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a b s t r a c t

The Shapley value for directed graph (digraph) TU games with limited cooperation induced by a digraph
prescribing the dominance relation among the players is introduced. It is defined as the average of
the marginal contribution vectors corresponding to all permutations which do not violate the induced
subordination of players. We study properties of this solution and its core stability. For digraph games
with the digraphs being directed cycles an axiomatization of the solution is obtained.
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1. Introduction

In classical cooperative game theory it is assumed that any
coalition of players may form and is able to obtain payoffs for its
members. Problem is howmuch payoff each player should receive.
However, in many practical situations the set of feasible coalitions
is limited by some social, economical, hierarchical, or technical
structure. One of the most famous singleton solutions for coopera-
tive games with transferable utility (TU games), where payoffs can
be distributed freely among the players, is the Shapley value [8]
defined as the average of the marginal contribution vectors corre-
sponding to all permutations on the players. Several adaptations
of the Shapley value for models of games with limited cooperation
among the players are well known in the literature, cf. Aumann
and Drèze [1] and Owen [7] for games with coalition structure,
Myerson [6] for games with cooperation structure introduced by
means of undirected graphs in which only the connected players
are able to cooperate. For games with limited cooperation that is
described in terms of (cycle-free) directed graphs (digraphs) we
mention Gilles and Owen [3] for games with permission structure
using the disjunctive approach and Gilles et al. [4] for such games
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using the conjunctive approach, and Faigle and Kern [2] for games
with precedence constraints.

In this paper we assume that restricted cooperation is deter-
mined by an arbitrary digraph on the player set, the directed links
of which prescribe the subordination among the players. For ex-
ample, consider a society consisting of individuals with different
opinions, possibly incomplete preferences, about the importance
of several proposals or tasks that need to be completed. If the pref-
erences of the individuals are aggregated by using majority voting,
then it is well known that the resulting structure will be a directed
graph on the set of alternatives. In this directed graph, a directed
link fromoneproposal to another proposalmeans that themajority
of the society thinks that the former one ismore important than the
latter one. If it is assumed that at each moment only one proposal
or task can be performed, then when one is completed, the next
one to be performed can be any of its immediate successors in the
digraph or one of those the performance of which does not depend
on it. In this example the digraph might not be cycle-free because
directed cycles may stand for the well known Condorcet paradox.

On the class of digraph games, which are games with restricted
cooperation determined by a digraph prescribing the dominance
relation on the set of players, we introduce the so-called Shapley
value for digraph games as the average of marginal contribution
vectors corresponding to all permutations not violating the sub-
ordination of players. Contrary to the Myerson model, the feasible
coalitions are not necessarily connected.We show that the Shapley
value for digraph games meets efficiency, linearity, the restricted
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null player property, the restricted equal treatment property, is in-
dependent of inessential links, and is stable with respect to the ap-
propriate core concept under a convexity type condition which is
weaker than the usual convexity guaranteeing the core stability of
the classical Shapley value. On the subclass of cycle digraph games
forwhich the digraphs are directed cycles an axiomatization is pro-
vided.

Since precedence constraints are determined by a partial or-
dering on the player set which can be represented by a cycle-free
digraph, the games under precedence constraints form a subclass
of cycle-free digraph games on which the Shapley value for di-
graph games coincides with the Shapley value for games under
precedence constraints of Faigle and Kern [2]. There is no straight-
forward relation of permission values for games with permission
structure with the newly introduced Shapley value for digraph
games. In games with permission structure players need permis-
sion from their predecessors in order to cooperate, at least one
of them for disjunctive approach and all of them for conjunctive
approach. In both cases a permission-restricted TU game is de-
rived from the given TU game taking into account the permission
structure and the disjunctive and conjunctive permission values
for games with permission structure are defined as the Shapley
value of the corresponding permission-restricted games.

The structure of the paper is as follows. Section 2 contains
preliminaries. Section 3 introduces the Shapley value for digraph
games and discusses its properties and stability. An axiomatization
on the subclass of cycle digraph games is obtained in Section 4.

