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ABSTRACT. We study the problem of scheduling asynchronous round-robin
tournaments. We consider three measures of a schedule that concern the
quality and fairness of a tournament. We show that the schedule generated by
the well-known “circle design” performs well with respect to all three measures
when the number of teams is even, but not when the number of teams is odd.
We propose a different schedule that performs optimally with respect to all
measures when the number of teams is odd.

1. Introduction

A round-robin tournament, also known as an all-play-all tournament, is a pop-
ular format for organizing sports competitions. In a round-robin tournament, every
pair of teams play each other a fixed number of times during the competition. Since
every team competes with every other team, the winner of a round-robin tourna-
ment is usually thought to depend much less on luck than that of, say, a knockout
tournament. A series of work has investigated how to schedule a round-robin tour-
nament when different notions are central to the organizers’ consideration. One line
of research has focused on time-relaxed tournaments, which takes into account the
issue of time off between games involving the same team [7} [8, 1], while another
has considered fairness issues [3, 4], 12, [I4]. We refer the interested reader to a
survey by Rasmussen and Trick [9] and a book by Anderson [I] for more detail on
the literature.

In this paper, we study the problem of scheduling asynchronous round-robin
tournaments, i.e., round-robin tournaments in which no two games take place at the
same time. There are a number of reasons why it might be desirable to schedule all
games at different times. Indeed, this tournament format allows spectators to follow
all the games live, and the organizers can maximize revenue while having to organize
the same number of games. Tournaments may even need to be asynchronous if there
is only one venue where a game can take place. An example of an asynchronous
round-robin tournament is the 2012 Premier League Snooker in England, in which
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five players in the group stage play a total of ten games in ten different weeks (albeit
in ten different venues as well).

When scheduling an asynchronous round-robin tournament, the organizers may
desire properties that improve the quality and fairness of the tournament. Unlike in
knockout tournaments, where the organizers can significantly impact the outcome of
the tournament by setting up a bracket of their choice (see, e.g., [6, 13]), the set of
games to be played in a round-robin tournament cannot be changed. Nevertheless,
the order in which the games are played can still be an important factor in a round-
robin tournament. For example, when teams have a longer rest between games, they
are more likely to have a relaxing rest and perform at their full potential in the
next game. On the other hand, if some team has a long rest going into a game
while its opponent has just played its previous game, the former team could be at
a clear advantage. Another desirable property of a schedule is that at any point
during the tournament, all teams should have played roughly the same number of
games. This prevents the advantage of knowing too many results involving other
teams and the possibility of collusion as well. We define measures that capture all
of these properties, and we exhibit schedules that perform (close to) optimally with
regard to our measures. In particular, we show that the schedule generated by the
well-known “circle design” performs well with respect to all three measures when
the number of teams is even, but not so well when the number of teams is odd. We
also propose a different schedule that performs optimally with respect to all three
measures when the number of teams is odd. We hope that this schedule will be of
practical interest to organizers of asynchronous round-robin tournaments.

A related problem that is worth mentioning is the problem of finding balanced
tournament designs, which has been considered by some prior work [2], [5, 10]. In
the setting of balanced tournament designs, it is assumed that there exist external
factors that make some games different from others, and it is desirable that teams
receive roughly the same effect from these external factors. For instance, the tour-
nament might involve games during different times of the day or at different venues.
Since some teams might be more familiar with playing in the morning than in the
evening or with playing at one venue than another, the aim of a balanced tour-
nament design is to eliminate or minimize the potential advantage by scheduling
teams to play as evenly across the different times and venues as possible. On the
other hand, in our setting there is no inherent difference between games. Indeed,
a good example to keep in mind throughout this paper is that the games in the
tournament are scheduled on consecutive days, one game per day, at a single venue.

A summary of our results can be found in Table[]l

2. Preliminaries

We assume that the tournament in consideration is a single round-robin tour-
nament, i.e., every pair of teams play each other exactly once. As we will mention
in Section 5] however, several of our results can be generalized to arbitrary round-
robin tournaments as well.
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Circle method, | Any schedule, | Circle method, | Any schedule,
n even n even n odd n odd
Guaranteed rest time | (n —4)/2 <(n—-4)/2 | (n—5)/2 <(n—-3)/2
Games-played differ- | 1 >1 2 >1
ence index
Rest difference index |1ifn=4;2if|>1 (n+1)/2 >1
n=>6

TABLE 1. Summary of our results. All bounds are known to be
attainable except that for the rest difference index when n is even.
See also Section [f] for further discussion.

