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Abstract
™M

=1 Network interdiction can be viewed as a game between twoepayaninterdictor and aflow player The flow player wishes to
send as much material as possible through a network, whalmtardictor attempts to minimize the amount of transpbrbaterial
by removing a certain number of arcs, dayrcs. We introduce theandomized network interdictioproblem that allows the
() 'interdictor to use randomness to select arcs to be removedmudel the problem in two fierent ways:arc-basedand path-
@ .basedformulations, depending on whether flows are defined on arpaths, respectively. We present insights into the modelin
() ‘power, complexity, and approximability of both formulat® In particular, we prove thatg/Zgni < T + 1, Zyi/ZR3 < T + 1,
ZRN|/ZEE,1}P <T, where 4, Zrni, and E,i},h are the optimal values of the network interdiction problerd &s randomized versions
N in arc-based and path-based formulations, respectivetyalbd show that these bounds are tight. We show that it is &té o
compute the valuesg{ and f,;i}f‘for a general’, but they are computable in polynomial time wHee 1. Further, we provide a

—i (I + 1)-approximation for &, al-approximation for &i, and a(1 + [I'/2] - [T'/2]/(T + 1))-approximation for E,i},“

@ Keywords: network flows, interdiction, game theory, approximation

7p]
8'1. Introduction arises when a flow must be routed before arcs are removed. In
this case, the flow player might be interested to find solstion

«— Network flows have applications in a wide variety of contextswhich are robust again any failure of arcs. Anefal. [2] and
= ‘(see, e.g./[1]). In some applications, it is useful to cdesthe  Du and Chandrasekaran [7] address this issue in a path-based
Q0O .perspective of someone who wants to restrict flows in a netformulation. They show that the resulting problem is solgab
[~ ‘work. For example, law enforcement wants to inhibit the flowin polynomial-time for the special case bf= 1, but becomes
<I" of illegal drugs. Water management experts want to controNP-hard ifl" = 2. This problem was further expanded to an
00_ flows to avoid floods. Health agencies need to protect againsirc-based formulation by Bertsimas al. [5], who introduce
(\J -contagion. Here, it is important to consider the problemrof|  the concepts of robust and adaptive maximum flows. They es-
«— 'iting flows in the network from the perspective of emerdic-  tablish structural and computational results for both theust
(Y) .tor, who is capable of limiting capacity in arcs or eliminating and adaptive maximum flow problems and their corresponding
1 ‘arcs. Such problems have been applied in many application aminimum cut problems.

- .eas such as military planning_[19], controlling infectidnsa
- 'hospital [3], controlling floods [13], protecting criticaifras-
> fructures [11, 16], and drug interdictian [17].

Our contribution. The network interdiction problem addresses
a minimax objective against a flow player, which selects adap

(G Motivated by the above mentioned applicationstwork in- tively a flow gfter (_)bserving the removed_ arcs. This problem
terdiction problem#iave been well studied in the literature (see,'€9uires the interdictor to choose a spegfige strategy We
e.g., [4/6/B[190 1d, 14, 15,20]). In this paper, we focus orPTOPOSe & new modeling framework that permits the inteodict
the basic model of network interdictionflaw playerattempts touse _randomness t_o_ choose arcs. More precisely, theimierd
to maximize the amount of materiel transported through a calo" @ssigns a probability to each pure strategy and selqisea
pacitated network, while aimterdictor tries to limit the flow ~ Stratégy randomly according to these probabilities. Werref
player's achievable value by interdicting a certain numbay the resultlng.proble.m as thandomlz_ec.hetwork |nterd|pt|on
T, of arcs. This problem is also known as fhenost vital arcs problem. This provides a more realistic model for various ap

problem (see, e.gl. [13]). Wollmér [12] presents a polyreimi plications such as protecting critical infrastructuresiagt ter-
time algorithm for solving this problem on planar graphs. On"oriSm or enemy’s attacks. We also consider a further modifi-

general networks, Wool [20] shows that the problem is stsong cation that requires the flow player to send flow on pathserath

NP-complete. ) than the more typical arc-based model. We present results on
Network interdiction can be viewed as a game between thg1e modeling power, complexity, aqd approximability of oot

interdictor and the flow player. This problem assumes theint arc-based an.d. path-based_ formulatlons. )

dictor moves first and then the flow player determines a maxi- More specifically, our primary contributions are as follows

mum flow in the remaining network. A closely related problem 1. Modeling: We introduce the randomized network inter-
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diction problem in arc-based and path-based formulationd/e refer tox. as theflow on arce. We denote the set of all
We show that the arc-based (path-based) model is equis-t-flows by X. The value Val(x) of an st flow x is the net
alent to the case where the flow player must determindlow into t, that is, Val§) := Yecs-(y Xe- In themaximum flow

an arc-based (path-based) flow through the network in adsroblem (also referred to as thheminalproblem), we seek an
vance and then the interdictor selects arcs to be removed:t flow x with maximum value Val).

