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Abstract

We develop a distribution-free model to evaluate the performance of process flexibility structures

when only the mean and partial expectation of the demand are known. We characterize the worst-

case demand distribution under general concave objective functions, and apply it to derive tight

lower bounds for the performance of chaining structures under the balanced systems (systems with

the same number of plants and products). We also derive a simple lower bound for chaining-like

structures under unbalanced systems with different plant capacities.

Keywords: Process flexibility, distributionally-robust analysis, chaining, production system

design

1. Introduction

Product demand has become increasingly volatile, due to global market competition, product

proliferation, and the enormous impact social media has on customer behavior. This calls for new

production systems that can better cope with an increasingly volatile demand. As a result, process

flexibility is quickly becoming an option that manufacturers embrace [1]. Interestingly, firms often

do not need to implement a fully flexible system (also known as the full flexibility structure), where

each plant has the ability to produce all products in the system [2]. Indeed, the seminal paper of

Jordan and Graves [2] shows that in simulation, a sparse flexibility structure known as the long

chain (also known as the chaining) often performs almost as well as the full flexibility structure.
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The objective of this paper is to develop a new tool to analyze the performance of various

process flexibility structures, and in particular, the popular chaining structure proposed by the

seminal work of Jordan and Graves. Instead of taking the traditional approach of computing the

expected sales of a flexibility structure under a given demand distribution, our paper takes a differ-

ent approach and studies the worst expected sales of flexibility structures under a class of stochastic

demand distributions with limited information. This is closely related to the distributionally robust

literature, where one seeks to identify the optimal solution under the worst-case distribution within

a distributional uncertainty set. Unlike most papers in the distributionally robust literature, where

the set of distributions is defined by moment constraints, we consider a distributional uncertainty

set with given partial expectations. By considering the distributional uncertainty set with given

partial expectations, we explicitly characterize the worst-case demand distribution and using this

characterization, we derive a simple analytical bound for the expected sales of chaining structures.

Because the demand distribution is rarely known to a high degree of accuracy, our method enables

us to evaluate the performance of flexibility structures in unbalanced and non-homogenous system

where limited demand distributional information is known.

1.1. Literature Review

The findings of [2] led to a series of researches to analytically study the effectiveness of the

long chain and other sparse flexibility structures. [3] develops a method to compute the average

demand satisfied by the chaining in asymptotically large systems; [4] and [5] analyze the chaining

and other sparse flexibility structures under worst-case demand; [6] provides a characterization

of the expected sales of the long chain and using the characterization, proves that the long chain

always outperforms the shorter chains under i.i.d. demand; [7] uses probabilistic graph expanders to

construct asymptotically optimal sparse structures; [8] analyzes the chaining with limited reserved

capacities, and finally, [9] studies the problem of finding the optimal sparse flexibility configuration

to achieve a given service level.

More closely related to this paper, [10] studies the k-chain (a structure where product i is ca-

pable of producing product i, i+ 1, ..., i+k) in asymptotically large balanced networks under i.i.d.

demand using a distributionally-robust approach. The key difference between [10] and this work is

that the former studies the worst-case demand distribution with given first and second moments,

while this work studies the worst-case demand distribution with mean and partial expectations.
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The advantage of our approach is that we provide the exact characterization of the worst-case

demand distribution for any finite flexibility structure, which allows us to develop a tool to study

the broader class of non-homogenous unbalanced finite flexibility structures. In contrast, [10] does

not fully characterize the worst-case distribution, and their closed-form lower-bound is restricted

to symmetric, balanced systems with system size going to infinity. We note that while the charac-

terization of the worst-case distribution with partial expectations was known since the 1970s (see

[11]), this paper is the first to apply this idea to analyze process flexibility structures.

2. Model and Assumptions

In this paper, we use P[·] and E[·] to denote the probability and the expectation functions of

random variables. For two random variables D and D′, we use D
d
= D′ to denote that D and D′

have the same probability distribution, i.e., P[D ≤ x] = P[D′ ≤ x] for all x ∈ R.