2. Preliminaries

A cooperative game with transferable utility (TU game) is a pair
(N, v), where N = {1, . . . , n} is a finite set of n ≥ 2 players and
v: 2N

→ R is a characteristic function with v(∅) = 0, assigning
to any coalition S ⊆ N its worth v(S). The set of TU games with
fixed player setN is denotedGN . For simplicity of notation and if no
ambiguity appears we write v whenwe refer to a game (N, v). It is
well known (cf. Shapley [8]) that unanimity games {uT } T⊆N

T≠∅

, defined

as uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise, form a basis in GN .
A value on G ⊆ GN is a function ξ :G → RN that assigns to every
v ∈ G a vector ξ(v) ∈ RN where ξi(v) is the payoff to i ∈ N in
v. The marginal contribution of i ∈ N to S ⊆ N \ {i} in v ∈ GN is
given bymv

i (S) = v(S ∪ {i}) − v(S). In the sequel we use standard
notation x(S) =


i∈S xi for any x ∈ RN and S ⊆ N .

For a permutationπ :N → N ,π(i) is the position of player i ∈ N
in π , Pπ (i) = {j ∈ N | π(j) < π(i)} is the set of predecessors
of i in π , and P̄π (i) = Pπ (i) ∪ {i}. In what follows we identify
a permutation π with the vector (π(1), . . . , π(n)). Let Π be the
set of permutations on N . For v ∈ GN and π ∈ Π the marginal
contribution vector m̄v(π) ∈ RN is given by m̄v

i (π) = mv
i (Pπ (i)) =

v(P̄π (i)) − v(Pπ (i)) for all i ∈ N . The Shapley value of v ∈ GN is
given by Sh(v) =


π∈Π m̄v(π)/n!.

A graph on N consists of N as the set of nodes and for a directed
graph (digraph) a collection of ordered pairs 0 ⊆ {(i, j) | i, j ∈

N, i ≠ j} as the set of directed links (arcs) from one player to
another in N , and for an undirected graph a collection of unordered
pairs 0 ⊆ {{i, j} | i, j ∈ N, i ≠ j} as the set of links (edges)
between two players in N . Observe that an undirected graph can
be considered as a digraph for which (i, j) ∈ 0 iff (j, i) ∈ 0. We
say that a digraph 0 contains an undirected link {i, j} and write
{i, j} ∈ 0 if (i, j), (j, i) ∈ 0. The set of digraphs on fixed N we
denote ΓN . For 0 ∈ ΓN and S ⊆ N , 0|S = {(i, j) ∈ 0 | i, j ∈ S}
is the subgraph of 0 on S. Given 0 ∈ ΓN a sequence of different
players (i1, . . . , ir), r ≥ 2, is a path in 0 between i1 and ir if
{(ih, ih+1), (ih+1, ih)} ∩ 0 ≠ ∅ for h = 1, . . . , r − 1, and a directed
path in 0 from i1 to ir if (ih, ih+1) ∈ 0 for h = 1, . . . , r − 1.
A directed path (i1, . . . , ir) is a directed cycle if (ir , i1) ∈ 0 and
when r ≥ 3, both the path does not contain undirected links and
(i1, ir) ∉ 0. 0 is cycle-free if it contains no directed cycles. Players
i, j ∈ N are connected in 0 if there exists a path in 0 between i
and j. 0 is connected if any i, j ∈ N , i ≠ j, are connected in 0.
S ⊆ N is connected in 0 if 0|S is connected. For S ⊆ N , C0(S)
denotes the collection of subsets of S connected in 0, S/0 is the
collection of maximal connected subsets, called components, of S
in 0. For i, j ∈ N if there exists a directed path in 0 from i to j, then
j is a successor of i and i is a predecessor of j in 0. If (i, j) ∈ 0, then
j is an immediate successor of i and i is an immediate predecessor of
j in 0. For i ∈ N , S0(i) denotes the set of successors of i in 0 and
S̄0(i) = S0(i) ∪ {i}. A chain on N is a connected cycle-free digraph
on N in which each player has at most one immediate successor
and one immediate predecessor.