This shows that randomization helps the interdictor to per- We next assume that there is an interdictor, who wants to re-
form as well as when she has perfect information of howduce the capacity of the network. Suppose that the intendist

flow is routed through the network.

2. Complexity: We present complexity results for both arc-

able to eliminatd” (1 < ' < |E]) arcs in the network. Theet-
work interdictionproblem is to find th@ arcs whose removal
from the network minimizes the maximum amount of flow that

based and path-based formulations of the randomized nefyn pe sent to the sink. To formulate this problem, we let

work interdiction problem.
model is NP-hard for a generBJ but is solvable in poly-
nomial time for a fixed", while the path-based version is
NP-hard for any fixed” > 2. ForI' = 1, we show that

In particular, the arc-based

Q= i = (e)ece € (O, | ) e =T}
ecE

both formulations become equivalent and are solvable irlenote the set of all possible scenarios, that is, the sell of a

polynomial time as a linear optimization problem.

3. Approximability: We introduce a linear optimization

subsets of" arcs. The binary variable, indicates whether or
not arceis to be removed, depending on whethgk 1 orue =
0, respectively. Givem € Q, we denote byE(u) := {e € E |

problem and show that its optimal value provides a, = 1} the set of removed arcs and Byu) := {e € E | ye = O}

tight (I' + 1)—approximation]'—approximation, andl +
LF/ZJ-F1F/21
'+

the set of available arcs after removing the arcs in the si®ena

)—apprOXimationfor the Optlmal values of the net- . We also denote b@(ﬂ) — (\/’ F(/l)) a network with arc set

work interdiction problem and its randomized versions ing ().

latter approximation guarantee } *ff) for evenl’ and is

%3 for oddT". We note that for thé& = 2 case, it guar-

antees a /B-approximation for the path-based problem,

which is NP-hard.

4. Power of randomization: We show that the interdictor can

min max Val(x)
HEQ

st XeX, ()

Xe=0 Vee E(w).

perform significantly better by using randomization. In This problem can be viewed as a two-person zero-sum game
particular, we show that the ratio of the optimal value of between an interdictor and a flow player . The set of (pure)
network interdiction to that of the randomized version is Strategies for the interdictor is given by the scenaridsethe
bounded by + 1 for both arc-based and path-based mod-set of (pure) strategies for the flow player is given by theitea
els. We also show that the ratio of the optimal value ofble setX. With respect to a flox and scenarig, we denote by
the arc-based randomized network interdiction problem td>(u, X) @ network with arc sef (1) and arc capacities. If the

that of the path-based version is bounded b\We provide
examples to show that these bounds are tight.

2. Network Interdiction asa Game

Let G = (V, E) be a directed graph withode set Vandarc
set E Each are € E has acapacity u € R, setting an upper
bound on the amount of flow on aec There are two specific
nodes, asource sand asink t W denote an are from a nodev
to anodevbye:= (v,w). We uses*(v) := {(v,w) e E |w e V}
andsé(v) = {(w,v) € E | w € V} to denote the sets of arcs
leaving nodev and entering nodg, respectively. We assume
without loss of generality that there are no arcs iatand no
arcs out oft, that is,67(s) = §*(t) = 0.

An st-flow (or simply aflow) x is a functionx : E — R,
which assigns a nonnegative value to each arc soxthat ue
for eache € E, and in addition for each nodec V \ {s,t}, the
following flow conservation constraittolds:

> % 3 %0

ec6(v) ecot (V)

interdictor chooses the pure strategyg Q and the flow player
chooses the pure strategye X, then the payfi f(u, X) of the
game is the maximum amount of flow that the flow player can
push through the network with respect to the fleif scenario

u is selected. Mathematically, the pdffunction f is given by

f(u,x) :=max Valfy)

s.t. ye kX, @
0<VYe<Xe VeeF(u
Ye=0 Vee E(u).

The interdictor aims to minimize the pajof the game and
must choose her strategy first. This provides an alternatide
equivalent formulation of network interdiction as follows

3)

n)?E?Yx f(u, X).

N = min
HeQ
This problem determines the interdictor’'s best choiceymass
ing the flow player is in a position to select a maximum flow af-
ter observing the removed arcs. In many applications, the flo
player have to make a decision before the interdictor sehemt



1 lation of flows and then turn our attention to flows on paths,
= instead of arcs. We notice that the two formulations arevequi
A lent for the network interdiction problem, but theyfer for the
00 randomized version, as shown later. Therefore, we trednhe
v formulations separately.