We study a manufacturing system with n plants and m products, with m ≥ n. For each

1 ≤ i ≤ n, 1 ≤ j ≤ m, ci and Dj are used to denote the fixed capacity at plant i and the stochastic

demand for product (type) j. A flexibility structure, denoted by A , is a set of arcs connecting

plant nodes to product nodes. In a flexibility structure A , an arc (i, j) ∈ A implies that plant

i is capable of producing product j. Given an instance d of the demand, the sales achieved by a

flexibility structure A , denoted by S(d,A ), is defined as

S(d,A ) := max
∑

(i,j)∈A

fij

s.t.
n∑
i=1

fij ≤ dj , ∀1 ≤ j ≤ m

n∑
j=1

fij ≤ ci, ∀1 ≤ i ≤ n

fij ≥ 0,∀(i, j) ∈ A .

Under stochastic demand D, the expected sales of A is hence denoted by E[S(D,A )]. Throughout

the paper, we assume that the demand vector D is consisted of m independent random variables,

and use µj to denote the expected values of Dj .

In the paper, we are interested in providing a lower bound for E[S(D,A )] when the expected
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demand, e.g., µj , and the partial expectations of Dj − µj on interval [0,∞), e.g., E[(Dj − µj)+],

are known. Note that

E[(Dj − µj)+] = E[(µj −Dj)
+], and E[(Dj − µj)+] + E[(µj −Dj)

+] = E[|Dj − µj |].

Therefore, E[(Dj−µj)+] is exactly one half of the expected absolute deviation of Dj from its mean.

We say Dj is γ-centralized if E[(Dj − µj)+] ≤ γµj . Clearly, if γ is small, then Dj has most of its

probability measure to be concentrated around its mean. Like variance, the partial expectations

under consideration, E[(Dj − µj)+], informs us about the degree of centralization of the demand.

3. Characterizing the Worst-case Distribution

In this section, we first characterizes the worst-case distribution which in turn bounds the

expected values of general stochastic concave objective functions. Then, we apply this result to

provide lower bounds for the expected sales of process flexibility structures.

Proposition 1. Let f(·) : Rm → R be an arbitrary concave function, and let E be an independent

m-dimensional random vector where for all 1 ≤ j ≤ m,

P[−∆−j ≤ Ej ≤ ∆+
j ] = 1,E[(−Ej)+] = γ−j ∆−j , E[(Ej)

+] = γ+j ∆+
j ,

where ∆−j and ∆+
j are positive reals. Then, we have that E[f(E∗)] ≤ E[f(E)], where E∗ is an

independent m-dimensional random vector such that

P[E∗j = −∆−j ] = γ−j ,P[E∗j = ∆+
j ] = γ+j ,P[E∗j = 0] = 1− γ+j − γ

−
j ,∀1 ≤ j ≤ m.

The proof of Proposition 1 is a straightforward application of [12], [11] and is relegated to the

appendix. Here, we describe the intuition behind the proof of Proposition 1. For each 1 ≤ j ≤ m,

we have partial expectations of Ej on intervals [−∆−j , 0] and [0,∆+
j ]. Because the objective function

f is concave, and Ej is independent with Ej′ for any j′ 6= j, we can “transport” the probability of

Ej on [−∆−j , 0] and [0,∆+
j ] to the points {−∆−j , 0, ∆+

j } and obtain a valid independent distribution

with a smaller expected objective value. After we do this for each j from 1 to m, we obtain E∗, a

distribution with smaller expected objective value than E.
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Recall that Dj is γj-centralized if E[(Dj −µj)+] ≤ γjµj . We next derive the result which allows

us to characterize the distribution to lower-bound the expected sales of A , when Dj is γj-centralized

for each 1 ≤ j ≤ m. Our derivation is done in two steps. In the first step, we show that S(d,A )

is concave with respect to d; in the second step, we apply Proposition 1 to obtain the worst-case

distribution D∗, for the set of all demand distributions where Dj is γj-centralized.

