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Abstract

Network interdiction can be viewed as a game between two players, aninterdictor and aflow player. The flow player wishes to
send as much material as possible through a network, while the interdictor attempts to minimize the amount of transported material
by removing a certain number of arcs, sayΓ arcs. We introduce therandomized network interdictionproblem that allows the
interdictor to use randomness to select arcs to be removed. We model the problem in two different ways:arc-basedandpath-
basedformulations, depending on whether flows are defined on arcs or paths, respectively. We present insights into the modeling
power, complexity, and approximability of both formulations. In particular, we prove that ZNI/ZRNI ≤ Γ + 1, ZNI/ZPath

RNI ≤ Γ + 1,
ZRNI/ZPath

RNI ≤ Γ, where ZNI , ZRNI, and ZPath
RNI are the optimal values of the network interdiction problem and its randomized versions

in arc-based and path-based formulations, respectively. We also show that these bounds are tight. We show that it is NP-hard to
compute the values ZRNI and ZPath

RNI for a generalΓ, but they are computable in polynomial time whenΓ = 1. Further, we provide a
(Γ + 1)-approximation for ZNI , aΓ-approximation for ZRNI, and a

(

1+ ⌊Γ/2⌋ · ⌈Γ/2⌉/(Γ + 1)
)

-approximation for ZPath
RNI.
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1. Introduction

Network flows have applications in a wide variety of contexts
(see, e.g., [1]). In some applications, it is useful to consider the
perspective of someone who wants to restrict flows in a net-
work. For example, law enforcement wants to inhibit the flow
of illegal drugs. Water management experts want to control
flows to avoid floods. Health agencies need to protect against
contagion. Here, it is important to consider the problem of lim-
iting flows in the network from the perspective of aninterdic-
tor, who is capable of limiting capacity in arcs or eliminating
arcs. Such problems have been applied in many application ar-
eas such as military planning [19], controlling infectionsin a
hospital [3], controlling floods [13], protecting criticalinfras-
tructures [11, 16], and drug interdiction [17].

Motivated by the above mentioned applications,network in-
terdiction problemshave been well studied in the literature (see,
e.g., [4, 6, 8, 9, 10, 14, 15, 20]). In this paper, we focus on
the basic model of network interdiction: aflow playerattempts
to maximize the amount of materiel transported through a ca-
pacitated network, while aninterdictor tries to limit the flow
player’s achievable value by interdicting a certain number, say
Γ, of arcs. This problem is also known as theΓ-most vital arcs
problem (see, e.g., [13]). Wollmer [12] presents a polynomial
time algorithm for solving this problem on planar graphs. On
general networks, Wood [20] shows that the problem is strongly
NP-complete.

Network interdiction can be viewed as a game between the
interdictor and the flow player. This problem assumes the inter-
dictor moves first and then the flow player determines a maxi-
mum flow in the remaining network. A closely related problem

arises when a flow must be routed before arcs are removed. In
this case, the flow player might be interested to find solutions
which are robust again any failure of arcs. Anejaet al. [2] and
Du and Chandrasekaran [7] address this issue in a path-based
formulation. They show that the resulting problem is solvable
in polynomial-time for the special case ofΓ = 1, but becomes
NP-hard ifΓ = 2. This problem was further expanded to an
arc-based formulation by Bertsimaset al. [5], who introduce
the concepts of robust and adaptive maximum flows. They es-
tablish structural and computational results for both the robust
and adaptive maximum flow problems and their corresponding
minimum cut problems.

Our contribution. The network interdiction problem addresses
a minimax objective against a flow player, which selects adap-
tively a flow after observing the removed arcs. This problem
requires the interdictor to choose a specificpure strategy. We
propose a new modeling framework that permits the interdictor
to use randomness to choose arcs. More precisely, the interdic-
tor assigns a probability to each pure strategy and selects apure
strategy randomly according to these probabilities. We refer to
the resulting problem as therandomizednetwork interdiction
problem. This provides a more realistic model for various ap-
plications such as protecting critical infrastructures against ter-
rorism or enemy’s attacks. We also consider a further modifi-
cation that requires the flow player to send flow on paths, rather
than the more typical arc-based model. We present results on
the modeling power, complexity, and approximability of both
arc-based and path-based formulations.

More specifically, our primary contributions are as follows:

1. Modeling: We introduce the randomized network inter-
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diction problem in arc-based and path-based formulations.
We show that the arc-based (path-based) model is equiv-
alent to the case where the flow player must determine
an arc-based (path-based) flow through the network in ad-
vance and then the interdictor selects arcs to be removed.
This shows that randomization helps the interdictor to per-
form as well as when she has perfect information of how
flow is routed through the network.

2. Complexity: We present complexity results for both arc-
based and path-based formulations of the randomized net-
work interdiction problem. In particular, the arc-based
model is NP-hard for a generalΓ, but is solvable in poly-
nomial time for a fixedΓ, while the path-based version is
NP-hard for any fixedΓ ≥ 2. ForΓ = 1, we show that
both formulations become equivalent and are solvable in
polynomial time as a linear optimization problem.