For 0 ∈ ΓN , S ⊆ N and i, j ∈ S, i dominates j in 0|S ,
denoted i≻0|S j, if j ∈ S0|S (i) and i ∉ S0|S (j). Observe that
the dominance relation between two players may differ between
different coalitions they both belong to. Player i ∈ S is undominated
in 0|S if no player in S dominates i in 0|S , i.e., i ∈ S0|S (j) implies
j ∈ S0|S (i). Note that a player undominated in 0|S either has no
predecessor in 0|S or lies on a directed cycle in 0|S . U0(S) denotes
the set of players undominated in 0|S . Since N is finite, U0(S) ≠ ∅

for ∅ ≠ S ⊆ N .
A pair (v, 0) of v ∈ GN and 0 ∈ ΓN constitutes a directed graph

game, or a digraph game. The set of digraph games on fixed N is
denoted GΓ

N . A value on G ⊆ GΓ
N is a function ξ :G → RN assigning

to every (v, 0) ∈ G a payoff vector ξ(v, 0).

3. The Shapley value for digraph games

In a digraph game the digraph prescribes a dominance relation
between the players that puts restrictions on the feasibility of
coalitions. Assuming that in order to cooperate players may join
only the players not dominating them, the set of feasible coalitions
of a digraph game consists of hierarchical coalitions.

Given 0 ∈ ΓN , S ⊆ N is a hierarchical coalition in 0 if i ∈ S,
(i, j) ∈ 0, and i ∉ S0(j) imply S̄0(j) ⊂ S.

If a player in a hierarchical coalition dominates an immediate
successor, then the coalition also contains this latter player
and all his successors. Every hierarchical coalition preserves the
subordination of players and therefore is feasible. For a cycle-free
0 ∈ ΓN , S ⊆ N is hierarchical iff every successor of any i ∈ S in 0

belongs to S, i.e., S̄0(i) ⊆ S for all i ∈ S. So, for a cycle-free digraph
the set of hierarchical coalitions coincides with the set of feasible
coalitions in Faigle and Kern [2] when the precedence constraints
are induced by the same digraph. Note that both the empty and
grand coalitions are hierarchical. A hierarchical coalition is not
necessarily connected. In an undirected graph, in particular in the
empty graph, every coalition is hierarchical. For 0 ∈ ΓN , H(0)
denotes the set of coalitions hierarchical in 0 and Hc(0) its subset
of all connected coalitions. Observe that S, T ∈ H(0) implies
S ∪ T , S ∩ T ∈ H(0).

Given 0 ∈ ΓN , π ∈ Π is consistent with 0 if it preserves the
subordination of players determined by 0, i.e., π(j) < π(i) only if
j ⊁0|P̄π (i)

i.

For0 ∈ ΓN ,Π0 denotes the set of permutations consistentwith
0. Since N is finite, Π0

≠ ∅.

Remark 3.1. For every π ∈ Π0 each player is undominated in
the subgraph of 0 on the set composed by this player and his
predecessors in π , i.e., i ∈ U0(P̄π (i)) for all i ∈ N .

The next proposition shows that every consistent permutation
generates a sequence of feasible coalitions consisting of a player
and his predecessors in the permutation.
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Proposition 3.1. Given 0 ∈ ΓN , if π ∈ Π0 , then P̄π (i), Pπ (i) ∈

H(0) for all i ∈ N.

Proof. First note that (i) N ∈ H(0), (ii) N = P̄π (h) for some h ∈ N ,
and (iii) for each i ∈ N it holds that Pπ (i) = P̄π (j) for j ∈ Pπ (i)
such that π(j) = maxk∈Pπ (i) π(k). So, it suffices to show that if
P̄π (k) ∈ H(0) for some k ∈ N , then Pπ (k) ∈ H(0) as well. If
P̄π (k) ∈ H(0), then i ∈ Pπ (k), (i, j) ∈ 0, and i ∉ S0(j) imply
S̄0(j) ⊂ P̄π (k). To prove that Pπ (k) ∈ H(0) we show k ∉ S̄0(j).
Suppose k ∈ S̄0(j). Then (i, j) ∈ 0 implies k ∈ S0(i); i ∈ Pπ (j)
and S̄0(j) ⊂ P̄π (k) imply k ∈ S0|P̄π (k)(i); P̄π (k) ∈ H(0) implies
k ∈ U0(P̄π (k)). Hence, i ∈ S0|P̄π (k)(k), and therefore, i ∈ S0(k).
Then k ∈ S̄0(j) implies i ∈ S0(j), which contradicts i ∉ S0(j). �

Remark 3.2. If 0 ∈ ΓN is a directed cycle, then for all π ∈ Π0

and i ∈ N both P̄π (i) and Pπ (i) are connected in 0. Moreover,
U0(N) = N and U0(P̄π (i)) = {i} if P̄π (i) ≠ N .