Lemma 1. For any flexibility structure A , S(d,A ) is concave with respect to d.

Proof. Recall that S(d,A ) is the objective of a linear program. Moreover, S(d,A ) can be expressed

as S(d,A ) = F (d) = maxx∈P (d) c
Tx for some vector c, and some polyhedral P (d) = {x|Ax ≥ b}.

By Theorem 5.1 on pg. 213 of [13], −F (d) = minx∈P (d)−cTx is convex with respect to d and

therefore, S(d,A ) = F (d) is concave with respect to d.

Proposition 2. Let D be an m-dimensional independent demand vector where for 1 ≤ j ≤ m,

E[Dj ] = µj, P[0 ≤ Dj ≤ θµj ] = 1 with some θ > 1 and Dj is γj-centralized, γj ≤ θ−1
θ . Then, for

any flexibility structure A , we have E[S(D∗,A )] ≤ E[S(D,A )], where D∗ is an m-dimensional

independent demand vector such that

P[D∗j = θµj ] =
γj
θ − 1

,P[D∗j = 0] = γj ,P[D∗j = µj ] = 1− θγj
θ − 1

, ∀1 ≤ j ≤ m,

Proof. For each 1 ≤ j ≤ m, let γ′j :=
E[(Dj−µj)+]

µj
, and by definition, γ′j ≤ γj . Also, define function

G(g) := S(g+µ,A ), where µ = (µ1, · · · , µm). By Lemma 1, G(.) is concave. Applying Proposition

1, we have E[G(E′)] ≤ E[G(D− µ)], where E′ is an independent vector with

P[E′j = (θ − 1)µj ] =
γ′j
θ − 1

,P[E′j = −µj ] = γ′j , and P[E′j = 0] = 1−
θγ′j
θ − 1

, ∀1 ≤ j ≤ m.

Next, define D′ = E′ + µ. Then we have that E[S(D′,A )] ≤ E[S(D,A )]. Now, define D(1) as an

independent random vector such that

D
(1)
j

d
= D′j , ∀2 ≤ j ≤ m,P[D

(1)
1 = θµ1] =

γ1
θ − 1

,P[D
(1)
1 = 0] = γ1,P[D

(1)
1 = µ1] = 1− θγ1

θ − 1
;
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and let g(x) := E[S(D′,A )|D′1 = x]. Then

E[S(D′,A )] = E[g(D′1)] = γ′1g(0) +
γ′1
θ − 1

g(θµ1) + (1− θγ′1
θ − 1

)g(µ1),

E[S(D(1),A )] = E[g(D
(1)
1 )] = γ1g(0) +

γ1
θ − 1

g(θµ1) + (1− θγ1
θ − 1

)g(µ1),

=⇒ E[S(D′,A )]− E[S(D(1),A )] = (γ′1 − γ1) ·
θ

θ − 1
· ((θ − 1)g(0)

θ
+
g(θµ1)

θ
− g(µ1)).

Because g(.) is concave, we have
(θ − 1)g(0)

θ
+
g(θµ1)

θ
≤ g(µ1). Combining this with the fact that

γ′1 − γ1 ≤ 0, we have

E[S(D(1),A )] ≤ E[S(D′,A )].

Next, for 2 ≤ i ≤ m, define D(i) recursively as an independent random vector such that

D
(i)
j

d
= D

(i−1)
j ,∀j 6= i, 1 ≤ j ≤ m,

and P[D
(i)
i = θµi] =

γi
θ − 1

,P[D
(i)
i = 0] = γi,P[D

(i)
i = µi] = 1− θγi

θ − 1
.

Apply the same procedure as we did for establishing E[S(D(1),A )] ≤ E[S(D′,A )], and we get that

E[S(D(i),A )] ≤ E[S(D(i−1),A )]. Note that D∗
d
= D(m) and therefore, we have E[S(D∗,A )] ≤

E[S(D′,A )] ≤ E[S(D,A )].

