy may be bad for an agent. In §4, we discuss SPoA

for two unrelated machines. We conjecture that it is bounded by 3, and provide some examples (one of
which achieves this bound). In Appendix A, we show how to compute an optimal solution of the game by a
dynamic programming algorithm, and by a reaching algorithm.

Finally, we strongly believe that our sequential framework can be developed for other combinatorial
optimization problems; at the end of the paper we present similar sequential versions for the classical Set
Cover and Bin Packing problems.

Related work. The KP-model was introduced in 1999. As mentioned, this model is analogous to ours,
except that agents make simultaneous decisions. Subsequent work improving their bounds on the price of
anarchy includes Mavronicolas & Spirakis [12] and Czumaj & Vöcking [4].

The sequential price of anarchy, SPoA, was recently introduced by Leme et al. [11]. They prove that
for unrelated machines, the worst SPoA is bounded between Ω(n) and O(m · 2n); they also study SPoA

for other games, and in [10], they study SPoA of sequential auctions. In [2], Biló et al. improve the above
bounds to 2Ω(

√
n) and 2n, respectively. In [1], Angelucci et al. SPoA of Isolation Games, and in [5] de Jong

et al. study a sequential decision variation of their main model where each player controls a set of machines
and wishes to maximize the value of jobs that can be feasibly scheduled on its machines.

Another sequential model that resembles our model is that of crowding games, which was introduced
by Milchtaich [13]. In this model, players share a common set of actions and a payoff function which
is nonincreasing in the number of players who play the same action. Milchtaich shows that the perfect
information sequential game formed by letting the players act in an arbitrary order has a subgame-perfect
equilibrium in pure strategies. Chakrabarty et al. [3] discuss the complexity of computing solutions in such
games.

The last model that we mention is not sequential but resembles sequential models. Fiat et al. [7] consider
another situation where selfish agents choose their time of transmission in a shared communication media.
Transmission is successful only if there is no simultaneous transmission at this time. The main difference
between this model and ours is that decisions are made simultaneously and when transmission fails the
agent can repeat trying in a later time, whereas in our case decisions are made sequentially and no regret is
possible.

2 Notation

Let N ≡ {1, . . . , n}, M ≡ {1, . . . , m}. Thus, as we introduced above, the n agents are Aj , j ∈ N . We denote
the m machines (or processors) by Mi, i ∈ M . Agent Aj has a job, denoted Jj , that takes pj > 0 time units
on any of the machines (i.e., they are identical). We denote the list of processing times of all the agents
by p := (p1, . . . , pn). Each agent selects one of the machines for processing his job, thus, the action set for
each Aj is M . In step j of the game, Aj observes the current loads on all the machines, i.e., he knows the
actions chosen by A1, . . . , Aj−1, and chooses a machine for processing his job. Hence, the strategy for Aj is
a function sj : M j−1 → M . We denote Jj ∈ Mi if sj = i, i.e., Aj chooses Mi for his job, and we say that
Mi is Aj’s machine. After all agents chose their machines, i.e., the strategy profile s ≡ (s1, . . . , sn) ∈ Mn

has been determined, a complete job schedule is obtained. For a given such schedule, we denote by Sj and
Cj the start time and the completion time of Jj , respectively (j ∈ N), and by Li the (final) load on Mi,
i.e., Li ≡

∑

j:Jj∈Mi
pj ; our schedule will always be clear from the context, so we do not write Sj(s), Cj(s)

etc. We denote the average load by L̄ := 1
m

∑m

i=1 Li = 1
m

∑n

j=1 pj . We denote by Cmax the makespan of the

3

schedule, i.e.,
Cmax = max

j∈N
Cj = max

i∈M
Li.