Let n denote the number of teams in the tournament. We divide the games in
the tournament into r rounds of g games, where the first round comprises the first
g games, the second round the next g games, and so on. The parameters r and g
depend on n and are given by

n
-2

SR

A team is said to play in slot ¢ in a round if it plays the ith game of that round. We
emphasize that in asynchronous tournaments, rounds do not carry any particular
meaning in the implementation of the tournament and are defined merely for the
sake of convenience of our analysis.

if n is odd;

if n is even.

n(n—1)

A single round-robin tournament consists of (g) = —5— games. Each team

plays n — 1 games, and we have the identity

o= (o [5]-1) ] - 2552

A well-known method for scheduling a round-robin tournament, described for
instance by Haselgrove and Leech [5], is called the circle design. The method works
as follows. Assume first that n is even. We arrange the teams into two rows of n/2
teams in such a way that the two rows align team by team. The games in the first
round correspond to the pairs of teams that are aligned in this arrangement. For
asynchronous tournaments, we read the games from left to right. To generate the
games in the next round, we keep the top-left team fixed and rotate the remaining
teams one step counterclockwise. (It is also possible to rotate the remaining teams
one step clockwise, but this results in the same schedule as rotating counterclockwise
under appropriate renaming of the teams.) We perform the rotation n — 2 times
to generate the games in all n — 1 rounds. If n is odd, we simply pretend that
the top-left team is a dummy team, and whichever team is matched to that team
“sits out” the round (i.e., gets a bye in that round). The first three rounds for the
tournaments with n = 10 and n = 11 are shown in Figures [l and 2] respectively.
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1 2 3 45 1 10 2 3 4 19 10 2 3
10 9 8 7 6 9 8 7 6 5 8 7 6 5 4
FIGURE 1. The first three rounds generated by the circle design
for a tournament with n = 10.

1
10

2 3 4 5 11 1 2
9 8 7 6 9 8 7
FIGURE 2. The first three rounds generated by the circle design
for a tournament with n = 11. Note that one team “sits out” each

round (i.e., gets a bye in that round).

We now define three measures of a schedule for an asynchronous tournament
that concern the quality and fairness of the tournament. The first measure, guar-
anteed rest time, considers the minimum amount of time that the schedule allows
teams to take a rest before their next game.

DEFINITION 2.1. The guaranteed rest time of a schedule for an asynchronous
tournament is the maximum integer b such that in the schedule, any two games
involving a team is separated by at least b games not involving that team.

A schedule with a high guaranteed rest time is desirable, as it allows teams
to take a long rest and prepare themselves for the next game. The higher the
guaranteed rest time, the more likely we will see teams perform at their full potential
in the tournament.

The next two measures, the games-played difference index and the rest differ-
ence index, reflect the fairness of the schedule.

DEFINITION 2.2. The games-played difference index of a schedule for an asyn-
chronous tournament is the minimum integer p such that at any point in the sched-
ule, the difference between the number of games played by any two teams is at
most p.

It is evident that for any tournament with at least three teams, the games-
played difference index is at least 1. A schedule with a low games-played difference
index ensures that all teams have played roughly the same number of games at any
point during the tournament. This prevents the advantage that some teams may
have if they know the results of too many games involving other teams. Indeed,
with this knowledge the teams can adjust their strategy to achieve their desired
position in the tournament and may even conspire with one another to do so.

DEFINITION 2.3. The rest difference index of a schedule for an asynchronous
tournament is the minimum integer d such that for any game in the schedule, if one
team has not played in 4; consecutive games since its last game and the other team
has not played in is consecutive games since its last game, then |i; — is| < d. (To
handle the situation in which a team is playing its first game in the tournament,
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we will assume that all teams are involved in an imaginary game that takes place
one slot before the first game of the schedule.)

It is again evident that for any tournament with at least three teams, the rest
difference index is at least 1. A schedule with a low rest difference index guarantees
that the two teams involved in a game have approximately the same amount of rest
time going into the game.