Intuitively, Proposition 2 illustrates that for any flexibility structure A , the expected sales of A

under D is lower-bounded by the expected sales of A under D∗, where for each j, D∗j is a discrete

random variable with exactly three probability mass points.

4. Worst-Case Distribution Analysis for Chaining Structures

In this section, we study the performance of process flexibility structures by applying Proposition

2. Throughout the section, we assume that the demand of product j, Dj , is always nonnegative

and bounded from above almost surely. In particular, we fix an arbitrary θ and assume that

P[0 ≤ Dj ≤ θµj ] = 1.

4.1. Process Flexibility Structures

First, we formally define several flexibility structures of interest. We assume that a dedicated

flexibility structure, denoted by D , is the structure each product is produced from exactly one
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plant. Without loss of generality, we assume that for 1 ≤ i ≤ n, Si = {ki−1 + 1, . . . , ki}, for some

integers 0 = k0 ≤ k1 ≤ k2 ≤ · · · ≤ kn = m, and D := {(i, j)|1 ≤ i ≤ n, j ∈ Si}. One can think of

each Si as a single product family, and in the dedicated structure, the firm only assigns plant i to

produce product family i. It is useful to think of D as the minimal structure, because if there is

no demand uncertainty, the firm needs at least D to satisfy the product demand.

Throughout the paper, we assume plant i has just enough capacity to match the total expected

demand of all of the products in Si, i.e., ci =
∑ki

j=ki−1+1 µj . This is a standard assumption in the

literature (see [2], [3]), and can be interpreted as the firm having built just enough capacity to

produce its product families under the dedicated production system. Without loss of generality, we

assume that for 1 ≤ i ≤ n, the expected demands of products in Si are increasing with their labels,

i.e., µki+1 ≤ µki+2 ≤ · · · ≤ µki+1
; we also assume that the expected demand of the last product in

Si is increasing with i, that is, µki ≤ µki+1
.

One of the flexibility structures that received the most attention in the literature is the long

chain, which is defined by C := D ∪ {(i, ki+1)|1 ≤ i ≤ n}}, where we assume kn+1 = k1 (see Figure

1 for an example of the long chain with n = 3, m = 6). In words, the long chain structure has each

plant not just producing its own product family, but also one other product in a different product

family. We note that the long chain is typically defined in a system with m = n (see [2]). Therefore,

our definition can be seen as generalization of the original definition to a more general m plants n

products system. Finally, full flexibility structure, denoted as F = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m},

is a structure where every plant node is connected to every product node.

1

2

3

4

5

1

2

3

6

S1

S2

S3

Plants Products

Figure 1: Illustration of a long chain in an unbalanced system
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4.2. Balanced and Homogenous Systems

We start the analysis of process flexibility structures in the balanced systems, i.e., m = n, and

all products have the same expected demand, i.e., µj = µj′ for any 1 ≤ j, j′ ≤ m. Without loss

of generally, we can assume µj = 1 for all 1 ≤ j ≤ m. The parsimonious assumption of having

m = n and all products having the same expected demand has been popular for understanding the

effectiveness of long chain and sparse process flexibility structures (see [2], [3] and [10]). We also

assume that n ≥ 2.

Now, suppose that for all 1 ≤ j ≤ m, P[0 ≤ Dj ≤ θ] = 1, and Dj is γ-centralized, i.e.,

E[(Dj − 1)+] = E[(1−Dj)
+] ≤ γ. The next lemma discusses the range of γ.

Lemma 2. For any 1 ≤ j ≤ m, suppose that P[0 ≤ Dj ≤ θ] = 1 and E[Dj ] = 1. Then we must

have that

E[(Dj − 1)+] ≤ θ − 1

θ
.

Proof. Note that f(x) = (x− 1)+ is convex in x. Because E[Dj ] = 1, by Proposition 1, we have

θ − 1

θ
= E[(D∗j − 1)+] ≥ E[(Dj − 1)+], where P[D∗j = θ] = 1

θ , P[D∗j = 0] = 1− 1
θ .