3. Approximability: We introduce a linear optimization
problem and show that its optimal value provides a
tight (Γ + 1)–approximation,Γ–approximation, and

(

1 +
⌊Γ/2⌋·⌈Γ/2⌉
Γ+1

)

–approximation for the optimal values of the net-
work interdiction problem and its randomized versions in
arc-based and path-based formulations, respectively. The
latter approximation guarantee is(Γ+2)2

4(Γ+1) for evenΓ and is
Γ+3

4 for oddΓ. We note that for theΓ = 2 case, it guar-
antees a 4/3-approximation for the path-based problem,
which is NP-hard.

4. Power of randomization: We show that the interdictor can
perform significantly better by using randomization. In
particular, we show that the ratio of the optimal value of
network interdiction to that of the randomized version is
bounded byΓ + 1 for both arc-based and path-based mod-
els. We also show that the ratio of the optimal value of
the arc-based randomized network interdiction problem to
that of the path-based version is bounded byΓ. We provide
examples to show that these bounds are tight.

2. Network Interdiction as a Game

Let G = (V,E) be a directed graph withnode set Vandarc
set E. Each arce ∈ E has acapacity ue ∈ R+ setting an upper
bound on the amount of flow on arce. There are two specific
nodes, asource sand asink t. W denote an arce from a nodev
to a nodew by e := (v,w). We useδ+(v) := {(v,w) ∈ E | w ∈ V}
andδ−(v) := {(w, v) ∈ E | w ∈ V} to denote the sets of arcs
leaving nodev and entering nodev, respectively. We assume
without loss of generality that there are no arcs intos and no
arcs out oft, that is,δ−(s) = δ+(t) = ∅.

An s-t-flow (or simply aflow) x is a functionx : E → R+

which assigns a nonnegative value to each arc so thatxe ≤ ue

for eache ∈ E, and in addition for each nodev ∈ V \ {s, t}, the
following flow conservation constraintholds:

∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0.

We refer toxe as theflow on arce. We denote the set of all
s-t-flows byX. The valueVal(x) of an s-t flow x is the net
flow into t, that is, Val(x) :=

∑

e∈δ−(t) xe. In themaximum flow
problem (also referred to as thenominalproblem), we seek an
s-t flow x with maximum value Val(x).

We next assume that there is an interdictor, who wants to re-
duce the capacity of the network. Suppose that the interdictor is
able to eliminateΓ (1 ≤ Γ ≤ |E|) arcs in the network. Thenet-
work interdictionproblem is to find theΓ arcs whose removal
from the network minimizes the maximum amount of flow that
can be sent to the sink. To formulate this problem, we let

Ω :=
{

µ = (µe)e∈E ∈ {0, 1}|E| |
∑

e∈E

µe = Γ
}

denote the set of all possible scenarios, that is, the set of all
subsets ofΓ arcs. The binary variableµe indicates whether or
not arce is to be removed, depending on whetherµe = 1 orµe =

0, respectively. Givenµ ∈ Ω, we denote byE(µ) := {e ∈ E |
µe = 1} the set of removed arcs and byF(µ) := {e ∈ E | µe = 0}
the set of available arcs after removing the arcs in the scenario
µ. We also denote byG(µ) = (V, F(µ)) a network with arc set
F(µ).

The network interdiction problem is formulated as

min
µ∈Ω

max Val(x)

s.t. x ∈ X,

xe = 0 ∀e ∈ E(µ).

(1)

This problem can be viewed as a two-person zero-sum game
between an interdictor and a flow player . The set of (pure)
strategies for the interdictor is given by the scenario setΩ. The
set of (pure) strategies for the flow player is given by the feasi-
ble setX. With respect to a flowx and scenarioµ, we denote by
G(µ, x) a network with arc setF(µ) and arc capacitiesx. If the
interdictor chooses the pure strategyµ ∈ Ω and the flow player
chooses the pure strategyx ∈ X, then the payoff f (µ, x) of the
game is the maximum amount of flow that the flow player can
push through the network with respect to the flowx if scenario
µ is selected. Mathematically, the payoff function f is given by

f (µ, x) :=max Val(y)

s.t. y ∈ X,

0 ≤ ye ≤ xe ∀e∈ F(µ)

ye = 0 ∀e∈ E(µ).

(2)

The interdictor aims to minimize the payoff of the game and
must choose her strategy first. This provides an alternativeand
equivalent formulation of network interdiction as follows:

ZNI = min
µ∈Ω

max
x∈X

f (µ, x). (3)

This problem determines the interdictor’s best choice, assum-
ing the flow player is in a position to select a maximum flow af-
ter observing the removed arcs. In many applications, the flow
player have to make a decision before the interdictor selects her
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Figure 1: Illustration of the difference between the network interdiction prob-
lem and maximum adaptive flow problem. The numbers on the arcsindicate
the capacities.

strategy. Here, the flow player might be interested in those so-
lutions that are robust against any possible scenario. Thisleads
to the following problem, referred to as theadaptive maximum
flowproblem:

ZADP := max
x∈X

min
µ∈Ω

f (µ, x). (4)

This problem is introduced by Bertsimaset al. [5], who estab-
lish structural properties and complexity results for the prob-
lem. In particular, they show that the adaptive maximum flow
problem is NP-hard using a reduction from the network inter-
diction problem.

Note that ZADP ≤ ZNI and the equality may not be attained
in general. To compare the difference between the network in-
terdiction problem and the adaptive maximum flow problem,
we consider a network with three nodess, v, and t as shown
in Figure (1). There areK arcs with unit capacity and one
arc with capacity 3/2K from s to t and there areΓ + 1 arcs
with infinite capacity fromv to t. Let Γ ≥ 2 andK be enough
large. It is easy to see that ZNI = K − 1, while ZADP =

5K
2(Γ+1) .