3. Even number of teams

In this section, we assume that the tournament in consideration consists of
an even number of teams. We will show that under this assumption, the schedule
generated by the circle design fares extremely well with respect to all of the measures
introduced in Section[2l Since the round-robin tournament with two teams consists
of a single game, we will only consider n > 4.

We begin by showing that an upper bound on the guaranteed rest time.

PROPOSITION 3.1. Let n > 4. Any schedule for a tournament with n = 2k
teams has guaranteed rest time at most k — 2.

PROOF. Assume for the sake of contradiction that the guaranteed rest time is
at least k£ — 1. This means that all teams play at most once in any k consecutive
games. Since there are 2k teams, each team plays exactly once in the first round.
Hence the first game in the second round must involve the same two teams as the
first game in the first round, a contradiction. O

Next, we analyze the schedule generated by the circle design.

PROPOSITION 3.2. Let n > 4. The schedule generated by the circle design for
a tournament with n = 2k teams has guaranteed rest time k — 2, games-played
difference index 1, and rest difference index 2 if n > 6 and 1 if n = 4.

PrOOF. We verify each of the measures separately.

e Guaranteed rest time: Note that each team plays exactly once in every
round. Since the slot of a team is shifted by at most 1 from one round
to the next, and each round consists of k slots, the team has a rest of at
least k — 2 games. On the other hand, a team whose slot is shifted to the
left has a rest of exactly & — 2 games.

o Games-played difference index: Since each team plays exactly once in
every round, all of the teams have played the same number of games at
the end of each round. It follows that the index is 1.

o Rest difference index: One can directly verify that the index is 1 if n = 4.
Assume now that n > 6, and consider the second slot in the second round.
One of the teams in that slot is shifted from the third slot in the first round
and the other team from the first slot in the first round. Hence the index
is at least 2. On the other hand, the slot of a team is shifted by at most
1 from one round to the next, so the index is exactly 2.

Thus we have verified all of the measures. O
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Propositions B and together imply that the schedule generated by the
circle design has an optimal guaranteed rest time and an optimal games-played
difference index. Moreover, the rest difference index can be improved by at most
1. We now show that unless n = 4, it is impossible to simultaneously obtain
a guaranteed rest time of k — 2 and games-played difference and rest difference
indices of 1.

THEOREM 3.1. Let n > 6. No schedule for a tournament with n = 2k teams
has guaranteed rest time k — 2, games-played difference index 1, and rest difference
index 1.

PRrOOF. Assume for the sake of contradiction that such a schedule exists. We
first claim that in the schedule, each team plays exactly once in every round. This
can be shown by induction on the number of rounds. Suppose that each team plays
exactly once in every round up to round ¢ > 0. In round ¢ + 1, if some team plays
twice, then some other team does not play at all, contradicting the fact that the
games-played difference index is 1. Hence each team also plays exactly once in
round % + 1, completing the induction.

Suppose now that in the first round, teams 1 and 2 play in the first game,
teams 3 and 4 in the second, and teams 5 and 6 in the third. Since the guaranteed
rest time is k — 2, the first game in the second round can only involve teams from
the first two games in the first round. Assume without loss of generality that team
1 plays team 3 in that game. Similarly, the second game in the second round can
only involve teams from the first three games in the first round. The game cannot
be played between team 4 and one of teams 5 and 6, since the game involving team
2 in the second round would violate the rest difference index condition. Hence the
game is played between teams 2 and 4.

By the same reasoning, the first game in the third round must be played by
teams 1 and 4, and the second by teams 2 and 3. But then no team can play against
team 1 in the fourth round without violating the rest difference index condition.
Thus we have the desired contradiction. (]

Theorem [B.1] implies that if a schedule were to have rest difference index 1,
it would have to sacrifice either the guaranteed rest time or the games-played dif-
ference index. Nevertheless, it is interesting to ask whether there exists for all
even n a schedule with rest difference index 1. For n = 6, two such schedules are
shown in Figure Bl The first schedule also has an optimal guaranteed rest time of
1, but makes the necessary sacrifice by having a games-played difference index of
2. On the other hand, the second schedule is worse off in both measures, having
guaranteed rest time 0 and games-played difference index 3.