00

32K 3.1. Arc-based formulation

K arcs with unit capacity I’ + 1 arcs with infinite capacity

and one arc with capacity 3K A mixed(or randomizedlstrategy ovef is given by a prob-

ability distributiona : Q — [0, 1], wherea(u) is the probability
) ) ) o that strategy: is selected by the interdictor. We denote the set
Figure 1: lllustration of the dierence between the network interdiction prob-

lem and maximum adaptive flow problem. The numbers on theiadisate of a”_mlxed s_trategles O\_/@ by A(Q) We extend the payb
the capacities. function to mixed strategies by defining

fa, X) = Za(ﬂ)f(ﬂ, X) Va € A(Q), X € X.

strategy. Here, the flow player might be interested in those s s

lutions that are robust against any possible scenario.|&ads
to the following problem, referred to as thdaptive maximum The valuef (o, X) represents thexpectecpaydf of the game if
flow problem: the interdictor chooses a mixed strategg A(Q2) and the flow
player selects a pure strategy¢ X.

Given a mixed strategy, the flow player aims to find a
flow with maximum expected value. The interdictor wishes to
This problem is introduced by Bertsimasal. [S], who estab-  choose a mixed strategy to minimize this value. Thereftie, t

lish structural properties and complexity results for tebp  interdictor deals with the following problem:
lem. In particular, they show that the adaptive maximum flow

problem is NP-hard using a reduction from the network inter- Zrni i= Min max f(a, X). (5)
diction problem. ecA(Q)  xeX

Note that Zpp < Zy; and the equality may not be attained
in general. To compare theftBrence between the network in-
terdiction problem and the adaptive maximum flow problem,
we consider a network with three nodgsv, andt as shown
in Figure [1). There ar& arcs with unit capacity and one

Zapp ;= max min  f(u, X). 4)
xeX — ueQ

We refer to this problem as tmandomized network interdiction
problem.

We next show that gy = Zapp. This shows that random-
ization permits the interdictor to perform as well as whea sh

arc with capacity 32K from s to t and there ard + 1 arcs has perfect knowledge of the flow player’s choice. To prove

L o ; this, we allow the flow player to select a flow randomly. It is
th infinit ty f tot. Letl’ > 2andK b h :
ViEh intinite capactty tromv 1o el = can © en5?<ug well known from game theory (see, e.@.,/[18]) that if bothypla

large. Itis easy t_o Z?ﬁ)t?it)ﬂ— K-1, vv_h|Ie ZADP = 205D ers select their strategies randomly, then there existgaitile
Hence, Zi/Zaop = =5, and the ratio the becomes close (jm: that is, no matter which player selects her strategy, fir

to 2" + 1)/5 whenK gets large. An interesting question is: 4 gne has an incentive to change her mixed strategy. Notice
How large can £i/Zaop be in general? We will show later that 4t the set of pure strategies for the flow player is an irginit

this ratio is bounded by + 1 and this bound is tight. set. Here, a mixed strategy is given by a finite distributivero
X. In fact, arandomstrategy ovewX is a probability distribu-
3. Randomized network interdiction tiong : X — [0, 1] with finite support, that is, it only assigns a

non-zero value to a finite number sft-flows. The valugd(x)

In the network interdiction problem, the interdictor goestfi  gives the probability that the flowis selected. We denote the
and determinek arcs to be removed. The flow player observesset of all mixed strategies ovafby A(X).
the set of removed arcs and determines a flow to be sent throughyye extend the paybfunction f to mixed strategies for both
the remaining network. In this case, the flow player has comp|ayers by defining
plete knowledge of the interdictor’s behavior. Our goalds t
make the interdictor more powerful and make the flow playerg, g) .= Z Z WP, X)  Va € AQ), B € AX).
weaker. To achieve this, we allow the interdictor to use ran- 120 xeXB>0
domness to decide which strategy to play. More precisety, th
interdictor assigns a probability to each pure strategy,then  The valuef(a, 8) gives the expected paffmf the game if the
randomly selects a pure strategy according to the protiabili interdictor chooses a mixed strategyand the flow player se-
The flow player does not see the interdictor’s strategy, but 0 lects a mixed strategy. If the interdictor chooses a pure strat-
serves a probability distribution of how the interdictociiies  egyu and the flow player chooses a mixed stratégwe denote
to select arcs. the expected paybby f(u,8) ‘= Y yexs9-08(X) f (i, X).

In what follows, we formally define the randomized network
interdiction problem. We first focus on the arc-based formu-Theorem 1. Zgni = Zapp.