Hence, ZNI/ZADP =
2(Γ+1)(K−1)

5K , and the ratio the becomes close
to 2(Γ + 1)/5 whenK gets large. An interesting question is:
How large can ZNI/ZADP be in general? We will show later that
this ratio is bounded byΓ + 1 and this bound is tight.

3. Randomized network interdiction

In the network interdiction problem, the interdictor goes first
and determinesΓ arcs to be removed. The flow player observes
the set of removed arcs and determines a flow to be sent through
the remaining network. In this case, the flow player has com-
plete knowledge of the interdictor’s behavior. Our goal is to
make the interdictor more powerful and make the flow player
weaker. To achieve this, we allow the interdictor to use ran-
domness to decide which strategy to play. More precisely, the
interdictor assigns a probability to each pure strategy, and then
randomly selects a pure strategy according to the probabilities.
The flow player does not see the interdictor’s strategy, but ob-
serves a probability distribution of how the interdictor decides
to select arcs.

In what follows, we formally define the randomized network
interdiction problem. We first focus on the arc-based formu-

lation of flows and then turn our attention to flows on paths,
instead of arcs. We notice that the two formulations are equiva-
lent for the network interdiction problem, but they differ for the
randomized version, as shown later. Therefore, we treat thetwo
formulations separately.

3.1. Arc-based formulation

A mixed(or randomized) strategy overΩ is given by a prob-
ability distributionα : Ω→ [0, 1], whereα(µ) is the probability
that strategyµ is selected by the interdictor. We denote the set
of all mixed strategies overΩ by ∆(Ω). We extend the payoff
function to mixed strategies by defining

f (α, x) :=
∑

µ∈Ω

α(µ) f (µ, x) ∀α ∈ ∆(Ω), x ∈ X.

The valuef (α, x) represents theexpectedpayoff of the game if
the interdictor chooses a mixed strategyα ∈ ∆(Ω) and the flow
player selects a pure strategyx ∈ X.

Given a mixed strategyα, the flow player aims to find a
flow with maximum expected value. The interdictor wishes to
choose a mixed strategy to minimize this value. Therefore, the
interdictor deals with the following problem:

ZRNI := min
α∈∆(Ω)

max
x∈X

f (α, x). (5)

We refer to this problem as therandomized network interdiction
problem.

We next show that ZRNI = ZADP. This shows that random-
ization permits the interdictor to perform as well as when she
has perfect knowledge of the flow player’s choice. To prove
this, we allow the flow player to select a flow randomly. It is
well known from game theory (see, e.g., [18]) that if both play-
ers select their strategies randomly, then there exists an equilib-
rium; that is, no matter which player selects her strategy first,
no one has an incentive to change her mixed strategy. Notice
that the set of pure strategies for the flow player is an infinite
set. Here, a mixed strategy is given by a finite distribution over
X. In fact, arandomstrategy overX is a probability distribu-
tion β : X → [0, 1] with finite support, that is, it only assigns a
non-zero value to a finite number ofs-t-flows. The valueβ(x)
gives the probability that the flowx is selected. We denote the
set of all mixed strategies overX by∆(X).

We extend the payoff function f to mixed strategies for both
players by defining

f (α, β) :=
∑

µ∈Ω

∑

x∈X:β(x)>0

α(µ)β(x) f (µ, x) ∀α ∈ ∆(Ω), β ∈ ∆(X).

The valuef (α, β) gives the expected payoff of the game if the
interdictor chooses a mixed strategyα and the flow player se-
lects a mixed strategyβ. If the interdictor chooses a pure strat-
egyµ and the flow player chooses a mixed strategyβ, we denote
the expected payoff by f (µ, β) :=

∑

x∈X:β(x)>0 β(x) f (µ, x).

Theorem 1. ZRNI = ZADP.
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Proof. The result follows from the following observations:

ZRNI = min
α∈∆(Ω)

max
x∈X

f (α, x) = min
α∈∆(Ω)

max
β∈∆(X)

f (α, β) (6)

= max
β∈∆(X)

min
α∈∆(Ω)

f (α, β) (7)

= max
β∈∆(X)

min
µ∈Ω

f (µ, β) (8)

= max
x∈X

min
µ∈Ω

f (µ, x) = ZADP. (9)

The second equality in Equation (6) holds since the payoff

function f (α, x) is concave inx and the pure strategy setX is
convex.

The equality in Equation (7) follows from the well-known
Wald’s Minimax Theorem [18] due to the fact that pure strategy
setΩ is finite.

Furthermore, the equality in Equation (8) holds since

min
α∈∆(Ω)

f (α, β) = min
µ∈Ω

f (µ, β)

for a fixedβ ∈ ∆(X) due to the fact thatΩ is a finite set.
It remains to prove the validity of the first equality in Equa-

tion (9). For a fixedx ∈ X, we define AVal(x) := minµ∈Ω f (µ, x).
This function is concave inx. Hence, the first equality in Equa-
tion (9) holds. This completes the proof of the theorem.

3.2. Path-based formulation

So far, we have considered flows in an arc-based formulation.
We next focus on an alternative formulation of flows, in which
the flow player must specify paths on which to route the mate-
rial. This leads to a different model for the randomized network
interdiction problem.