We define the Shapley value for digraph games as the average of
the marginal contribution vectors corresponding to all consistent
permutations, i.e., for any (v, 0) ∈ GΓ

N ,

Sh(v, 0) =
1

|Π0|


π∈Π0

m̄v(π). (1)

Example 3.1. Consider the 5-player digraph games (v, 0), (v, 0′),
and (v, 0′′) with characteristic function v(S) = |S|2 for all S ⊆ N
and digraphs as depicted in Fig. 1.
There are 20 permutations consistent with 0: π1

= (5, 4, 3, 2, 1),
π2

= (5, 3, 4, 2, 1), π3
= (5, 4, 2, 3, 1), π4

= (5, 2, 4, 3, 1),
π5

= (2, 5, 4, 3, 1), π6
= (5, 3, 2, 4, 1), π7

= (5, 2, 3, 4, 1),
π8

= (2, 5, 3, 4, 1), π9
= (5, 2, 4, 1, 3), π10

= (2, 5, 4, 1, 3),
π11

= (5, 4, 2, 1, 3), π12
= (5, 2, 1, 4, 3), π13

= (2, 5, 1, 4, 3),
π14

= (2, 1, 5, 4, 3), π15
= (5, 2, 3, 1, 4), π16

= (2, 5, 3, 1, 4),
π17

= (5, 3, 2, 1, 4), π18
= (5, 2, 1, 3, 4), π19

= (2, 5, 1, 3, 4),
π20

= (2, 1, 5, 3, 4), and Sh(v, 0) = (7, 3, 13/2, 13/2, 2). There
are 5 permutations consistent with 0′: π1

= (5, 4, 3, 2, 1),
π2

= (4, 3, 2, 1, 5), π3
= (3, 2, 1, 5, 4), π4

= (2, 1, 5, 4, 3),
π5

= (1, 5, 4, 3, 2), and Sh(v, 0′) = (5, 5, 5, 5, 5). There are
10 permutations consistent with 0′′: π1

= (5, 4, 3, 2, 1), π2
=

(5, 1, 4, 3, 2), π3
= (5, 3, 2, 1, 4), π4

= (5, 2, 1, 4, 3), π5
=

(1, 5, 4, 3, 2), π6
= (2, 1, 5, 4, 3), π7

= (2, 5, 1, 4, 3), π8
=

(3, 2, 1, 5, 4), π9
= (3, 5, 2, 1, 4), π10

= (3, 2, 5, 1, 4), and
Sh(v, 0′′) = (5, 2, 4.6, 5.2, 7, 3). To compare, the Shapley value of
v is the average of 120 marginal contribution vectors determined
by all π ∈ Π and Sh(v) = (5, 5, 5, 5, 5). Due to the symmetry of
both v and 0′, Sh(v, 0′) = Sh(v).

(a) Digraph 0. (b) Digraph 0′ . (c) Digraph 0′′ .

Fig. 1. The digraphs of Example 3.1.

When 0 ∈ ΓN represents an undirected graph, i.e., there is
no subordination between the players in 0, the Shapley value
of (v, 0) ∈ GΓ

N coincides with the Shapley value of v. Both
values also coincide if v is symmetric and 0 is a directed cycle,
as for (v, 0′) in Example 3.1. In general, the Shapley value of a
digraph game does not coincide with the Myerson value [6] of the
corresponding undirected graph game because the Myerson value
is defined as the average of all marginal contribution vectors of the
Myerson restricted game. Since a cycle-free digraph on the player
set provides a partial ordering of the players and for a cycle-free
digraph the set of hierarchical coalitions coincides with the set
of feasible coalitions in Faigle and Kern [2], on the subclass of
cycle-free digraph games the Shapley value for digraph games
coincides with the Shapley value for cooperative games under
precedence constraints defined in Faigle and Kern [2]. Moreover,
if for a connected digraph game all covering trees of the digraph
are chains, the Shapley value for digraph games coincides with the
average covering tree value introduced in Khmelnitskaya, Selçuk,
and Talman [5]. In particular, this holds for cycle digraph games for
which the digraph is a directed cycle.