3



Proof. The result follows from the following observations: Otherwise, we will have maf0, 1 — Y ..p e} = 0, and then the
. . flow on pathP does not contribute to the valgéu, X).
Zpni = Min- max f(a, X) = min - max f(a.p) (6) We present an alternative, but equivalent, formulatiorhef t

A X AKX . -
aeal@) e ) pe ( : network interdiction problem as follows:
= max min f(a,B) (7
pEnl) a=al®) ZPah-— min max  g(u, X) (10)
= max min f(u,p) (8) NI eq xeds o
BeA(X) peQ

=max min f(u,X) = Zapp. (9)  We now consider the case where the flow player has to choose
xeX  peQ a flow up front before the interdictor chooses her strategy. |

The second equality in Equatiofd (6) holds since the ffayo this situation, the flow player addresses the following peob
function f(e, X) is concave inx and the pure strategy s&tis Path . .
convex. ZADP T [(2)?:( r/]llgl;] g(ﬂ’ X)' (11)
The equality in Equatiori{7) follows from the well-known o )
Wald’s Minimax Theoren [18] due to the fact that pure strgteg 1hiS problem is introduced by Anejgt al. [2], who study the

setQ is finite. case where only one arc is permitted to be removed. They show
Furthermore, the equality in Equatid (8) holds since that the problem is solvable in polynomial time in this spéci
case. Later, Du and Chandrasekaran [7] show that the problem
min f(a,8) = min f(u, ) is NP-hard for if two arcs can be removed. Bertsiragaal. [S]
aeA@) peQd examine the problem in a general setting and propose approxi
for a fixeds € A(X) due to the fact tha is a finite set. mation approchaes to obtain near optimal solutions.

It remains to prove the validity of the first equality in Equa- We next assume that the interdictor uses randomness td selec

tion (@). For a fixeck € X, we define Avalg) := min.co f(u, X) arcs to be deleted. This leads to the following problem rrete
. ) L HE il . . - . s .
This function is concave ir. Hence, the first equality in Equa- 1 @S therandomized network interdictioproblem in thepath-
tion (9) holds. This completes the proof of the theorem. [J based formulation
Path.__ H
3.2. Path-based formulation Zeni = min, max > a(u)9g(u, X). (12)
u
So far, we have considered flows in an arc-based formulation.
We next focus on an alternative formulation of flows, in which Theorem 2. zPath = ZPath

RNI ADP"
the flow player must specify paths on which to route the mate- _ ) )
rial. This leads to a dierent model for the randomized network Proof. The flow player does not benefit by choosing a mixed

interdiction problem. strategy because the pdféunction g(u, ) is linear inx and
Let # denote the set of a-t-paths (i.e., paths fromtot).  the setof pure strategie is convex. The proof now follows
For P € , we writee € P to indicate that are ¢ E lies onP.  in asimilar way as in the proof of Theoréh 1. O

An st-(path-based) flow is a function: £ — R, that assigns

CE(] ; . H Path
a nonnegative value to each path so that the total flow on each Problenjs[(B).an : 0) are equivalent; that isy & Zy™,

i . Since the interdictor first chooses arcs to be removed amd the
arc does not exceed the capacity of the arc, that is,

the flow player solves a maximum flow problem in the remain-
ing network. But this situation becomedidrent for the ran-

< . : . .
Xp = e veck domized version. To see thefidirence between the arc-based
PepP.ecP : i i
and path-based formulations, we refer to the network in Fig-
The value ofx is the sum of the flows on the paths, i.e., urell. In this network, &' = £, while Zeni = 5255 Thus,
Val(x) = Ypep Xp. We useXp to denote the set of ait-path- 7y /zRah = 2 for ' > 2. We will show that this ratio is
based flows. bounded by and this bound is tight. Fd? = 1, we will show

Notice that the flow on patR cannot reach the sink if some jn the next section that the two formulations are equivaert

arc in P is removed. In particular, if the interdictor selects the gne can compute an optimal mixed strategy in polynomiaétim
strategyu and the flow player chooses a flone Xp, then the

aydf of the game is given b
pay J 9 Y 4. Complexity results

9. %) 1= Pzeq;max{o, 1 ;#Q}XP In this section, we investigate computational complexity o
the randomized network interdiction problem. By Theoréins 1
This function difers from the arc-based functidn defined in ~ and2, we know &ni = Zapp and 22" = ZRal  respectively.
Equation[[2), because flows are not permitted in this vergion Thus, complexity results for computingsgr and i‘g‘,‘; carry
be routed. The valug(u, X) gives the amount of flow that can over Zzy; and i},h respectively.
reach the sink if the the arcsjnare removed. We pointoutthat  Bertsimaset al. [5] formulate the adaptive maximum flow
if no arc in a pathP is removed, then md0,1 - > .pue} =1  problem as a linear optimization problem with exponentiall