Let P denote the set of alls-t-paths (i.e., paths froms to t).
For P ∈ P, we writee ∈ P to indicate that arce ∈ E lies onP.
An s-t-(path-based) flow is a functionx : P → R+ that assigns
a nonnegative value to each path so that the total flow on each
arc does not exceed the capacity of the arc, that is,

∑

P∈P:e∈P

xP ≤ ue ∀e ∈ E.

The value ofx is the sum of the flows on the paths, i.e.,
Val(x) =

∑

P∈P xP. We useXP to denote the set of alls-t-path-
based flows.

Notice that the flow on pathP cannot reach the sink if some
arc in P is removed. In particular, if the interdictor selects the
strategyµ and the flow player chooses a flowx ∈ XP, then the
payoff of the game is given by

g(µ, x) :=
∑

P∈P

max
{

0, 1−
∑

e∈P

µe

}

xP

This function differs from the arc-based functionf , defined in
Equation (2), because flows are not permitted in this versionto
be routed. The valueg(µ, x) gives the amount of flow that can
reach the sink if the the arcs inµ are removed. We point out that
if no arc in a pathP is removed, then max

{

0, 1−
∑

e∈P µe
}

= 1
and the flow on pathP is counted in computing the valueg(µ, x).

Otherwise, we will have max
{

0, 1−
∑

e∈P µe
}

= 0, and then the
flow on pathP does not contribute to the valueg(µ, x).

We present an alternative, but equivalent, formulation of the
network interdiction problem as follows:

ZPath
NI := min

µ∈Ω
max
x∈XP

g(µ, x). (10)

We now consider the case where the flow player has to choose
a flow up front before the interdictor chooses her strategy. In
this situation, the flow player addresses the following problem:

ZPath
ADP := max

x∈XP

min
µ∈Ω

g(µ, x). (11)

This problem is introduced by Anejaet al. [2], who study the
case where only one arc is permitted to be removed. They show
that the problem is solvable in polynomial time in this special
case. Later, Du and Chandrasekaran [7] show that the problem
is NP-hard for if two arcs can be removed. Bertsimaset al. [5]
examine the problem in a general setting and propose approxi-
mation approchaes to obtain near optimal solutions.

We next assume that the interdictor uses randomness to select
arcs to be deleted. This leads to the following problem, referred
to as therandomized network interdictionproblem in thepath-
based formulation:

ZPath
RNI := min

α∈∆(Ω)
max
x∈XP

∑

µ∈Ω

α(µ)g(µ, x). (12)

Theorem 2. ZPath
RNI = ZPath

ADP.

Proof. The flow player does not benefit by choosing a mixed
strategy because the payoff function g(µ, x) is linear in x and
the set of pure strategiesXP is convex. The proof now follows
in a similar way as in the proof of Theorem 1.

Problems (3) and (10) are equivalent; that is, ZNI = ZPath
NI ,

since the interdictor first chooses arcs to be removed and then
the flow player solves a maximum flow problem in the remain-
ing network. But this situation becomes different for the ran-
domized version. To see the difference between the arc-based
and path-based formulations, we refer to the network in Fig-
ure 1. In this network, ZPath

RNI =
2K
Γ+1, while ZRNI =

5K
2(Γ+1) . Thus,

ZRNI/ZPath
RNI =

5
4 for Γ ≥ 2. We will show that this ratio is

bounded byΓ and this bound is tight. ForΓ = 1, we will show
in the next section that the two formulations are equivalentand
one can compute an optimal mixed strategy in polynomial-time.

4. Complexity results

In this section, we investigate computational complexity of
the randomized network interdiction problem. By Theorems 1
and 2, we know ZRNI = ZADP and ZPath

RNI = ZPath
ADP, respectively.

Thus, complexity results for computing ZADP and ZPath
ADP carry

over ZRNI and ZPath
RNI, respectively.

Bertsimaset al. [5] formulate the adaptive maximum flow
problem as a linear optimization problem with exponentially
many variables and constraints. WhenΓ is fixed, the linear
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optimization problem has polynomial many variables and con-
strains, and thus can be solved in polynomial time. But, in
general, they show that the adaptive maximum flow problem is
strongly NP-hard by a reduction from the network interdiction
problem. Thus, we have the following theorem.

Theorem 3. For a fixedΓ, the value ZRNI can be computed in
polynomial-time as a linear optimization problem. For a gen-
eral Γ, it is strongly NP-hard to compute ZRNI.

As mentioned already before, Du and Chandrasekaran [7]
show that computing ZPath

ADP is NP-hard even for the case that
the interdictor is able to remove only two arcs. This leads tothe
following hardness result.

Theorem 4. The randomized network interdiction problem in
the path-based formulation is NP-hard for any fixedΓ ≥ 2.

We next show that one can compute the optimal value of the
randomized network interdiction problem in both arc-basedand
path-based formulations in polynomial-time if the interdictor is
capable to remove only one arc.

Theorem 5. If Γ = 1, then ZRNI = ZPath
RNI and an optimal mixed

strategy can be computed in polynomial-time.

Proof. For the case ofΓ = 1, a mixed strategy for the inter-
dictor corresponds to assign a nonnegative value to each arc, as
the probability of removing that arc. More precisely, the set of
mixed strategies for the interdictor is given by the unit simplex
∆ of dimension|E|, that is,

∆ =

{

α = (αe)e∈E |
∑

e∈E

αe = 1, αe ≥ 0
}

.