A value ξ on G ⊆ GΓ
N is efficient (E) if for any (v, 0) ∈ G,

i∈N ξi(v, 0) = v(N).
A value ξ on G ⊆ GΓ

N is linear (L) if for any (v, 0), (w, 0) ∈ G
and a, b ∈ R, ξ(av + bw, 0) = aξ(v, 0) + bξ(w, 0), where
(av + bw)(S) = av(S) + bw(S) for all S ⊆ N .

A value ξ on G ⊆ GΓ
N satisfies the restricted equal treatment

property (RETP) if for any (v, 0) ∈ G and i, j ∈ N , i ≠ j,
hierarchically symmetric in (v, 0) it holds that ξi(v, 0) = ξj(v, 0).

Players i, j ∈ N , i ≠ j, are hierarchically symmetric in (v, 0) ∈

GΓ
N if they are both symmetric in 0 and hierarchically symmetric

in v. Players i, j ∈ N , i ≠ j, are symmetric in 0 if they have the
same sets of immediate successors and immediate predecessors in
0, i.e., (i, k) ∈ 0 ⇐⇒ (j, k) ∈ 0 and (k, i) ∈ 0 ⇐⇒ (k, j) ∈ 0.
Players i, j ∈ N , i ≠ j, are hierarchically symmetric in v if for all
S ⊆ N \ {i, j} such that S, S ∪ {i}, S ∪ {j}, S ∪ {i, j} ∈ H(0), it holds
that v(S ∪ {i}) = v(S ∪ {j}), or, equivalently,mv

i (S) = mv
j (S).

A value ξ on G ⊆ GΓ
N meets the (restricted) hierarchical

null-player property ((R)HNP) if for all (v, 0) ∈ G, ξi(v, 0) = 0
whenever i is a (restricted) hierarchical null-player in (v, 0).

A player i ∈ N is a (restricted) hierarchical null-player in (v, 0) ∈

GΓ
N if for every S ⊆ N \ {i} such that S, S ∪ {i} ∈ H(0) (S, S ∪ {i} ∈

Hc(0)), it holds that v(S∪{i}) = v(S), or, equivalently,mv
i (S) = 0.

Remark 3.3. Each null-player in v ∈ GN is a hierarchical null-
player in any (v, 0) ∈ GΓ

N , and every hierarchical null-player in
(v, 0) ∈ GΓ

N is also a restricted hierarchical null-player in (v, 0),
i.e., RHNP implies HNP.

A value ξ on G ⊆ GΓ
N is (restricted) hierarchically marginalist

((R)HM) if for any (v, 0), (w, 0) ∈ G and i ∈ N for whichmv
i (S) =

mw
i (S) for all S ⊆ N \ {i} such that S, S ∪ {i} ∈ H(0) (S, S ∪ {i} ∈

Hc(0)) and i ∈ U0(S ∪ {i}), ξi(v, 0) = ξi(w, 0).
If in a cycle digraph game only the grand coalition is productive,

then due to symmetry of the players on the cycle it is natural to
require that they all get the same payoff.

A value ξ on G ⊆ GΓ
N is strongly symmetric on directed cycles

(SSDC) if for any (v, 0) ∈ G such that 0 is a directed cycle on
N and v(S) = 0 for all S ( N , i.e., v = λuN for some real λ,
ξi(v, 0) = ξj(v, 0) for all i, j ∈ N, i ≠ j.

A value ξ on G ⊆ GΓ
N is independent of inessential directed links

(IIDL) if for any (v, 0) ∈ G and inessential directed link (i, j) ∈ 0,
ξ(v, 0) = ξ(v, 0 \ {(i, j)}).

For 0 ∈ ΓN , (i, j) ∈ 0 is inessential if i dominates j in 0 and
there exists a directed path in 0 from i to j different from (i, j), i.e.,
i ∉ S0(j) and there exists i′ ∈ N such that (i, i′) ∈ 0, i ∉ S0(i′), and
j ∈ S0(i′).

Proposition 3.2. The Shapley value for digraph games on GΓ
N meets

E, L, RETP, HNP, HM, SSDC, and IIL.

Proof. (E) This follows from the efficiency of all marginal contri-
bution vectors on GN .
(L) Since (v, 0), (w, 0) and (av + bw, 0) are determined by the
same 0, Π0 is the same for all. Then L follows from the linearity of
all marginal contribution vectors on GN .
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(RETP) Let i, j ∈ N be hierarchically symmetric in (v, 0) ∈ GΓ
N .