and the flow on patPR is counted in computing the valaéu, x). many variables and constraints. WhEns fixed, the linear



optimization problem has polynomial many variables and conproblem, the above problem can be written as follows:
strains, and thus can be solved in polynomial time. But, in
general, they show that the adaptive maximum flow problem iZgy; = ZE",’{H‘ =min Z UgPe
strongly NP-hard by a reduction from the network interdioti ecE
problem. Thus, we have the following theorem. st petae+my—my>0 Ve=(v,w)e€E,
- s =1,
Theorem 3. For a fixedI', the value &y, can be computed in
polynomial-time as a linear optimization problem. For a gen Z ae=1
eral T, it is strongly NP-hard to computexrg. o<k
e, pe >0 VeekE.

As mentioned already before, Du and Chandrasekaran [7] (13)
show that computing 21 is NP-hard even for the case that
the interdictor is able to remove only two arcs. This leadb#o
following hardness result.

Therefore, one can determine an optimal mixed strategy by
solving this linear optimization problem. This completas t
proof of the theorem. O

Theorem 4. The randomized network interdiction problem in
the path-based formulation is NP-hard for any fixed 2. 5. On the power of randomization

We next show that one can compute the optimal value of the |n this section, we provide tight bounds on the ratio of the
randomized network interdiction problem in both arc-bamedi  optimal value of the network interdiction problem to thatar-
path-based formulations in polynomial-time if the intétdr is  domized versions. In particular, our main result is thedieihg
capable to remove only one arc. theorem.

Theorem 5. If T' = 1, then Zy = 222" and an optimal mixed Theorem 6. Itis always true that
strategy can be computed in polynomial-time.

Ly 1, (14)
Proof. For the case of = 1, a mixed strategy for the inter- ZZRN'
dictor corresponds to assign a nonnegative value to eachsarc PNa'm <T'+1, (15)
the probability of removing that arc. More precisely, theafe Zeni
mixed strategies for the interdictor is given by the unit sliex ZRrNi < (16)
A of dimensionE]|, that is, z;?\ﬁl -
A= {a = (Qe)eck | Z e =100 > 0}. and these bounds are tight.
ecE

To prove this theorem, we require several lemmas. The core

Note that the flows on cycles are supposed to be zero sinc¥ the our analysis is based on the following parametricaine

the flows on cycles do not contribute to the flow value. As goptimization problem:
results, if the flow player chooses a flowino matter in the arc-

based or path-based formulation) and the interdictor esdiol Zio(f) ==max Vale) - 1'¢

remove are, then the amount of flow reaching the sink will be s.t. Z Xe — Z Xe=0, VYveV\{st},
ec6*(v) ec6(v)
Val(x) — Xe. 0<Xe<U,, VYeeckE,
Xe <6, VeeE.
Hence, if the interdictor chooses a mixed strategyA and the (17)
flow player chooses a flow € X, the paydf function is given
by We let Z o := maxso ZLo(6) and refer to the latter problem as
the LO model. This model is examined by Bertsineasl. [S]
f(a, x) = Z ae(Val(X) — xe) = Val(x) — Z XeXe. to find approximations for Problenid (4) ahdl(11). They demon-
ek ek strate the ability of the LO model for obtaining good solaso

in a computational study.
Therefore, Problem&)(5) arld {12) can be simplified as folows  We first show that the optimal value of the LO model gives a
lower bound on Z3" Zgy, and Zy.

Zrn = 2PN = min maxVal(x) — - Xe.
RNI = Zgyi = Min- maxVal(x) ;“e Xe Lemma 1. We have

Path
By considering the dual problem of the inner maximization Zio < Zpy\ < Zrni < 2. (18)
5



Proof. By Theoremd 1l andl2, we knowgrgy = Zapp and Lemma 2. Suppose thafx*, §*) is an optimal solution to the
zPath— ZPath ' respectively. Thus, it dfices to show that LO model with maximum valug (i.e., if there are multiple

optimal solutions, the one with the largest valtias selected).
Zio < ZR3 < Zapp < Zni. _ _
(i) There exists an s-t-cut’So that
Here, the first inequality from the right is immediate since
Val(x') = Cap(S’,6") and |A(S,60%) >T.

Zppp = max mg] f(u,X) < m|n max f(u,X) = Zny.
€.