Lemma 2 suggests that under the assumption P[0 ≤ Dj ≤ θ] = 1 and E[Dj ] = 1, we can always

find some γ ≤ θ−1
θ such that Dj is γ-centralized for all 1 ≤ j ≤ m. Therefore, in the rest of this

section, we always assume that γ ≤ θ−1
θ . Applying Proposition 2, we get

E[S(D∗,A )] ≤ E[S(D,A )], (1)

where D∗ is a vector of m independent random variables such that P[D∗j = θ] = γ/(θ − 1),P[D∗j =

0] = γ,P[D∗j = 1] = 1− θγ/(θ − 1), for each 1 ≤ j ≤ m. Next, we show that the expected sales of

the long chain (denoted by C ) under D∗ has a surprisingly simple analytical form.

Proposition 3. Suppose θ ≥ 2 and let D∗ be an independent demand vector where P[D∗j = θ] =

γ
θ−1 ,P[D∗j = 0] = γ and P[D∗j = 1] = 1− θγ

θ−1 . Then

E[S(D∗,C )] = m
(

1− γ(θ − 1)

θ
− γ

θ
(1− θγ

θ − 1
)m−1

)
. (2)
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Proof. We first apply Theorem 5 in [6]. Let W ∗i+1 = min(1, (W ∗i + 1−D∗i )+), and let W ∗0 = 0 with

probability 1. By [6], we have

E[S(D∗,C )] = m · E[min(D∗m, 1 +W ∗m−1)]. (3)

We claim that for each nonnegative integer i,

P[W ∗i = 0] =
1

θ
+ (1− θγ

θ − 1
)i · θ − 1

θ
, and P[W ∗i = 1] =

θ − 1

θ
− (1− θγ

θ − 1
)i · θ − 1

θ
. (4)

The claim is proved by induction. First, by the definition of W ∗0 , the claim is true for i = 0. Then,

note that because W ∗i+1 = min(1, (W ∗i + 1−D∗i )+), if the claim is true for W ∗i , then we have

P[W ∗i+1 = 0] = (1− γ) ·
(1

θ
+ (1− θγ

θ − 1
)i · θ − 1

θ

)
+

γ

θ − 1
·
(θ − 1

θ
− (1− θγ

θ − 1
)i · θ − 1

θ

)
=

1

θ
+ (1− θγ

θ − 1
)i+1 · θ − 1

θ
.

Finally, note that because θ > 2, min(1, (W ∗i + 1−D∗i )+) can only take values 0 or 1. This implies

that P[W ∗i+1 = 1] = 1− P[W ∗i+1 = 0] = θ−1
θ − (1− θγ

θ−1)i · θ−1θ . This completes the induction.

Finally, applying Equation (4) to Equation (3), we have

E[S(D∗,C )] = m · E[min(D∗m, 1 +W ∗m−1)] = m ·
(

1− γ(θ − 1)

θ
− γ

θ
(1− θγ

θ − 1
)m−1

)
.

Combining Equation (1) and Proposition 3 immediately provides us with the following lower

bound on the expected sales of C for any D where Dj is γ-centralized for all 1 ≤ j ≤ m.

Theorem 1. Fix any θ ≥ 2 and any independent demand vector D. Suppose for all 1 ≤ j ≤ m,

Dj is γ-centralized, E[Dj ] = 1 and P[0 ≤ Dj ≤ θ] = 1, then

m
(

1− γ(θ − 1)

θ
− γ

θ
(1− θγ

θ − 1
)m−1

)
≤ E[S(D,C )].

Proof. Immediate from Equation (1) and Proposition 3.

We note that the lower bound from Theorem 1 is tight under the three-point distribution
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described in Proposition 3. We also note that the lower bound is largest when θ = 2, which implies

that the demand never exceeds twice of its mean.