Then π ∈ Π0 iff π ′
∈ Π0 , where π ′(i) = π(j), π ′(j) = π(i),

and π ′(k) = π(k) for all k ∈ N \ {i, j}. So, it suffices to show
that m̄v

i (π) = m̄v
j (π

′) and m̄v
j (π) = m̄v

i (π
′) for any such π and

π ′. Without loss of generality assume that π(i) > π(j). To show
m̄v

i (π) = m̄v
j (π

′) note that π ′(i) = π(j) and π ′(k) = π(k) for all
k ∈ N\{i, j} imply P̄π (i) = P̄π ′(j) and Pπ (i)\{j} = Pπ ′(j)\{i}. Let S =

Pπ (i)\{j}. By Proposition 3.1, S∪{i}, S∪{j}, S∪{i, j} ∈ H(0). Since
i and j are hierarchically symmetric in v, v(S ∪ {i}) = v(S ∪ {j}),
i.e., v(Pπ (i)) = v(Pπ ′(j)). This together with P̄π (i) = P̄π ′(j) im-
plies m̄v

i (π) = v(P̄π (i)) − v(Pπ (i)) = v(P̄π ′(j)) − v(Pπ ′(j)) =

m̄v
j (π

′). To show m̄v
j (π) = m̄v

i (π
′) observe that Pπ (j) = Pπ ′(i). Let

S = Pπ (j). By Proposition 3.1, S ∪ {i}, S ∪ {j}, S ∈ H(0). Since i
and j are hierarchically symmetric in v, v(S ∪ {i}) = v(S ∪ {j}),
i.e., v(P̄π (j)) = v(P̄π ′(i)). So, m̄v

j (π) = v(P̄π (j)) − v(Pπ (j)) =

v(P̄π ′(i)) − v(Pπ ′(i)) = m̄v
i (π

′).
(HNP) Let i ∈ N be a hierarchical null player in (v, 0) ∈ GΓ

N
and π ∈ Π0 . By Proposition 3.1, P̄π (i), Pπ (i) ∈ H(0). Then,
m̄v

i (π) = v(P̄π (i)) − v(Pπ (i)) = 0. Hence, Shi(v, 0) = 0.
(HM) This follows from (1), Remark 3.1, and Proposition 3.1.
(SSDC) This holds true because gameλuN is symmetric, Shi(λuN) =

λ/n for all i ∈ N , and for any cycle digraph game (v, 0) with sym-
metric v, Sh(v, 0) = Sh(v).
(IIDL) Let (v, 0) ∈ GΓ

N for which (i, j) ∈ 0 is inessential. Then there
exists i′ ∈ N such that (i, i′) ∈ 0, i ∉ S0(i′), and j ∈ S0(i′). Let
0′

= 0 \ {(i, j)}. We show now that Π0
= Π0′

, so that Sh(v, 0) =

Sh(v, 0′). Take π ∈ Π0 and suppose π ∉ Π0′

. Since π ∉ Π0′

,
there exist k, k′

∈ N , π(k′) < π(k), such that k′
≻0′|Pπ (k) k, i.e.,

k ∈ S0′
|Pπ (k)(k′) and k′

∉ S0′
|Pπ (k)(k). From k ∈ S0′

|Pπ (k)(k′) and0′
⊂

0, it follows that k ∈ S0|Pπ (k)(k′). By Remark 3.1, k ∈ U0(P̄π (k))
because π ∈ Π0 , and therefore, k′

∈ S0|Pπ (k)(k). Whence it fol-
lows that in 0|Pπ (k) there is a path from node k to node k′. Both
k′

∉ S0′
|Pπ (k)(k) and k′

∈ S0|Pπ (k)(k) together imply that every path
in 0|Pπ (k) from node k to node k′, if it exists, should contain link
(i, j). But due to Proposition 3.1, Pπ (k) ∈ H(0), and therefore, for
each path in 0|Pπ (k) from k to k′ containing (i, j) there exists an-
other path in 0|Pπ (k) from k to k′, in which link (i, j) is replaced
by the path from i to j via node i′, which leads to a contradiction.
So, π ∈ Π0 implies π ∈ Π0′

. Take now π ′
∈ Π0′

and suppose
π ′

∉ Π0 . Since π ′
∉ Π0 , there exist k, k′

∈ N , π ′(k′) < π ′(k),
such that k′

≻0|P
π ′ (k)

k, i.e., k ∈ S0|P
π ′ (k)(k′) and k′

∉ S0|P
π ′ (k)(k).