Once a machine completes processing all the jobs assigned to it, they are (instantaneously) delivered to their
agents, hence the cost of Aj is the (final) load of his machine, i.e., it is Li satisfying Jj ∈ Mi. The goal of
each agent is to minimize this cost, i.e., to have his job delivered at the earliest possible time. This is an
extensive form game, and so it always posses (pure) subgame perfect equilibria, which can easily be calculated
by backward induction; see Osborne and Rubinstein [15] (or any other standard textbook on Game Theory)
for a comprehensive treatment of these notions. Consequently, we refer to any schedule of the jobs which
was obtained by the sequential decision process as a subgame perfect equilibrium, or equilibrium for short.
We denote by SPE the set of these equilibria (corresponding to the given game in context).

We denote by C∗
max the makespan of an optimal schedule, i.e., it is the minimum possible value of the

makespan of the system, ideally achieved if a central authority were to schedule the entire set of jobs.

We study the corresponding sequential price of anarchy of the game, denoted SPoA, which is the cost-
ratio of the worst subgame-perfect equilibrium to the optimal makespan, that is:

Definition 2.1 (Sequential price of anarchy [11]).

SPoA ≡ max
s∈SPE

Cmax(s)

C∗
max

.

(Cmax(s) is Cmax in the schedule corresponding to the strategy profile s ∈ Mn.)

3 SPoA for identical machines

We start with three simple examples with n = 3 agents and m = 2 machines which illustrate some interesting
properties.

3.1 Motivating examples

In all three examples we use a sufficiently small ǫ > 0 in one of the processing times, so no ties ever occur.

Remark 3.1. We emphasize that the conclusions below are also valid when ǫ = 0, and the bounds obtained
are exact and not asymptotic; if ǫ = 0 the obtained solution is just one of several possibilities, so any
implementation should include a tie-breaking rule. Thus, we use ǫ in the examples for convenience, but when
we refer to SPoA, we substitute ǫ = 0, since this always yields the highest possible value.

Example 3.1. There are n = 3 agents and m = 2 machines. The processing times are p = (p1, p2, p3) =
(1, 1 + ǫ, 2). Without loss of generality, assume that A1 chooses M1 for his job. Then A2 chooses M2 for his
job, since he realizes that in this case A3 will choose M1, so A2’s cost will be L2 = p2 = 1 + ǫ, which is best
possible. Thus, in the resulting equilibrium, J1, J3 ∈ M1 and J2 ∈ M2, hence the loads are L1 = 3, L2 = 1+ǫ,
so Cmax = 3. However, the optimal schedule (with minimum possible makespan) is J1, J2 ∈ M1 and J3 ∈ M2,
achieving C∗

max = 2 + ǫ. Consequently, the sequential price of anarchy is SPoA = 3
2 (this is obtained by

taking ǫ = 0; see Remark 3.1).

Figure 1 depicts the game-tree associated with Example 3.1. Vectors at the leaves are the cost vectors
(i.e., the loads). The solid lines show the subgame-perfect strategies, and the (unique) path from the root
to the leaf corresponding to the black circle is the equilibrium solution. The bold circle corresponds to an
optimal solution. The values of Cmax and C∗

max are underlined in their corresponding cost vectors.

Note that in the above example, each agent acts greedily, i.e., chooses a least loaded machine. However,
the next example shows that this strategy need not yield a minimal makespan for that agent.

Example 3.2. Consider the previous example with a small change to the processing times so that p =
(1, 1 − ǫ, 2). Let A1 choose M1. Now A2 reasons as follows: if he chooses M2 for his job (which is currently

4

Figure 1: The game-tree associated with Example 3.1 (n = 3, m = 2)

empty), then A3 will choose M2 as well, hence A2’s cost will be 3 − ǫ. However, if he chooses M1, A3 will
choose M2, and so A2’s cost will be 2 − ǫ. Thus, in the resulting equilibrium, J1, J2 ∈ M1 and J3 ∈ M2,
hence the loads are L1 = 2− ǫ, L2 = 2, so Cmax = 2. It is easily verified that this is also an optimal schedule,
i.e., C∗

max = 2. Consequently, SPoA = 1.

Examples 3.1, 3.2 also demonstrate that an agent may prefer to have his job longer, ceteris paribus : the
fact that p2 is 1 + ǫ (in 3.1) rather than 1 − ǫ (in 3.2) gives A2 considerable advantage.