4. Odd number of teams

In this section, we assume that the tournament in consideration consists of an
odd number of teams. We will show that unlike in the case with an even number of
teams, the schedule generated by the circle design does not fare so well with respect
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1 3 1 21 4 1 2 5 1 2 3 2 3 4
2 4 5 6 3 5 6 3 6 4 5 6 4 5 6
1 3 5 11 3 1 21 2 3 2 2 4 4
2 4 6 3 5 6 6 4 4 6 5 3 5 6 5

FIGURE 3. Two schedules with rest difference index 1 for a tour-
nament with n = 6.

to the measures introduced in Section Nevertheless, we will exhibit a different
schedule that performs optimally with respect to all of the measures.

The round-robin tournament with three teams consists of three games, and any
two schedules of the three games are equivalent under renaming of the teams, so
we have no choice to make in this case.

We begin by showing an upper bound of & — 1 for the guaranteed rest time of
any schedule.

PROPOSITION 4.1. Let n > 3. Any schedule for a tournament with n = 2k + 1
teams has guaranteed rest time at most k — 1.

PRrROOF. Consider the first k£ + 1 games of the tournament. Since they involve
the participation of 2k 4+ 2 teams (counting multiplicity), the pigeonhole principle
implies that some team plays at least twice among those games. Such a team has
a rest of at most k — 1 games. O

Next, we analyze the schedule generated by the circle design. Even though
this schedule does not match the bound in Proposition Bl we will later exhibit a
different schedule that does attain the upper bound.

PROPOSITION 4.2. Let n > 5. The schedule generated by the circle design for
a tournament with n = 2k + 1 teams has guaranteed rest time k — 2, games-played
difference index 2, and rest difference index k + 1.

PRrROOF. We verify each of the measures separately.

e Guaranteed rest time: Note that each team plays at most once in every
round. Since the slot of a team is shifted by at most 1 from one round
to the next, and each round consists of k slots, the team has a rest of at
least k — 2 games. On the other hand, a team whose slot is shifted to the
left has a rest of exactly k — 2 games.

o Games-played difference index: Since the team that sits out each round is
distinct, the difference between the highest and lowest number of games
played by a team at the end of each round is 1. Each team plays at most
once in every round, so the difference increases by at most 1 during a
round. Hence the index is at most 2.

On the other hand, consider the point after the first game in the
third round has just finished. The team that sat out the second round
has played once, while a team involved in the first game of the third round
has played three times. It follows that the index is 2.
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1 3 1 2 4 1 2 3 1 2
2 4 5 3 5 3 4 5 4 5
FIGURE 4. The schedule as described in Theorem E.] with guar-
anteed rest time 1, games-played difference index 1, and rest dif-

ference index 1 for a tournament with n = 5.

e Rest difference index: Consider the first slot in the third round. One of
the teams in that slot was last involved in the first game of the first round,
while the other team played in the second slot of the second round. Hence
the index is at least k& + 1.

On the other hand, consider any two teams involved in a game. If
the two teams also played in the previous round, the difference in their
rest time is at most k — 1. Otherwise, one of the team sat out in the
previous round. This implies that the team played the first game of the
round before the previous round, while the other team played the second
game of the previous round. Hence the index is exactly k£ + 1.

Thus we have verified all of the measures. O

We now show that if a schedule attains the upper bound on the guaranteed
rest time, it will also fare optimally with respect to the rest difference index.

LEMMA 4.1. Let n > 3. Any schedule for a tournament with n = 2k + 1 teams
with guaranteed rest time k — 1 has rest difference index 1.

PROOF. Suppose that a schedule for a tournament with 2k + 1 teams has
guaranteed rest time £ — 1. This means that any k consecutive games in the
schedule are played by 2k distinct teams.