Next, we numerically compare the lower bounds provided by Theorem 1 and the paper of Wang

and Zhang [10] (abbreviated as WZ). While our bound applies to systems of any finite size, the

closed-form bound in WZ only applies to asymptotically large systems. Therefore, in Table 1, we

only compare the lower bounds provided by Theorem 1 and WZ for chain structures in asymp-

totically large systems. We considered five different distributions: continuous uniform distribution

over interval [0,2], discrete uniform distribution over set 0, 1, 2, and three normal distributions all

with mean 1 but standard deviations of 0.1, 0.2 and 0.3. Because the probability of the normal

distributions being greater than 2 is very small, we compute our bound using θ = 2. The results

in Table 1 suggest that Theorem 1 is not as effective as WZ’s bound numerically, unless the distri-

bution is close to the worst-case three-point distributions. Nevertheless, the advantage of Theorem

1 is that it provides a simple closed-form expression for any finite system. We note that while

[10] describes a method to bound the effectiveness of finite sized systems, the bound can be only

obtained numerically via semidefinite programs with a large number of constraints.

Theorem 1 WZ Actual
Uniform[0,2] 87.5% 86.8% 89.6%

Uniform{0,1,2} 83.3% 77.7% 83.3%
Normal(1,0.1) 98.0% 99.5% 99.6%
Normal(1,0.2) 96.0% 98.1% 98.4%
Normal(1,0.3) 94.0% 95.9% 96.7%

Table 1: Asymptotic lower bound for long chain

Expected sales is just one way to measure the effectiveness of a flexibility structure. Another

way to quantify the effectiveness of a flexibility structure A is to compute

R(A ) :=
E[S(D,A )]− E[S(D,D)]

E[S(D,F )]− E[S(D,D)]
,

which is the increase in expected sales of structure A over a dedicated (no flexibility) structure,

normalized by the maximal possible increase in expected sales achieved by the full flexibility struc-

ture. We refer to R(A ) as the effectiveness ratio of A . Note that given E[(1 −Dj)
+] = γ for all
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j = 1, . . .m, the expected sales of D is then equal to

E[S(D,D)] =
m∑
j=1

E[min{1, Dj}] =
m∑
j=1

E[1− (1−Dj)
+] = (1− γ)m.

Next, we lower bound R(C ) in large systems, under general i.i.d. demand distributions.

Corollary 1. Let the products demand vector D be i.i.d., where Dj
d
= D for some scalar distribution

D and any 1 ≤ j ≤ m. Suppose P[0 ≤ D ≤ θ] = 1 and E[D] = 1. Then as the system size goes to

infinity, i.e. m→∞, we have

R(C ) ≥ 1

θ
.

Proof. Fix the system size m, and let γ = E[(D − 1)+] = E[(1−D)+]. By Proposition 3,

R(C ) ≥
m
(

1− γ(θ−1)
θ − γ

θ (1− θγ
θ−1)m−1

)
−m(1− γ)

E[S(D,F )]−m(1− γ)
.

As m→∞, we know E[S(D,F )]
m → 1 by the central limit theorem, while γ

θ (1− θγ
θ−1)m−1 → 0. Thus,

we have that as m→∞,

m
(

1− γ(θ−1)
θ − γ

θ (1− θγ
θ−1)m−1

)
−m(1− γ)

E[S(D,F )]−m(1− γ)
→ γ/θ

γ
=

1

θ
.

Interestingly, the bound in Corollary 1 is completely independent of γ. In particular, Corollary

1 implies that the long chain achieves at least 50% of the effectiveness of full flexibility, under any

i.i.d. demand where P[0 ≤ D1 ≤ 2]. While this is an asymptotic ratio, it has been empirically

observed [14], [10] that the long chain is more effective relative to full flexibility in smaller size

systems. Therefore, Corollary 1 implies that the long chain should achieve at least 50% of the

effectiveness of full flexibility, for any i.i.d. demand that is bounded above by twice of its expected

value.