Observe that the order of agents crucially affects the outcome:

Example 3.3. Consider again Example 3.1 but change the order of p to p = (2, 1, 1+ ǫ). It is easily verified
that the resulting equilibrium is J1 ∈ M1, J2, J3 ∈ M2, and it forms an optimal schedule as well, yielding
C∗

max = Cmax = 2 + ǫ; consequently, SPoA = 1.

In Example 3.1, SPoA = 3
2 . We will show that this is the worst possible case for m = 2 (identical)

machines.

3.2 Analysis

In the following, we show that for m ≥ 2 identical machines, the sequential price of anarchy is at most 2− 1
m

.
The argument for the case of two machines is similar to that of Graham for his classical List Scheduling
algorithm [8] (see also chapter 2 in [16]); however, as we will show, this argument does not hold for m > 2
machines.

Lemma 3.1. Let m = 2. Without loss of generality, suppose that the makespan is attained by Jj on M1,
that is, Cmax = L1 = Sj + pj Then, L2 ≥ Cmax − pj = Sj.

Proof. Suppose to the contrary that L2 < Cmax − pj . Note that by our choice of Aj , all the subsequent
agents Aj+1, . . . , An choose M2. If agent Aj changes his choice to M2, then even if all of Aj+1, . . . , An also
select M2, still he will incur a lower cost, namely, L2 + pj < Cmax − pj + pj = Cmax. Therefore, Aj would
profit by changing his selection, which is a contradiction.

Theorem 3.1. For m = 2 identical machines, SPoA ≤ 3
2 , and this bound is tight.

5

Proof. The bound follows from Lemma 3.1 in the same way as the analogous bound for the makespan of any
solution obtained in the List Scheduling setting. Specifically, the optimal makespan, C∗

max, is bounded below
both by the maximum processing time pmax = maxk=1,...,n{pk}, and by the average load L̄ = 1

2

∑n

k=1 pk.

Suppose, as in Lemma 3.1, that the makespan is attained by Jj on M1, so Cmax = L1 = Sj + pj . By
Lemma 3.1, Sj ≤ L2. Combined with Sj = L1 − pj , we obtain that Sj ≤ 1

2 (L1 + L2 − pj) = 1
2

∑

k 6=j pk.
Therefore,

Cmax = Sj + pj ≤
1

2

∑

k 6=j

pk + pj = L̄ +
1

2
pj ≤ L̄ +

1

2
pmax ≤

3

2
C∗

max.

Consequently, SPoA ≤ 3
2 .

As for the tightness, Example 3.1 demonstrates that SPoA can be 3
2 .

As we claimed in the paragraph preceding Lemma 3.1, the argument used in that lemma does not hold
for m > 2. The precise meaning of this claim is the following: suppose that the makespan is attained by
Jj , i.e., Cmax = Sj + pj . Then in our model, as opposed to List Scheduling, there may exist machines that
complete processing their jobs prior to Sj . Moreover, Jj may start after the average load L̄. The following
example demonstrates this fact:

Example 3.4. Consider m ≥ 3 machines and n = m + 1 jobs, whose processing times are (p1, . . . , pm+1) =
(K, 1− ǫ, 1, 1, . . . , 1, K + ǫ). Let A1 choose M1. We claim that in the resulting schedule, A2 will schedule his
job (with p2 = 1 − ǫ) on M1 (starting at S1 = p1 = K), and each of the remaining machines M2, . . . , Mm

will be assigned a single job (which belongs to A3, . . . , An); see Figure 2. This is true since if A2 chooses a
machine other than M1, say M2, then each of A3, . . . , An−1 will send his (unit-time) job to an empty machine,
and then An, being the last agent, will send his job (with pn = K + ǫ) to the least loaded machine, which is
M2. Thus, by choosing M1, A2’s cost is K + 1 − ǫ rather than K + 1. Note that L̄ = 1

m
(2K + m − 1) < K,

implying that A2’s job, which attains the makespan Cmax = L1 = K + 1 − ǫ, starts after L̄ while all other
machines except the one with the last (and longest) job, complete at 1, which is earlier than L̄.