We show that the rest difference index is 1. Consider an arbitrary game after
the kth game. This game cannot involve a team that played in one of the previous
k — 1 games. Moreover, the game cannot be played between the two teams that
played each other k£ games ago. Hence the only possibility is that the game is played
between the team that sat out the previous k games and one of the two teams that
played k games ago. In particular, all 2k + 1 teams appear in any block of k£ + 1
consecutive games. This implies that the team that sat out the previous k games
played k 4+ 1 games ago (if this game exists). Hence the rest difference index is 1,
as desired. (]

Proposition 4] and Lemma 1] do not carry much meaning on their own.
Indeed, without an example to show that the bounds can be achieved, it is difficult
to tell how useful the bounds are. In particular, the rest difference index of the
schedule generated by the circle design, k+1, is quite far off from the bound we have
so far, 1. All of these observations raise the natural question of whether there exist
other schedules that perform better on some or all measures. The next theorem
gives the most satisfying answer possible to this question. It shows that there
exists a schedule that fare optimally—and strictly better than the circle-design
schedule—with respect to all three measures.
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1 3 5 1 2 4 6 1 2 4 3 1 2 4 3 1 2 5 3 1
2 46 7T 3 5 7T 3 5 6 7 5 6 7 5 6 4 7 6 4
1 3 5 1 2 4 6 1 2 4 1 3 2 41 3 21 5 3
2 46 7 3 5 7 3 5 7T 6 5 7 6 5 7 6 4 7T 6

FIGURE 5. Two schedules with guaranteed rest time 2, games-
played difference index 1, and rest difference index 1 for a tour-
nament with n = 7. The first schedule corresponds to the one
described in Theorem (411

THEOREM 4.1. Let n > 3. There exists a schedule for a tournament with
n = 2k +1 teams with guaranteed rest time k — 1, games-played difference index 1,
and rest difference index 1.

PROOF. In light of Lemma (1] it suffices to show the existence of a schedule
for a tournament with 2k + 1 teams with guaranteed rest time £ — 1 and games-
played difference index 1. We exhibit the schedule by specifying the slot that the
teams play in each round. Slots are taken modulo k£ + 1, and slot 0 means that a
team sits out that round. The schedule is defined as follows.

e For 1 <i < k, team 2 — 1 is placed in slot 4 in the first 2¢ rounds. After
that, the team moves forward by one slot in each round.

e For 1 < i < k, team 2¢ is placed in slot ¢ in the first round. The team
moves forward by one slot in each round until round 2k + 3 — 2i. After
that, it stays in the same slot until the last round.

e Team 2k + 1 is placed in slot |j/2] in the jth round.

The resulting schedules for the tournaments with n = 5 and n = 7 can be seen
in Figures [ and B respectively.

We show that the schedule is well-defined by demonstrating that every pair of
teams play each other exactly once. We divide the verification into cases.

e For 1 <i+#j <k, teams 2i—1 and 2j — 1 play each other in round ¢ + j.

e For 1 <i# j <k, teams 27 and 2j play each other in round 2k +3 —7—j.

e For 1 <7< j <k, teams 2¢ — 1 and 25 play each other in round 1 if i = j
and round 2k + 2 4+ ¢ — j otherwise.

e For 1 <1< j <k, teams 2¢ and 25 — 1 play each other in round j —i+ 1.

e For 1 < ¢ <k, teams 2¢ — 1 and 2k + 1 play each other in round 2s.

e For 1 < i <k, teams 27 and 2k + 1 play each other in round 2k + 2 — 3.

Next, we show that the guaranteed rest time is k— 1. If a team sits out a round
between two of its games, then the two games are separated by at least k other
games. Otherwise, a team either stays in the same slot or moves one slot forward
in the next round. In both cases, the team has a rest of at least k¥ — 1 games in
between.

Finally, we show that the games-played difference index is 1. At the end of
each round, the difference between the highest and lowest number of games played
by a team is at most 1. The teams with a lower number of games played are exactly

=N ~ N
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those that already sat out a round. Hence it suffices to show that in any round, a
team that already sat out a round appears no later than a team that participated in
every round. One can check that team 2k+1, which sat out the first round, appears
no later than any team that did not sit out, and any other team that already sat
out appears no later than it. This completes the proof of the claim, and therefore
the theorem. (|

The schedule described in Theorem [4.1] is not necessarily the unique schedule
satisfying the desired properties. Indeed, for n = 6, another schedule satisfying
the desired properties is shown in Figure[Bl To see that the two schedules cannot
be obtained from each other by permuting the team indices, observe that the first
two rounds of games uniquely determine the identity of the teams: team 1 plays
in games 1 and 4, team 2 plays in games 1 and 5, team 3 plays in games 2 and 5,
and so on. Since the two schedules differ in the second game of the fourth round,
no permutation of team indices in one schedule results in the other schedule.