Note that the flows on cycles are supposed to be zero since
the flows on cycles do not contribute to the flow value. As a
results, if the flow player chooses a flowx (no matter in the arc-
based or path-based formulation) and the interdictor decides to
remove arce, then the amount of flow reaching the sink will be

Val(x) − xe.

Hence, if the interdictor chooses a mixed strategyα ∈ ∆ and the
flow player chooses a flowx ∈ X, the payoff function is given
by

f (α, x) :=
∑

e∈E

αe(Val(x) − xe) = Val(x) −
∑

e∈E

αexe.

Therefore, Problems (5) and (12) can be simplified as follows:

ZRNI = ZPath
RNI = min

α∈∆
max
x∈X

Val(x) −
∑

e∈E

αe · xe.

By considering the dual problem of the inner maximization

problem, the above problem can be written as follows:

ZRNI = ZPath
RNI =min

∑

e∈E

ueρe

s.t. ρe+ αe+ πv − πw ≥ 0 ∀e= (v,w) ∈ E,

πt − πs ≥ 1,
∑

e∈E

αe = 1

αe, ρe ≥ 0 ∀e ∈ E.
(13)

Therefore, one can determine an optimal mixed strategy by
solving this linear optimization problem. This completes the
proof of the theorem.

5. On the power of randomization

In this section, we provide tight bounds on the ratio of the
optimal value of the network interdiction problem to that ofran-
domized versions. In particular, our main result is the following
theorem.

Theorem 6. It is always true that

ZNI

ZRNI
≤ Γ + 1, (14)

ZNI

ZPath
RNI

≤ Γ + 1, (15)

ZRNI

ZPath
RNI

≤ Γ. (16)

and these bounds are tight.

To prove this theorem, we require several lemmas. The core
of the our analysis is based on the following parametric linear
optimization problem:

ZLO(θ) :=max Val(x) − Γθ

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0, ∀v ∈ V \ {s, t},

0 ≤ xe ≤ ue, ∀e ∈ E,

xe ≤ θ, ∀e ∈ E.
(17)

We let ZLO := maxθ≥0 ZLO(θ) and refer to the latter problem as
the LO model. This model is examined by Bertsimaset al. [5]
to find approximations for Problems (4) and (11). They demon-
strate the ability of the LO model for obtaining good solutions
in a computational study.

We first show that the optimal value of the LO model gives a
lower bound on ZPath

RNI, ZRNI, and ZNI.

Lemma 1. We have

ZLO ≤ ZPath
RNI ≤ ZRNI ≤ ZNI. (18)
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Proof. By Theorems 1 and 2, we know ZRNI = ZADP and
ZPath

RNI = ZPath
ADP, respectively. Thus, it suffices to show that

ZLO ≤ ZPath
ADP ≤ ZADP ≤ ZNI .

Here, the first inequality from the right is immediate since

ZADP = max
x∈X

min
µ∈Ω

f (µ, x) ≤ min
µ∈Ω

max
x∈X

f (µ, x) = ZNI .

The second inequality is intuitively straightforward because the
flow player in Problem (11) is more restricted than Problem (4).

Therefore, it remains to prove ZLO ≤ ZPath
ADP. We assume

that the optimal value of the LO model is strictly positive since
otherwise the statement is trivial. Let (x∗, θ∗) be an optimal
solution for the LO model and (x∗P)P∈P be an arbitrary path-
decomposition ofx∗. It is sufficient to prove that

ZLO = Val(x∗) − Γθ∗ ≤ min
µ∈Ω

g(µ, x∗). (19)

To this end, we show that there existΓ arcs, saye1, . . . , eΓ, with
x∗e1
= . . . = x∗eΓ = θ

∗ such that at most one of them lies on each
pathP with x∗P > 0. Suppose, by contradiction, that there are at
mostk (k < Γ) arcse1, . . . , ek with x∗e1

= . . . = x∗ek
= θ∗ such that

each pathP with x∗P > 0 contains at most one of these arcs. This
implies that there arek flow-carrying pathsP1, . . . ,Pk such that
each arce with x∗e = θ

∗ lies on one of these paths.
We now define a new solution (x, θ) for the LO model by

settingθ := θ∗ − ǫ and xP := x∗P − ǫ, if P = P1, . . . ,Pk, and
xP := x∗P, otherwise. Theǫ is strictly positive and is chosen
small enough to ensure that

∑

P∈P:e∈P xP ≤ θ. The objective
function value of the LO model for (x, θ) is

∑

P∈P

xP − Γθ =
∑

P∈P\{P1,...,Pk}

xP +

k
∑

i=1

xP − Γθ

=

∑

P∈P\{P1,...,Pk}

x∗P +
k
∑

i=1

(x∗P − ǫ) − Γ(θ
∗ − ǫ)

=

∑

P∈P

x∗P − Γθ
∗
+ (Γ − k)ǫ >

∑

P∈P

x∗P − Γθ
∗.

This contradicts with the optimality of (x∗, θ∗), which proves
the validity of Inequality (19). This completes the proof ofthe
lemma.