Finally, we briefly discuss the extension of our results to k-chains. In a system with m plants

and m products, for any positive integer k, the k-chain is a structure where plant i is capable of

producing products i, i + 1, . . . , i + k (modulo m), while the long chain is a special case of the
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k-chain when k = 2. The k-chains (for k ≥ 3) are often used when demand uncertainties are

large and the long chain is no longer effective (see [10] and [8]). Interestingly, it has been observed

that the expected sales of the k-chain for an asymptotically large system can be characterized as

a random walk. Next, we apply this characterization to bound the expected sales of the k-chain in

asymptotically large systems. The proof of the corollary is relegated to appendix.

Corollary 2. For any positive integer k, let C (k) be the k-chain in the system with m plants and

m products. Fix any θ ≥ 2 and any scalar distribution D, and let the products demand vector

D be i.i.d., where Dj
d
= D for all any 1 ≤ j ≤ m. Suppose D is γ-centralized, E[D] = 1 and

P[0 ≤ Dj ≤ θ] = 1. Then we have

lim
m→∞

E[S(D,C (k))]

m
≤ E[min(D∗, 1 +W ∗)],

where P[D∗ = θ] = γ
θ−1 ,P[D∗ = 0] = γ, P[D∗ = 1] = 1− θγ

θ−1 , and W ∗ = min(k−1, (W ∗+1−D∗)+).

4.3. Unbalanced Systems with Non-Homogenous Demands and Capacities

In this section, we consider the unbalanced system (m ≥ n, m ≥ 2) with non-homogenous

independent demands where µj is the expected demand of product j. Again, we apply Proposition

2 to provide a lower bound on the expected sales of C . Recall that C = D ∪ {(i, ki+1)|1 ≤ i ≤ n}.

Note that when m 6= n, the long chain contains exactly m+ n flexibility arcs, which is very sparse

comparing given that the full flexibility structure contains mn arcs. Also, for the sake of clarity,

we restrict our analysis to the case where Dj always lies in the interval [0, 2µj ] for each j.

Theorem 2. Suppose that for any 1 ≤ j ≤ m, and P[0 ≤ Dj ≤ 2µj ] = 1. Let γ = max1≤j≤m E[(Dj−

µj)
+], then we have

E[S(D,C )] ≥ (1− γ + γ2)

m∑
j=1

µj + γ2(µk1 − µkn).

In the interest of space, we provide the proof of Theorem 2 in the appendix. A special case of

Theorem 2 is when products demand is i.i.d. In that case, let µ1 = µ2 = ... = µm = 1, and we get

E[S(D,C )] ≥ (1− γ + γ2)m. (5)
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An implication of Theorem 2 is that if demand is i.i.d. and Dj always lies in the interval [0, 2µj ]

for each 1 ≤ j ≤ m, the expected sales of the long chain is at least 75% of the expected sales of

the full flexibility for any distribution. To see this, note that the minimal value for 1 − γ + γ2 is

minimized at γ = 1/2, and applying this to Equation 5, we obtain that E[S(D,C )] ≥ 3
4m. Because

m is an upper bound for the expected sales of full flexibility, we have that long chain the achieves

at least 75% of the expected sales of the full flexibility for any independent distribution under the

assumption that P[0 ≤ Dj ≤ 2µj ] = 1 for each j from 1 to m.

We also note that while Theorem 2 applies to unbalanced system with non-homogenous plant

and products, it is not as tight as the lower bound stated in Theorem 1. To see this, observe that

if k1 = k2 = ... = kn = 1, we have from Equation (5) that

E[S(D,C )] ≥ (1− γ + γ2)m = (1− γ

2
− γ

2
(1− 2γ))m,

while Theorem 1 gives us

E[S(D,C )] ≥ (1− γ

2
− γ

2
(1− 2γ)m−1)m.

Moreover, for any fixed m, the lower bound from Theorem 1 is tight, but the lower bound from

Theorem 2 is only tight when m = n = 2. Nevertheless, to the best of our knowledge, Theorem

2 gives us the first distribution-free lower bound for the chaining structure in unbalanced systems

with m > n.
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