Figure 2: The schedule associated with Example 3.4

However, as we show in the sequel, the result stated in Theorem 3.1 can be generalized to any number
of machines. We describe the key proof technique in a more general form. It claims that any upper bound
on the cost of the last agent is immediately a bound on the cost of each other agent as well:

6

Lemma 3.2. Let there be m ≥ 2 identical machines. Suppose that there exists U such that for each j ∈ N ,
agent Aj can choose a machine so that his job’s completion time is at most U , regardless of the decisions
made by A1, . . . , Aj−1. Then, for any j ∈ N , Aj can guarantee himself a cost of at most U as well.

Proof. The intuition behind the lemma is that once Aj chooses a machine with Cj ≤ U , subsequent agents
with large jobs will not choose his machine, because if they choose it, and hence make Aj pay a high cost,
they immediately incur that same cost as well. Formally, let U be as stated in the lemma. We will show
that for each j ∈ N , Aj can guarantee himself a cost of at most U , by backward induction on the agent’s
index. For the last agent, An, this is immediate since his cost is Cn, and Cn ≤ U by assumption.

Suppose the claim holds for all agents Aj+1, . . . , An and consider Aj . He reasons as follows. By assump-
tion, there is a machine Mi which he can choose so that his job’s completion time, Cj , will not exceed U ;
for example, by acting greedily, i.e., choosing a (currently) least loaded machine, this condition must hold.

Now, if there are no subsequent agents who choose Mi, then Aj ’s cost will be his job’s completion time,
Cj , and we are done. So assume that some of Aj+1, . . . , An choose Mi as well, so Aj ’s cost will exceed Cj .
However, by the induction hypothesis, each of them can choose a machine with (final) load at most U . They
choose Mi, so their cost will be Li, the (final) load on Mi, which satisfies Li ≤ U . Of course, this is Aj ’s
cost as well. Thus, by choosing Mi, agent Aj can guarantee himself a cost of at most U .

Theorem 3.2. For m ≥ 2 identical machines, SPoA ≤ 2 − 1
m

.

Proof. We will first show that for each j ∈ N , if Aj acts greedily, then Cj ≤
(

2 − 1
m

)

C∗
max. (for any decisions

of A1, . . . , Aj−1). The theorem then follows by Lemma 3.2.

As in Graham’s proof for List Scheduling, C∗
max is bounded below by LB := max{pmax, L̄}. We will

show that if Aj chooses a least loaded machine, then Cj ≤
(

2 − 1
m

)

LB. For each j ∈ N , this least load

is bounded from above by the average load of the first n − 1 scheduled jobs, namely J1, . . . , Jn−1. Hence
Sj ≤ 1

m

∑n−1
k=1 pk. Thus, Aj ’s job’s completion time is bounded from above:

Cj = Sj + pj ≤
1

m

n−1
∑

k=1

pk + pn = L̄ +
(

1 −
1

m

)

pn ≤
(

2 −
1

m

)

LB,

hence Cj ≤
(

2 − 1
m

)

C∗
max. This completes the proof.

Note that the 2 − 1
m

bound matches the bound on the approximation ratio of the greedy algorithm in
Graham’s List Scheduling, and the proof resembles his proof. However, the additional step of Lemma 3.2
is required because the agents are selfish, so they may apply a strategy other than the greedy one, that is,
a-priori they need not choose a least loaded machine (except for An, who will always do so). This remark
also applies to Theorem 3.3 below.

3.3 Imposing order on agents

Suppose that we impose order on the agents, so that p1 ≥ p2 ≥ · · · ≥ pn. The justification for imposing such
order is the intuition that since agents are selfish, “long jobs that arrive last” may create imbalance in the
loads, and hence increase the sequential price of anarchy. To this end, we denote the setting in which this
order is assumed by (the well-known) LPT rule, i.e., Longest Processing Time first. As we show below, it
turns out that imposing such order reduces SPoA from 2 − 1/m to 4/3 − 1/3m; note that this decrease is
identical to that of the approximation ratio in Graham’s List Scheduling [8].