In what follows, we exploit structural properties of the LO
model that are needed for the proof of Theorem 6. We first give
some basic definitions and notation. Ans-t-cut is defined as a
subsetS ⊆ V of nodes withs ∈ S andt ∈ V \ S. Thecapacity
Cap(S) of S is defined as the sum of the capacities of the arcs
going fromS to V \ S, that is, Cap(S) :=

∑

e∈δ+(S) ue. Here
and subsequently,δ+(S) denotes the set of arcse = (v,w) with
v ∈ S andw ∈ V \ S. We useS to denote the set of alls-t-cuts.
For a given valueθ ≥ 0, we letue(θ) := min{ue, θ}, and we let
Cap(S, θ) :=

∑

e∈δ+(S) ue(θ) denote the capacity of the cut with
respect to the arc capacitiesu(θ). We letA(S, θ) denote the set
of all arcse ∈ δ+(S) with θ ≤ ue, and we letB(S, θ) denote the
set of all arcse∈ δ+(S) with θ < ue.

Lemma 2. Suppose that(x∗, θ∗) is an optimal solution to the
LO model with maximum valueθ∗ (i.e., if there are multiple
optimal solutions, the one with the largest valueθ∗ is selected).

(i) There exists an s-t-cut S′ so that

Val(x∗) = Cap(S′, θ∗) and |A(S′, θ∗)| ≥ Γ.

(ii) There exists an s-t-cut S′′ so that

Val(x∗) = Cap(S′′, θ∗) and |B(S′′, θ∗)| < Γ.

Proof. For eachǫ > 0, we have

ZLO(θ∗) ≥ ZLO(θ∗ − ǫ), (20)

ZLO(θ∗) > ZLO(θ∗ + ǫ), (21)

since (x∗, θ∗) is an optimal solution with maximum valueθ∗. In
addition, there exists ans-t-cutS′ which is a minimum cut with
respect to arc capacitiesu(θ∗) and arc capacitiesu(θ∗ − ǫ) for a
very smallǫ > 0. More precisely, it is enough to chooseǫ as
follows:

ǫ :=
1
|E|

min
S∈S
{Cap(S, θ∗) − Val(x∗) | Cap(S, θ∗) − Val(x∗) > 0}.

Therefore, we can write

ZLO(θ∗) = Cap(S′, θ∗) − Γθ∗,

ZLO(θ∗ − ǫ) = Cap(S′, θ∗ − ǫ) − Γ(θ∗ − ǫ)

=

∑

e∈S′\A(S′,θ∗)

ue+

∑

e∈A(S′ ,θ∗)

(θ∗ − ǫ) − Γθ∗ + Γǫ

= Cap(S′, θ∗) − ǫ|A(S′, θ∗)| − Γθ∗ + Γǫ.

It then follows from Inequality (20) that|A(S′, θ∗)| ≥ Γ.
We prove the second part of the lemma by a similar argu-

ment. There exists ans-t-cut S′′, which is a minimum cut with
respect to arc capacitiesu(θ∗) and u(θ∗ + ǫ) for a very small
ǫ > 0. Therefore,

ZLO(θ∗) = Cap(S′′, θ∗) − Γθ∗,

ZLO(θ∗ + ǫ) = Cap(S′′, θ∗ + ǫ) − Γ(θ∗ + ǫ)

= Cap(S′′, θ∗) + ǫ|B(S′′, θ∗)| − Γθ∗ − Γǫ.

It now follows from Inequality (21) that|B(S′′, θ∗)| < Γ.

Lemma 3. Suppose that(x∗, θ∗) is an optimal solution to the
LO model with maximum valueθ∗. Then,

(i) ZNI = ZLO if ZLO <
1
Γ+1Val(x∗);

(ii) ZRNI = ZLO if ZLO < θ
∗;

(iii) ZNI ≤ Val(x∗);

(iv) ZRNI = ZLO if x∗ is a maximum flow for the nominal prob-
lem;

(v) ZRNI ≤ Val(x∗) − θ∗;
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Proof. Part (i): It follows from ZLO < 1
Γ+1Val(x∗) that

Val(x∗) < (1+ Γ)θ∗. In addition, by Part (i) of Lemma 2, there
exists ans-t-cut S′ with Val(x∗) = Cap(S′, θ∗) and|A(S′, θ∗)| ≥
Γ. Therefore,

(1+ Γ)θ∗ > Val(x∗) = Cap(S′, θ∗) =
∑

e∈A(S′ ,θ∗)

θ +
∑

e∈δ+(S′)\A(S′ ,θ∗)

ue

= θ|A(S′, θ∗)| +
∑

e∈δ+(S′)\A(S′ ,θ∗)

ue,

and consequently

|A(S′, θ∗)| = Γ and ZLO = Val(x∗) − Γθ∗ =
∑

e∈δ+(S′)\A(S′ ,θ)

ue.

If the arcs inA(S′, θ∗) are removed, then the maximum flow
value in the remanning network is at most

∑

e∈δ+(S′)\A(S′ ,θ∗) ue,
which is equal to ZLO. This implies that ZNI ≤ ZLO. On the
other hand, it follows from Theorem 1 that ZLO ≤ ZNI. Hence,
we must have ZLO = ZNI.