From k′
∉ S0|P

π ′ (k)(k) and 0′
⊂ 0, it follows that k′

∉ S0′
|P

π ′ (k)(k),
and therefore by Remark 3.1, k ∉ S0′

|P
π ′ (k)(k′) sinceπ ′

∈ Π0′

. Then
the conditions k ∈ S0|P

π ′ (k)(k′) and k ∉ S0′
|P

π ′ (k)(k′) together, simi-
larly as above, lead to a contradiction, which proves that π ′

∈ Π0′

implies π ′
∈ Π0 . �

Under the assumption that in a digraph game the digraph rep-
resents the dominance structure on the player set, only the hier-
archical coalitions are feasible. So, we define the dominance core
CD(v, 0) of (v, 0) ∈ GΓ

N as the set of efficient payoff vectors that
cannot be blocked by any hierarchical coalition, i.e., CD(v, 0) =

{x ∈ RN
| x(N) = v(N), x(S) ≥ v(S) for all S ∈ H(0)}.

A value ξ on G ⊆ GΓ
N is D-stable if for every (v, 0) ∈ G,

ξ(v, 0) ∈ CD(v, 0).
A digraph game (v, 0) ∈ GΓ

N is hierarchically convex if for any
S, T ∈ H(0), v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Remark that the hierarchical convexity for (v, 0) isweaker than
convexity for v where the inequality is required to hold for all
S, T ⊆ N .

Theorem 3.1. The Shapley value for digraph games is D-stable on the
class of hierarchically convex digraph games.
Proof. Let (v, 0) ∈ GΓ
N be a hierarchically convex digraph game.

Since the Shapley value for digraph games is efficient, it suffices to
show that


i∈S m̄

v
i (π) ≥ v(S) for every S ∈ H(0) and π ∈ Π0 .

Take any S ∈ H(0) and π ∈ Π0 , and let S1, . . . , Sk partition S
such that Sh = {i ∈ S | π(bh) ≤ π(i) ≤ π(ah)}, h = 1, . . . , k,
where the numbers ah and bh, h = 1, . . . , k, satisfy π(ah−1) + 1 <
π(bh) ≤ π(ah), with π(a0) = −1. Define P̄π (a0) = ∅. For any
h ∈ {1, . . . , k} consider the sets S ∪ P̄π (ah−1) and Pπ (bh). By
Proposition 3.1 and since S is hierarchical, both sets are hierarchical
coalitions. Moreover, their intersection is equal to P̄π (ah−1) and
their union is equal to S ∪ P̄π (ah). Hierarchical convexity implies

v(S ∪ P̄π (ah)) + v(P̄π (ah−1)) ≥ v(S ∪ P̄π (ah−1)) + v(Pπ (bh)).

By repeated application of this inequality for h = 1, . . . , k, we
obtain

v(S ∪ P̄π (ak)) +

k
h=1

v(P̄π (ah−1))

≥ v(S ∪ P̄π (a0)) +

k
h=1

v(Pπ (bh)).

P̄π (a0) = ∅ and S ∪ P̄π (ak) = P̄π (ak) imply
k

h=1

v(P̄π (ah)) ≥ v(S) +

k
h=1

v(Pπ (bh)).

Since


i∈Sh
m̄v

i (π) = v(P̄π (ah)) − v(Pπ (bh)), h = 1, . . . , k,
and


i∈S m̄

v
i (π) =

k
h=1


i∈Sh

m̄v
i (π), we obtain


i∈S m̄

v
i (π) ≥

v(S). �

4. Axiomatization for cycle digraph games

On the subclass of cycle-free digraph games the Shapley value
for digraph games coincides with the Shapley value for games
with precedence constraints of Faigle and Kern [2]. Thus, the
axiomatization of the latter value obtained in [2] serves also for
the Shapley value for cycle-free digraph games. Now we obtain an
axiomatization of the Shapley value on another subclass ofGΓ c

N , the
subclass of cycle digraph games. Remark 3.2 implies that a directed
cycle on a player set is a connected digraph, every node of which is
an undominated player.