Theorem 3.3. For m ≥ 2 identical machines, under the LPT rule, SPoA ≤ 4
3 − 1

3m
.

Proof. The proof idea is similar to that of Theorem 3.2; we will first show that for each j ∈ N , if Aj acts
greedily, then Cj ≤

(

4
3 − 1

3m

)

C∗
max (for any decisions of A1, . . . , Aj−1). The theorem then follows by Lemma

3.2. Thus, suppose that Aj chooses a least loaded machine.

7

• Case 1: pj ≤ 1
3C∗

max.

Let L
(j−1)
min denote the load on a least loaded machine immediately after Aj−1 chose the machine for

his job. Then, L
(j−1)
min ≤ 1

m

∑n−1
k=1 pk. Consequently, as Aj chooses a least loaded machine:

Cj ≤ L
(j−1)
min + pj ≤ 1

m

∑n−1
k=1 pk + pj = L̄ +

(

1 − 1
m

)

pj

≤ C∗
max +

(

1 − 1
m

)

1
3C∗

max =
(

4
3 − 1

3m

)

C∗
max.

• Case 2: pj > 1
3C∗

max.
We will prove that in this case, Cj ≤ C∗

max. If j ≤ m then this is trivial (because there is an empty
machine available for Aj), so assume that j ≥ m + 1. Denote by OPT any fixed optimal schedule
(achieving C∗

max), and denote by OPTj the corresponding sub-schedule of J1, . . . , Jj . The LPT rule
implies that pk > 1

3C∗
max for each k = 1, . . . , j. Therefore, in OPTj , each machine contains at most

two jobs. Call Jk a long job if pk > C∗
max − pj and short otherwise, and let r be such that J1, . . . , Jr

are long, i.e.,

p1 ≥ · · · ≥ pr > C∗
max − pj ≥ pr+1 ≥ · · · ≥ pj >

1

3
C∗

max;

note that the assumption j ≥ m+1 and the LPT rule imply that pj ≤ 1
2C∗

max, so such r ≤ j−1 exists.

It follows that in OPTj , each long job is processed on a distinct machine that does not process
any other job (otherwise, there exists Ji, Jq with i ≤ r, q ≤ j on the same machine, so its load is
pi + pq ≥ pr + pj > C∗

max). Thus, the (remaining) short jobs are processed on at most m− r machines.
Since each machine contains at most two jobs, we have:

n − r = |{Jr+1, . . . , Jj}| ≤ 2(m − r). (1)

Now consider our schedule immediately before agent Aj chooses the machine for his job. Without loss
of generality, we may assume that none of M1, . . . , Mm−r contains any long job (there may exist more
such machines – this happens if and only if some machine processes at least two long jobs). By (1),
the number of short jobs other than Jj is

n − r − 1 = |{Jr+1, . . . , Jj−1}| ≤ 2(m − r) − 1.

Consequently, there exists a machine among M1, . . . , Mm−r with at most one (short) job, say Jl,
r + 1 ≤ l ≤ j, so by choosing this machine, Aj ’s job’s completion time will be Cj = pl + pj ≤ C∗

max.
This completes the proof.

4 Two unrelated machines and concluding remarks

As mentioned in the introduction, the best bounds on the worst SPoA for unrelated machines are given by
Biló et al. [2]. Specifically, they obtained lower and upper bounds of 2Ω(

√
n) and 2n, respectively. We believe

that these bounds can be further improved.

Denote by pij the processing time of Jj on Mi, and we denote the processing times on Mi (of all agents)
by pi∗ := (pi1, pi2, . . . , pin), for i ∈ M .

Example 4.1. Let n = 3, m = 2, and the processing times are p1∗ = (2ǫ, 1, 2−ǫ) and p2∗ = (2−ǫ, 1+ǫ, 1+ǫ).
The equilibrium is J1 ∈ M2 and J2, J3 ∈ M1; see Figure 3. Thus, Cmax = 3 − ǫ. However, the optimal
solution is J1, J2 ∈ M1 and J3 ∈ M2, C∗

max = 1 + 2ǫ. Consequently, SPoA = 3.