(i) There exists an s-t-cut’Sso that
The second inequality is intuitively straightforward besathe
flow player in Probleni{11) is more restricted than Problgjn (4 Val(x) = Cap(S”,6") and  [B(S”,6") <T.
Therefore, it remains to prove @ < ZRh. We assume
that the optimal value of the LO model is strictly positivace  Proof. For eache > 0, we have
otherwise the statement is trivial. Let*(6*) be an optimal

solution for the LO model andxf)eep be an arbitrary path- Z0(6") = Zio(6" — ), (20)
decomposition ok*. It is suficient to prove that Zio(0") > Zio(6" + ), (21)
Zio =Val(X)-TF < min g(u, X). (19)  since &, 6*) is an optimal solution with maximum valég. In
Hee addition, there exists ast-cutS’ which is a minimum cut with
To this end, we show that there exizarcs, say, . . ., er, with ~ respectto arc capacitiegs”) and arc capacities(6” — €) for a
X5, =...= X5 = 6" such that at most one of them lies on eachvery smalle > 0. More precisely, it is enough to choos@&s
pathP with x. © > 0. Suppose, by contradiction, that there are afollows:

mostk (k < F) arcsey, ..., e with xg, = ... = x5 = 6" suchthat 1
each pattP with X, > 0 contains at most one of these arcs. This € = ;= T min{Cap, ¢') — Val(x’) | Cap®, ¢") - Val(x) > 0}.
implies that there ark flow-carrying path$,, . . ., Px such that

each are with x¢ = 6" lies on one of these paths. Therefore, we can write
We now define a new solutiorx,©) for the LO model by
settingd := ¢ — e andXp = X5 — ¢, if P = Py,..., P and Zo(0") = Cap@',6") - I'6",

p = X, otherwise. The: is strictly positive and is chosen Zio(0" —€) = Capl',0" —€) —T(6" — €)
small enough to ensure th@lpcp.ecp Xp < 6. The objective
function value of the LO model forx(6) is

ZXP—FQZ Z Xp+zk:Xp—F9

= Z Ue + Z (6" —€)—T0" +Te
ecS\A(S".,6") ecA(S',0)
= Cap®’,6") — lA(S',6)| - T6" + Te.

Pep PeP\(Py,...P} i=1 It then follows from Inequality[(20) thdA(S’, 8*)| > T.
k We prove the second part of the lemma by a similar argu-
= Z (>(k -6 —I(0" - ¢) ment. There exists agt-cutS”, which is a minimum cut with
PeP\(Py...P} respect to arc capacitiegd*) and u(¢* + ¢) for a very small
= Z X —T6" + (F K)e > Z X5 —T6". e > 0. Therefore,
Pep Pep
Z,o(0) = Cap§”.0") - T'e",
This contradicts with the optimality ofx{, "), which proves ZLo(6" + €) = CapB”, 6 + €) —T(6" + €)
the validity of Inequality[(IB). This completes the prooftbé Yo Y )
lemma. ] = Capg”,0") + €|B(S",0")| - T0" —Te.

In what follows, we exploit structural properties of the LO It now follows from Inequality[(211) thaB(S”, ") < T -
model that are needed for the proof of Theokém 6. We first giv
some basic definitions and notation. Aft-cutis defined as a
subsetS C V of nodes withs € S andt € V \ S. Thecapacity
Cap@) of S is defined as the sum of the capacities of the arcs (i) zy, = 2,0 if Z,0 <
going fromS to V \ S, that is, Capg) = Yecs+(s)Ue- Here B _
and subsequently; (S) denotes the set of ares= (v, w) with (i) Zrni=Zioif Zio < 67
ve Sandwe V\ S. We useS to denote the set of a#+t-cuts. (i) Zyn < Val(X);

For a given valu® > 0, we letug(6) := min{ue, 6}, and we let NE= :

Cap,6) = Yees(s) Ue(8) denote the capacity of the cut with (i) Zgy = Z,o if x* is @ maximum flow for the nominal prob-

% emma 3. Suppose thatx*, %) is an optimal solution to the
LO model with maximum valuwg. Then,

F+1Va|(X*)

respect to the arc capacitia®). We letA(S, 6) denote the set lem:;
of all arcse € §*(S) with 6 < ue, and we letB(S, 6) denote the
set of all arcee € 6*(S) with 6 < Ue. (V) Zrni < Val(x?) - 67,



Proof. Part @): It follows from Zo < WllVaI(x*) that  Moreover, we have & < Zapp by Lemmall. This proves

Val(x*) < (1 +I')g*. In addition, by Partl{i) of Lemm@ 2, there Z, o = Zapp. In addition, we know Zpp = Zgn because of

exists ars-t-cut S’ with Val(x*) = Cap§’, 6*) and|A(S’,6%)| >  Theorenill. Hence, we must havexZ= Zgn;.