Part (ii) : The inequality ZLO < θ
∗ holds if and only if ZLO <

1
Γ+1Val(x∗). Therefore, it follows from the previous part that
ZLO = ZNI. Moreover, by Theorem 1, we have ZLO ≤ ZRNI ≤

ZNI . This implies that ZLO = ZRNI.
Part (iii) : By Part (ii) of Lemma 2, there exists ans-t-cut

S′′ with Val(x∗) = Cap(S′′, θ) so that|B(S′′, θ∗)| < Γ. For each
e ∈ δ+(S′′)\B(S′′, θ∗), we haveue ≤ θ

∗. Therefore, if the arcs in
B(S′′, θ∗) are removed, the maximum amount of flow that can
be sent froms to t is at most

∑

e∈δ+(S′′)\B(S′′,θ∗) ue. This means
that ZNI ≤

∑

e∈δ+(S′′)\B(S′′,θ∗) ue. Hence, we can write

Val(x∗) = Cap(S′′, θ) =
∑

e∈B(S′′,θ∗)

θ +
∑

e∈δ+(S′′)\B(S′′ ,θ∗)

ue (22)

≥ θ|B(S′′, θ∗)| + ZNI , (23)

and consequently ZNI ≤ Val(x∗).
Part (iv): For ans-t-cut S and ans-t-flow x, we define

R(x,S) := min
µ∈Ω

∑

e∈δ+(S)

(1− µe)xe.

It follows from Lemma 8 in [5] that

min
µ∈Ω

f (µ, x) = min
S∈S

R(x,S).

Therefore, we can write

ZADP = max
x∈X

min
S∈S

R(x,S) ≤ min
S∈S

max
x∈X

R(x,S).

Furthermore, we know from Part (i) of Lemma 2 that there ex-
ists a cutS′ with |A(S′, θ∗)| ≥ Γ so that

Val(x∗) = Cap(S′, θ∗) =
∑

e∈A(S′ ,θ∗)

θ∗ +
∑

e∈δ+(S′)\A(S′ ,θ)

ue.

Therefore, we can write

ZADP ≤ max
x∈X

R(x,S′) = R(x∗,S′) = min
µ∈Ω

∑

e∈δ+(S′)

(1− µe)x∗e

= Val(x∗) − Γθ∗ = ZLO.

Moreover, we have ZLO ≤ ZADP by Lemma 1. This proves
ZLO = ZADP. In addition, we know ZADP = ZRNI because of
Theorem 1. Hence, we must have ZLO = ZRNI.

Part (v): If x∗ is a maximum flow for the nominal prob-
lem, then it follows from previous part that ZRNI = ZLO =

Val(x∗) − Γθ ≤ Val(x∗) − θ∗ and we are done. Hence, we as-
sume thatx∗ is not a maximum flow. Then, there exists an
s-t-cut S′′ with Val(x∗) = Cap(S′′, θ∗) so that 1≤ |B(S′′, θ∗)|
since otherwise Val(x∗) = Cap(S′′) and x∗ must be a maxi-
mum flow. Furthermore, it follows from Inequality (22) that
ZNI ≤ Val(x∗)− θ|B(S′′, θ∗)|. This shows that ZNI ≤ Val(x∗)− θ∗

since|B(S′′, θ∗)| ≥ 1.

Lemma 4. It is always true that

ZNI

ZLO
≤ Γ + 1, (24)

ZRNI

ZLO
≤ Γ. (25)

Proof. Suppose that (x∗, θ∗) is an optimal to the LO model with
maximum valueθ∗. If ZLO ≥

1
Γ+1Val(x∗), then ZLO ≥

1
Γ+1ZNI

because of Part (iii) of Lemma 3, and consequently Inequal-
ity (24) holds. Hence, we assume that ZLO <

1
Γ+1Val(x∗). This

implies that ZLO < θ
∗. Therefore, ZLO = ZNI because of Part (ii)

of Lemma 3. This establishes Inequality (24). This also shows
that Inequality (14) is true since ZLO ≤ ZRNI ≤ ZRNI by Theo-
rem 1.

We proceed to prove the validity of Inequality (25). If ZLO <

θ∗, then by Part (ii) of Lemma 3 we must have ZRNI = ZLO,
and consequently Inequality (25) holds. Thus, we assume that
ZLO ≥ θ

∗. We can write

ZRNI ≤ Val(x∗) − θ∗ = ZLO + (Γ − 1)θ∗ ≤ Γ · ZLO,

where the first inequality follows from Part (iii) of Lemma 3
and the second inequality follows from the fact that ZLO ≥ θ

∗.
This shows that Inequality (25) always holds.

Proof of Theorem 6. The validity of the bounds in (14), (15),
and (16) immediately follows from Lemmas 1 and 4. We next
provide two examples to show these bounds are all tight.

In the first example, we consider a network with three nodes
s, v, andt, and parallel arcs froms to v andv to t. There are
K parallel arcs with unit capacity froms to v andΓ + 1 par-
allel arcs with infinite capacity fromv to t (see the network in
Figure 2(a)). We letK ≥ Γ + 1. In this network, we have
ZNI = K − Γ, whereas ZRNI = ZPath

RNO = K/(Γ + 1). Therefore,
ZNI
ZRNI
=

ZNI

ZPath
RNO
=
Γ+1(K−Γ)

K . WhenK gets enough large, the bound

becomes enough close toΓ + 1. This shows the bounds in In-
equalities (24) and (15) are tight.