Theorem 4.1. The Shapley value for digraph games is the unique
value on GΓ c

N that meets E, L, RHM, and SSDC.

Proof. I [Existence]. The proof is similar to that of Proposition 3.2
concerning E, L, HM, and SSDC. For RHM in comparison to HM we
only need to add that due to Remark 3.2 all hierarchical coalitions
involved are connected.
II [Uniqueness]. First prove that on GΓ c

N E, RHM, and SSDC imply
RHNP. Take any (v, 0) ∈ GΓ c

N with restricted hierarchical null-
player i and let v0(S) = 0 for all S ⊆ N . Hence, mv

i (S) = 0 =

mv0
i (S) for all S ⊆ N \{i}with S, S∪{i} ∈ Hc(0) and i ∈ U0(S∪{i}).

RHM implies ξi(v, 0) = ξi(v0, 0). E and SSDC imply ξj(v0, 0) = 0,
j ∈ N . Whence, ξi(v, 0) = 0.

Since unanimity games form a basis in GN , due to L it suffices to
show that ξ(uT , 0) is uniquely determined for all (uT , 0) ∈ GΓ c

N ,
T ⊆ N , T ≠ ∅.

If T = N , then E and SSDC imply ξi(uN , 0) =
1
n for all i ∈ N .

If T ∈ C0(N), T ≠ N , then due to Remark 3.2 U0(T ) = {r}
for some r ∈ T . For all i ∈ T \ {r} and S ⊆ N \ {i} such that
S, S ∪ {i} ∈ Hc(0) and i ∈ U0(S ∪ {i}), muT

i (S) = muN
i (S).

RHM implies ξi(uT , 0) = ξi(uN , 0) =
1
n , i ∈ T \ {r}. Since

every i ∈ N \ T is a null-player in uT , then by Remark 3.3 each
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i ∈ N \ T is a restricted hierarchical null-player in (uT , 0) and by
RHNP ξi(uT , 0) = 0. E implies ξr(uT , 0) = 1 −

|T |−1
n .

Finally, take any T ∉ C0(N). Let T/0 = {T1, . . . , Tk}, then
U0(Th) = {rh} for some rh ∈ Th, h = 1, . . . , k. Each i ∈ N \ T
is a restricted hierarchical null-player in (uT , 0) and for all i ∈

T \ {r1, . . . , rk} and S ⊆ N \ {i} such that S, S ∪ {i} ∈ Hc(0) and
i ∈ U0(S ∪ {i}), muT

i (S) = muN
i (S). RHNP implies ξi(uT , 0) = 0,

i ∈ N \ T , and RHM implies ξi(uT , 0) =
1
n , i ∈ T \ {r1, . . . , rk}.

For given h ∈ {1, . . . , k}, let T h
∈ C0(N) be the unique smallest

connected set containing T such that U0(T h) = {rh}. Then each
i ∈ N \ T h is a restricted hierarchical null player in (uTh , 0) and for
all i ∈ T h

\ {rh} and S ⊆ N \ {i} such that S, S ∪ {i} ∈ Hc(0) and
i ∈ U0(S ∪ {i}), m

uTh
i (S) = muN

i (S). RHNP implies ξi(uTh , 0) = 0,
i ∈ N \ T h, and RHM implies ξi(uTh , 0) =

1
n , i ∈ T h

\ {rh}. E

implies ξrh(uTh , 0) = 1−
|Th|−1

n . Since for all S ⊆ N \{rh} satisfying
S, S ∪ {rh} ∈ Hc(0) and rh ∈ U0(S ∪ {rh}) it holds that m

uTh
rh (S) =

muT
rh (S), RHM implies ξrh(uT , 0) = ξrh(uTh , 0) = 1 −

|Th|−1
n . �

Remark 4.1. The classical Shapley value is axiomatized in Young
[9] by efficiency, equal treatment property, and marginality, with-
out a priori requirement of additivity. However, for the axiomatiza-
tion of the Shapley value for digraph games on the subclass of cycle
digraph games we need both linearity and restricted marginality.
The induction argument of Young does not work in this case be-
cause the decomposition of a TU game is considered via the una-
nimity basis determined by all possible coalitions, but opposite to
marginality in Young [9], restricted marginality considers only the
hierarchical coalitions, which form here a proper subset of the set
of all coalitions.
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