I'. Therefore, Part [@): If x* is a maximum flow for the nominal prob-
lem, then it follows from previous part thatrdy = Z o =

(1+T)e" > Val(x') = Cap§',¢") = Z 6+ Z Ue  Val(x) — I'9 < Val(x*) — ¢ and we are done. Hence, we as-

SAS ) eI SNASY) sume thatx* is not a maximum flow. Then, there exists an
= 0|A(S’,0")| + Z Ue, st-cut S” with Val(x*) = Cap§”, 6*) so that 1< |B(S”, 8")|
ees+(S)VA(S'.67) since otherwise Val{) = Cap@”) and x* must be a maxi-

mum flow. Furthermore, it follows from Inequality (22) that
Zyn) < Val(xX*) —6|B(S”, 8%)|. This shows that i < Val(x*) — 6"

AS.6) =T and Zo=Val(x)-T¢"= >  u. SNcelBE"6)=1. =
ecs* (SNAS',6)

and consequently

Lemma4. Itis always true that

If the arcs inA(S’, 6") are removed, then the maximum flow Zui

value in the remanning network is at maggl.s«(s/y\as'¢) Ues 7 <I'+1, (24)
which is equal to Zo. This implies that & < Z,o. On the L0
other hand, it follows from Theorel 1 thatg < Zn;. Hence, @ <T. (25)
we must have o = Zy;. Zio

Part (i) : The inequality Zo < ¢* holdsifand only if Z¢ <
==Val(x*). Therefore, it follows from the previous part that
Z,o = Zni. Moreover, by Theoreil 1, we haveZ < Zgni <

Zy;. This implies that Zo = Zgn-
r+1

Part (i) : By Part [i}) of Lemmal2, there exists aht-cul jpjiesthat 7o < 6. Therefore, Zo = Zy because of Paitlii)
S Wlth Yal(x )”: (;:ap@ -0) so thaEB(S 0l < [ For each of Lemmé&3. This establishes Inequalify}(24). This also show
ee 67 (S")\B(S”, 6"), we havale < g*. Therefore, ifthe arcsin that Inequality[T4) is true sinca.d < Zmwi < Zrn by Theo-
B(S”, 6*) are removed, the maximum amount of flow that canam.
be sent froms 1o tis at MOStYecy+(s7)\g(s” o) Ue- THIS MEANS  \yie hroceed to prove the validity of Inequalify(25). FZ<
that Zu < Ylecs(s)\8(s7.0r) Ue- HENCE, We can write ¢*, then by Part[{i) of Lemm&l3 we must havend = Zio,

o o and consequently Inequality (25) holds. Thus, we assunte tha
Val(x’) = Cap§”.6) = Z 0+ Z e (22) Zi o > 6. We can write

Proof. Suppose that¢, §) is an optimal to the LO model with
maximum value?*. If Z o > Val(x’), then Zo > 52
because of Parf{jii) of Lemnid 3, and consequently Inequal-

ity @4) holds. Hence, we assume thabZ< ==-Val(x*). This

«BE 0)  ecst(SNBS".H)
> 6|B(S”,6")| + Z, (23) Zrni < Val(X) - 0" =Zio+ (T - 1) <T-Zo,
and consequentlyyf < Val(x"). _ where the first inequality follows from PaffJiii) of Lemnia 3
Part (iy): For ans-t-cutS and ans-t-flow x, we define and the second inequality follows from the fact thayZ 6"

. This shows that Inequality (25) always holds. O
ROGS) = min > (1o ALALES) alway

ecs*(S) Proof of Theorerhl6The validity of the bounds il (14}, (1L5),
and [16) immediately follows from LemmBs 1 dnd 4. We next

It follows from Lemma 8 in|[5] that ! )
provide two examples to show these bounds are all tight.

min f(u, X) = minR(x, S). In the first example, we consider a network with three nodes
HEQ SeS
s, v, andt, and parallel arcs froms to v andv to t. There are
Therefore, we can write K parallel arcs with unit capacity frormto v andT" + 1 par-
allel arcs with infinite capacity from to t (see the network in
Zapp = Max min R(x, S) < min max R(x, S). i '
app = Max min R(x, S) < min max R(x, S) Figure[2(@). We leK > I' + 1. In this network, we have

Zn = K - T, whereas &n = ZR30 = K/(T + 1). Therefore,
Furthermore, we know from Paft (i) of Lemmh 2 that there ex-Zw _ Zm _ F+1ﬁ<—r)_ WhenK gets enough large, the bound