We believe that Example 4.1 demonstrates the worst possible case for SPoA for two machines. In fact,
this example corresponds to a solution of a linear program whose variables are {pij : i = 1, 2, j = 1, 2, 3}
and whose objective is to maximize SPoA, for the specific tree structure depicted in Figure 3. We omit the
details. We also considered alternative tree structures and the corresponding SPoA never exceeded 3. This
motivates us to propose:

8

Figure 3: The game-tree associated with Example 4.1 (n = 3, m = 2)

Conjecture 4.1. For m = 2 unrelated machines, SPoA ≤ 3.

Sequential price of anarchy is a new concept and and the current knowledge on related models is limited.
There are many interesting open research problems. For example, consider a version in which the information
or the computational power of the agents is limited. Note that both “extreme cases” achieve the same
sequential price of anarchy of 2 − 1

m
: In our model, the agents actually have full information and unlimited

computational power, as they may compute the complete game-tree. As we proved, SPoA = 2 − 1
m

.
The other extreme is when agents act greedily, as they are completely ignorant of the remaining (future)
agents’ decisions; in this case, SPoA = 2 − 1

m
by an argument similar to Graham’s. However, we can

consider intermediate settings, e.g., agents know the processing times of a fraction of the others, or only the
minimum/maximum processing time, or they know all processing times but can only compute the optimal
makespan in a fixed number of steps ahead. It is an interesting question whether SPoA will change in these
settings. We conjecture that the answer is affirmative.

We believe that the study of the sequential price of anarchy is fruitful for other sequential games motivated
from combinatorial optimization problems. We describe two suggestions:

Sequential Set Cover. The input consists of a set system, where the agents correspond to items.
Agents sequentially select sets – each agent chooses a set that covers his item. The goal of each agent is to
choose a set such that in the final solution, his item is covered by the least number of sets (chosen by other
agents). In contrast, an optimal solution is defined as one in which the average number of sets per item is
minimum. Note that this objective is equivalent to a minimum number of sets, which is the objective of the
ordinary Set Cover problem.

Sequential Bin Packing. The input consists of items, and their volumes, each volume is at most 1.
Again, agents correspond to items. Agents sequentially select bins – each agent chooses a bin in which his
item can fit (this may be an existing bin or a new one). The goal of each agent is to choose a bin such that
in the final solution, the total number (or volume) of items in his bin is maximum. In contrast, an optimal
solution is defined as one in which the average number of items per bin is maximum. Note that this objective
is equivalent to a minimum number of bins, which is the objective of the ordinary Bin Packing problem.

9

References

[1] Angelucci, A., V. Biló, M. Flammini, L. Moscardelli, “On the Sequential Price of Anarchy of
Isolation Games,” COCOON 2013, LNCS 7936, Springer, 2013.

[2] Biló, V., M. Flammini, G. Monaco, and L. Moscardelli, “Some Anomalies of Farsighted Strategic
Behavior,” WAOA 2012.

[3] Chakrabarty, D., A. Mehta, V. Nagarajan, and V. Vazirani, “Fairness and optimality in congestion
games,” EC 2005, 52-57.

[4] Czumaj, A. and B. Vöcking, “Tight bounds for worst-case equilibria,” In Proc. 13rd ACM-SIAM
Symp. on Discrete Algorithms, (2002), 413-420.

[5] De Jong, J., M. Uetz, and A. Wombacher, “Decentralized throughput scheduling,” LNCS 7878

(2013) 134-145.

[6] Denardo, E. V., Dynamic Programming: Models and Applications, Prentice Hall, 1982.

[7] Fiat, A., Y. Mansour, and U. Nadav, “Efficient contention resolution protocols for selfish agents,”
SODA 2007, 179-188.

[8] Graham, R. L., “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math. 17 (1969),
263-269.

[9] Koutsoupias, E. and C. Papadimitriou, “Worst-case equilibria,” Proceedings of STACS’99, LNCS
1563 (1999), 404-413.