Now that Theorem [£1] gives us a schedule that fare optimally on all three
measures, we may demand a stronger notion of fairness. In particular, while the
rest difference index of 1 guarantees that two teams going into a game have roughly
the same amount of rest, it seems fairer if all teams sometimes get a longer rest
than their opponent and sometimes a shorter one than if some teams always get a
longer rest than their opponent. Nevertheless, the following proposition shows that
as long as we insist on maximal guaranteed rest time, this goal cannot be achieved.

PROPOSITION 4.3. Let n > 3. For any schedule for a tournament with n =
2k 4+ 1 teams with guaranteed rest time k — 1, there exists a team that has a longer
rest time than its opponent in every game after its first game.

ProOOF. Consider a schedule for a tournament with n = 2k + 1 teams with
guaranteed rest time k — 1. As in the proof of Lemma 1], we find that any game
after the kth game is played between the unique team that sat out the previous k
games and one of the two teams that played k games ago. This implies that if a
team just played a game and still has more games left in the tournament, then it
will have a rest of either k—1 or k games before its next game. Put differently using
the terminology in the proof of Theorem 1] a team either stays in the same slot
or moves one slot forward in the next round. Since the number of rounds, 2k + 1,
is equal to the number of teams, each team sits out exactly one round.

Suppose that teams 1 and 2 play each other in the first game of the tournament,
and team 2 has a rest of k games before its next game. We claim that team 2 moves
one slot forward in every round. This claim suffices to prove the theorem, since it
implies that team 2 has a longer rest time than its opponent in every game after
its first game.

Assume for the sake of contradiction that team 2 stays in the same slot at some
point during the tournament. Consider the first instance in which this occurs. Since
every team sits out exactly one slot, the slot is not slot 0.

Suppose that team 2 repeats a slot in rounds 4 and ¢ + 1. This means that
the team that plays against team 2 in round 7 + 1 (say, team t) played in the slot
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before team 2 in round 7. Since the two teams play each other only once during
the tournament, team ¢ also played in the slot before team 2 in round ¢ — 1, round
i — 2, and so on down to round 2. Hence team ¢ sat out the first round, played
against team 1 in the first slot of the second round, and is in the slot ahead of team
1 in the third round. This implies that team 1 cannot “overtake” team ¢ in the
slot position for the rest of the tournament. But since team ¢ already sat out while
team 1 did not, this means team 1 cannot sit out for the rest of the tournament, a
contradiction. ]

5. Discussion

In this paper, we defined three measures that capture quality and fairness
properties of a schedule for an asynchronous round-robin tournament, and we also
exhibited schedules that perform (close to) optimally with respect to all of these
measures. Here we give some comments and directions for future work.

Several of our results can be generalized to arbitrary round-robin tournaments
in which every pair of teams play each other a fixed number of times. Indeed, we
can turn a single round-robin tournament into an arbitrary round-robin tourna-
ment by duplicating each round a desired number of times. This method preserves
the guaranteed rest time and rest difference index, and for Proposition it also
preserves the games-played difference index. Moreover, Propositions [3.1] and (4.1]
can be generalized to arbitrary round-robin tournaments as well.

As mentioned in Section Bl an interesting open question is whether there exists
a schedule with rest difference index 1 when there are an even number of teams.
Such schedules are shown in Figure [ for the case n = 6. If the answer turns out to
be affirmative, one could also ask for a schedule with a “balanced” rest difference in
the sense described before Proposition [£3] i.e., teams sometimes get a longer rest
than their opponent and sometimes a shorter one. In addition, one could ask for the
optimal value of one measure when the remaining two are forced to achieve their
optimal values. From Proposition and Theorem B3Il we know that when the
guaranteed rest time and the games-played difference index achieve their optimal
values, the minimum rest difference index is 2. When the number of teams is odd,
it would be interesting to explore whether it is possible to achieve a rest difference
index of 1 with a balanced rest difference if we are willing to sacrifice on other
measures.

Finally, it might be worth investigating the structure of “optimal” schedules:
how many there are, and whether they differ between themselves in some other
meaningful way for the teams. This could potentially yield new insights into the
fascinating study of scheduling round-robin tournaments.
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