H 7\ ’ ZgnNi ZPath
Ists a cuS” with |A(S', ")) = T so that becomeRsNoenough closelo+ 1. This shows the bounds in In-
Val(x*) — Caps/, 0*) — Z o + Z Ue. equalitiesm) and:(j.5) are t|ght - .
ecAG 0) ecs* (SIAS' ) In the second example, we consider a network with four
_ nodess, v, w, andt as shown in Figurg 2(p). There afepar-
Therefore, we can write allel arcs with unit capacity frorato v andr parallel arcs with

infinite capacity fromv to t. In addition, there is one arc from
sto v with capacityl” - K, one arc fromw to v with capacityK,
and one arc fromv to t with infinite capacity. In this network,
= Val(x") -T¢" = Z,0. we have Zy = K — T + 1, whereas 22" = K/T". Therefore,

Znop < MaxR(x, S') = R(X*,S’) = min Z (1- )X
xeX HEQ ecot(S)



a

)

1
K arcs with unit capacity

(@) Zv = K-Tand Zn

T + 1 arcs with infinite capacity

K/(T + 1)

_ 7Path _
- ZRNO -

K arcs with unit capacity

(b) Zrni = K - T+ 1and 3= K/T

T arcs with infinite capacity

Figure 2: Networks for the proof of Theorelh 6. The numbers han drcs
indicate the capacities.

Zrni _
Path —
Zgni

enough close td. This shows the bound in Inequalify_{16) is
tight. O

6. Approximation bounds

It follows from Lemmal4 that the optimal value of the LO
model is a['+1)-approximation for &, and al"-approximation

for Zgrni. We next show that the optimal value of the LO model

also provides a good approximation fd§ag.

Theorem 7. We have

zen L[/2] - [T/2]
ZLOs1+ = (26)

and this bound is tight.
Proof. Suppose that(, ) is an optimal to the LO model with

maximum value*. By Parts[{i) and PartEii) of Lemnia 2, there

arest-cutsS’ andS” so that|A(S’,6%)| = T, |IB(S”,6)| < T,
and

Val(x¥)= > uge) = 0 + Ue, (27)
es6*(S) ecA(S,6%) ecst (S)\A(S,6%)
Val(x") = Z Ug(6") = o0+ Ue.
6" (3") ecB(S" 67 ees*(S")\B(S" 6")
(28)
Let a = |AS,69), b = |B(S”,6"), and L :=

Yecs+(S)\AS 67 Ue- Then, it follows from[(2V) and (28) that

Ue = Val(X*) — bo" = L + (a— b)¢".
ecs+(S")\B(S”.,6%)

Now suppose that the interdictor is restricted to deleteithe
arcs inB(S”, 6*) and the remanning—b arcs inA(S’, 6*). After
delineating thé arcs inB(S”, %), L+ (a—b)#* units of flow can
be pushed through the c8t’, and thus, can reach the cst
Then, in the best case, the flow player can senmnhits of flow
throughthe arcs i6*(S")\ A(S’, 8*) and the remanning{ b)o*
units of flow through the arcs iA(S’, 6*). Since the interdictor
will removeT — b arcs inA(S’, 6*) due to our assumption, the
flow player can send at moé’i‘t‘”'ﬁ‘ﬂ units of flow through
the arcs arcs iA(S’, §%) in a path-based formulation. In total,
the flow player can send &t EDEDY from the sourcesto
the sinkt if the interdictor removes the arcs inB(S”, %) and
the remannin@ — b arcs inA(S’, 6°). This implies that

(a-T +b)(a- b)e*
- .

ZRah< |+
On the other hand, we have

Zio = Val(x) -T¢ = L + (a-T)¢".

Therefore,
Zah L4 &EEDE 1o p)a-b) (29)
Zio L+(@-De ~ (@-Da -

T+ whenk gets enough large, the bound becomes  Notice thatifa = ', then Zo = L and Za'< L, and conse-

quently Inequalityl(Z6) holds. Hence, we assume étafl" + 1.
In this case, the right hand side of Inequallfy](29) attaitsts
maximum whenma = I' + 1 andb = [I'/2]. By substituting
a=TI+1andb=[I'/2]inthe the right hand side of Inequality
(29) , we obtain

Zewt o, W/2)-10/2)

ZLO - r+1

This establishes the validity of Inequalify {26). We nexbwh
that this bound is tight.

We consider a network with three nodgs, andt. There are
I" parallel arcs with unit capacity fromito vandrl” + 1 parallel
arcs with infinite capacity fronv to t. In addition, there are
L['/2] parallel arcs fronsto v with capacityK. In this network,

we have 30 = (2K whereas Zo = 5. Therefore,
ZRRo _ (Ir/21+1)-1r/21+1 14 [I'/2]-11/2]
Zo r+1 r+1 '
This shows that the bound in Inequalify{26) is tight. O
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