[10] Leme, R. P., V. Syrgkanis, and É. Tardos, “Sequential auctions and externalities,” SODA 2012,
869-886.

[11] Leme, R. P., V. Syrgkanis, and É. Tardos, “The curse of simultaneity,” ITCS 2012, 60-67.

[12] Mavronicolas, M. and P. Spirakis, “The price of selfish routing,” In Proc. 33rd ACM Symp. on
Theory of Computing (2001), 510-519.

[13] Milchtaich, I., “Crowding games are sequentially solvable,” International Journal of Game Theory
27 (1998), 501-509.

[14] Nisan, N., T. Roughgarden, É. Tardos, and V. Vazirani (Eds.), Algorithmic Game Theory, Cam-
bridge University Press, 2007.

[15] Osborne, M. J. and A. Rubinstein, A course in game theory, MIT Press, 1994.

[16] Williamson, D. P. and D. B. Shmoys The Design and Analysis of Approximation Algorithms,
Cambridge University Press, 2011.

A Exact Algorithms

In this appendix, we show how to compute an optimal solution, i.e., achieving C∗
max, for the setting of

unrelated machines. Let pij denote the processing time of Jj on Mi, j ∈ N, i ∈ M .

10

A.1 Dynamic programming algorithm

Let the state vector be the load vector L = (L1, L2, . . . , Lm), meaning that upon arrival of an agent, the
load already assigned to machine Mi is Li, i ∈ M . Denote by F i

j (L) the final load of Mi when Aj arrives at

state L (i ∈ M, j ∈ N). Note that Li ∈ {0, . . . ,
∑j−1

k=1 pik}. Let xj(L) be a variable that takes value i when
Mi is selected by Aj given state L.

For given L and pij , denote the vector (L1, . . . , Li−1, Li + pij , Li+1, . . . , Lm) by L⊕ pij . The following is
a dynamic programming algorithm:

• Define F i
n+1(L) = Li for all i ∈ M , for any L ∈ R

m.

• for j = n, n − 1, . . . , 1:

– let r := argminq∈M F q
j+1(L ⊕ pqj) (ties broken arbitrarily).

– xj(L) := r.

– for i = 1, 2, . . . , m: F i
j (L) := F i

j+1(L ⊕ prj).

Note that C∗
max = maxi∈M F i

1(0, . . . , 0).

The solution is constructed recursively. It can be computed in pseudopolynomial time for fixed m. It is
a little simpler for identical machines. For example, consider the special case with two identical machines.
In this case, p1j = p2j = pj for every j ∈ N . Denote by F i

j (h) the final load of Mi, i = 1, 2, if upon arrival
of Aj , the load currently assigned to M1 is h. Then the algorithm is:

• Define F 1
n+1(h) = h, F 2

n+1(h) =
∑n

j=1 pj − h, for any h ∈ R.

• for j = n, n − 1, . . . , 1:

if F 1
j+1(h + pj) ≤ F 2

j+1(h):

F 1
j (h) := F 1

j+1(h + pj), F 2
j (h) := F 2

j+1(h + pj), xj(h) := 1.

otherwise:
F 1

j (h) := F 1
j+1(h), F 2

j (h) := F 2
j+1(h), xj(h) := 2.

A.2 A reaching algorithm

An alternative reaching algorithm (see, e.g., the book [6]) is more efficient when n is small. First define
for every vertex v of the game-tree the n-dimensional vector L(v) of costs (final loads) of the agents. Let
V (1) ⊆ V denote the set of leaves in this tree. Note that the minimum makespan is

C∗
max = min

v∈V (1)
max
j∈N

L(v)j .

Now recursively, in decreasing levels of the tree, compute the vector L corresponding to every node in level
j (corresponding to a decision made by agent Aj). Specifically, let L′ and L′′ be the cost vectors of its two
sons in level j + 1. Then, L = L′ if L′

j ≥ L′′
j , and L = L′′ otherwise. Note that the makespan (obtained by

the sequential decision process) is Cmax = maxj∈N L(r)j , where L(r) is the cost vector at the root r.