In the second example, we consider a network with four
nodess, v, w, andt as shown in Figure 2(b). There areK par-
allel arcs with unit capacity froms to v andΓ parallel arcs with
infinite capacity fromv to t. In addition, there is one arc from
s to v with capacityΓ · K, one arc fromw to v with capacityK,
and one arc fromw to t with infinite capacity. In this network,
we have ZRNI = K − Γ + 1, whereas ZPath

RNI = K/Γ. Therefore,
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s v t

1

1

1

1

1

K arcs with unit capacity

∞

∞

∞

∞

Γ + 1 arcs with infinite capacity

(a) ZNI = K − Γ and ZRNI = ZPath
RNO = K/(Γ + 1)

s v t

t

1

1

1

1

1

K arcs with unit capacity

∞

∞

∞

∞

K

K ·
Γ

K

Γ arcs with infinite capacity

(b) ZRNI = K − Γ + 1 and ZPath
RNI = K/Γ

Figure 2: Networks for the proof of Theorem 6. The numbers on the arcs
indicate the capacities.

ZRNI

ZPath
RNI
=
Γ(K−Γ+1)

K . WhenK gets enough large, the bound becomes

enough close toΓ. This shows the bound in Inequality (16) is
tight.

6. Approximation bounds

It follows from Lemma 4 that the optimal value of the LO
model is a (Γ+1)-approximation for ZNI and aΓ-approximation
for ZRNI. We next show that the optimal value of the LO model
also provides a good approximation for ZPath

RNI.

Theorem 7. We have

ZPath
RNI

ZLO
≤ 1+

⌊Γ/2⌋ · ⌈Γ/2⌉
Γ + 1

, (26)

and this bound is tight.

Proof. Suppose that (x∗, θ∗) is an optimal to the LO model with
maximum valueθ∗. By Parts (i) and Parts (ii) of Lemma 2, there
ares-t-cutsS′ andS′′ so that|A(S′, θ∗)| ≥ Γ, |B(S′′, θ∗)| < Γ,
and

Val(x∗) =
∑

e∈δ+(S′)

ue(θ∗) =
∑

e∈A(S′ ,θ∗)

θ∗ +
∑

e∈δ+(S′)\A(S′ ,θ∗)

ue, (27)

Val(x∗) =
∑

e∈δ+(S′′)

ue(θ
∗) =

∑

e∈B(S′′ ,θ∗)

θ∗ +
∑

e∈δ+(S′′)\B(S′′ ,θ∗)

ue.

(28)

Let a := |A(S′, θ∗)|, b := |B(S′′, θ∗)|, and L :=
∑

e∈δ+(S′)\A(S′ ,θ∗) ue. Then, it follows from (27) and (28) that
∑

e∈δ+(S′′)\B(S′′,θ∗)

ue = Val(x∗) − bθ∗ = L + (a− b)θ∗.

Now suppose that the interdictor is restricted to delete theb
arcs inB(S′′, θ∗) and the remanningΓ−b arcs inA(S′, θ∗). After
delineating theb arcs inB(S′′, θ∗), L+(a−b)θ∗ units of flow can
be pushed through the cutS′′, and thus, can reach the cutS′.
Then, in the best case, the flow player can sendL units of flow
through the arcs inδ+(S′)\A(S′, θ∗) and the remanning (a−b)θ∗

units of flow through the arcs inA(S′, θ∗). Since the interdictor
will removeΓ − b arcs inA(S′, θ∗) due to our assumption, the
flow player can send at most(a−Γ+b)(a−b)θ∗

a units of flow through
the arcs arcs inA(S′, θ∗) in a path-based formulation. In total,
the flow player can send atL+ (a−Γ+b)(a−b)θ∗

a from the sources to
the sinkt if the interdictor removes theb arcs inB(S′′, θ∗) and
the remanningΓ − b arcs inA(S′, θ∗). This implies that

ZPath
RNI ≤ L +

(a− Γ + b)(a− b)θ∗

a
.

On the other hand, we have

ZLO = Val(x∗) − Γθ∗ = L + (a− Γ)θ∗.

Therefore,

ZPath
RNI

ZLO
≤

L + (a−Γ+b)(a−b)θ∗

a

L + (a− Γ)θ∗
≤

(a− Γ + b)(a− b)
(a− Γ)a

. (29)

Notice that ifa = Γ, then ZLO = L and ZPath
RNI ≤ L, and conse-

quently Inequality (26) holds. Hence, we assume thata ≥ Γ+1.
In this case, the right hand side of Inequality (29) attaintsits
maximum whena = Γ + 1 andb = ⌊Γ/2⌋. By substituting
a = Γ + 1 andb = ⌊Γ/2⌋ in the the right hand side of Inequality
(29) , we obtain

ZPath
RNI

ZLO
≤ 1+

⌊Γ/2⌋ · ⌈Γ/2⌉
Γ + 1

.

This establishes the validity of Inequality (26). We next show
that this bound is tight.

We consider a network with three nodess, v, andt. There are
Γ parallel arcs with unit capacity froms to v andΓ + 1 parallel
arcs with infinite capacity fromv to t. In addition, there are
⌊Γ/2⌋ parallel arcs froms to v with capacityK. In this network,
we have ZPath

RNO =
(⌊Γ/2⌋+1)K
Γ+1 , whereas ZLO =

K
⌈Γ/2⌉+1. Therefore,

ZPath
RNO

ZLO
=

(⌊Γ/2⌋ + 1) · ⌈Γ/2⌉ + 1
Γ + 1

= 1+
⌊Γ/2⌋ · ⌈Γ/2⌉
Γ + 1

.

This shows that the bound in Inequality (26) is tight.
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