
ar
X

iv
:1

41
2.

42
73

v3
  [

cs
.D

S]
  2

4 
M

ar
 2

01
6

Complexity of interval minmax regret scheduling on

parallel identical machines with total completion time

criterion

Maciej Drwala, Roman Rischkeb

aDepartment of Computer Science, Wroc law University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland
bCenter for Mathematics, Technische Universität München,

Boltzmannstr. 3, 85747 Garching bei München, Germany

Abstract

In this paper, we consider the problem of scheduling jobs on parallel identi-
cal machines, where the processing times of jobs are uncertain: only interval
bounds of processing times are known. The optimality criterion of a schedule is
the total completion time. In order to cope with the uncertainty, we consider
the maximum regret objective and we seek a schedule that performs well un-
der all possible instantiations of processing times. Although the deterministic
version of the considered problem is solvable in polynomial time, the minmax
regret version is known to be weakly NP-hard even for a single machine, and
strongly NP-hard for parallel unrelated machines. In this paper, we show that
the problem is strongly NP-hard also in the case of parallel identical machines.

Keywords: robust optimization; scheduling; uncertainty; computational
complexity

1. Introduction

Robust optimization has been applied to many combinatorial optimization
problems, since in practical applications input data to most problems can be
rarely given precisely. This is true in the context of scheduling, as in many
actual execution environments (e.g., computer systems, transportation, manu-
facturing) processing times of tasks are not known exactly, but their values can
fluctuate within certain bounds. Moreover, very often no good assumptions can
be made even regarding their probability distributions. In such circumstances
we would like to find a solution that is the best in the worst possible scenario
of events. Such solutions can be characterized in terms of the maximum regret
criterion [1, 2, 3]. Solutions that minimize the maximum regret are often much

Email addresses: maciej.drwal@pwr.edu.pl (Maciej Drwal), rischke@ma.tum.de
(Roman Rischke)

Preprint submitted to Elsevier May 15, 2018

http://arxiv.org/abs/1412.4273v3


more reliable than the ones obtained by ignoring parameter uncertainty. How-
ever, in many cases, finding a robust solution for uncertain data is more difficult
and may require more computational resources.

We apply the minmax regret approach to the problem of scheduling on paral-
lel identical machines to minimize the total completion time (sum of the comple-
tion times of all jobs) with interval uncertainty in the job processing times. The
problem under consideration is denoted interval minmax regret P ||

∑

Ci,
using the notation from standard scheduling theory. The deterministic version
of this problem can be solved in polynomial time by applying the shortest pro-

cessing time first rule [4]. However, its minmax regret version becomes NP-hard
even for a single machine, i.e., interval minmax regret 1||

∑

Ci. In [5] it is
shown that even when the midpoints of all intervals are equal and the number
of jobs is odd, finding an optimal robust sequence on a single machine is weakly
NP-hard. Surprisingly, for an even number of jobs this problem is polynomially
solvable. Thus the case in which the number of machines is given as part of
the input can be no easier. Recently, Conde [6] indicated a simple reduction
from the minmax regret assignment problem [7] of m jobs to m machines, which
implies that in case of m parallel unrelated machines (interval minmax re-

gret R||
∑

Ci) the problem is strongly NP-hard. However, this reduction does
not suffice to prove hardness for the case of parallel identical machines. In this
paper, we extend the aforementioned complexity results by showing that the
problem is strongly NP-hard even on identical parallel machines.

2. Problem formulation

In the scheduling problem P ||
∑

Ci we are given m identical parallel ma-
chines (processors) for processing n jobs, where each job i has an integer pro-
cessing time pi, i = 1, . . . , n. If not stated otherwise, we assume that all pi ≥ 0.
Each job has to be assigned to exactly one machine. Let πj denote a vector of
integers, where πj(k) is the index of the job scheduled on the jth machine as
the kth to the last (jobs on each machine are scheduled starting from time zero
and without idle times). Let nj denote the number of elements in πj , i.e., the
number of jobs assigned to machine j. The completion time of the job scheduled
as kth to the last on machine j is Cj,k =

∑nj

i=k pπj(i) (Cj,k = 0 if there is no
such job). The objective is to minimize the total sum of completion times (also
called the total flow time), expressed as:

F (π) =
m
∑

j=1

nj
∑

k=1

Cj,k =
m
∑

j=1

nj
∑

k=1

kpπj(k), (1)

where π = [π1, . . . , πm] is called a schedule. We will sometimes refer to this
problem formulation as the deterministic version of the scheduling problem.

The definition of the minmax regret version of this problem with interval
uncertainty, denoted as interval minmax regret P ||

∑

Ci, differs as fol-
lows. Instead of having exact processing times pi, we are now given only in-
tervals [p−i , p

+
i ], i = 1, . . . , n, to which the actual processing times belong. We

2



denote by S = [pS1 , . . . , p
S
n ] any vector that satisfies p−i ≤ pSi ≤ p+i for all

i = 1, . . . , n. Such a vector will be called a scenario. For any schedule π and
scenario S we define the value of regret as Z(π, S) := F (π, S) − F ∗(S), where
F (π, S) is the objective function (1) from the deterministic version of the prob-
lem P ||

∑

Ci with input data S, and F ∗(S) is the value of an optimal solution
of this problem. The objective of interval minmax regret P ||

∑

Ci is to
minimize over schedules the maximum of regret over scenarios:

Z∗ = min
π

max
S

(F (π, S)− F ∗(S)) . (2)

The above minmax regret formulation is a robust optimization formulation of
the scheduling problem. A schedule minimizing the maximum regret will be
called robust optimal.

3. Computation of maximum regret

The deterministic version of the considered problem is solvable in polynomial
time (see [4], Theorem 5.3.1). An optimal schedule can be obtained by first
sorting all n jobs in order of non-decreasing processing times, and then we
assign the first unassigned job in the list to the least loaded machine, i.e., to the
machine with the smallest current makespan. Repeating this procedure until
all jobs are assigned gives the desired schedule.

We show that for a fixed schedule π it is possible to compute the value
of maximum regret Z(π) = maxS Z(π, S) in polynomial time. The method
is analogous to the one presented in [6] for parallel unrelated machines, with
the main difference that in the identical machines case the input data contains
a single interval [p−i , p

+
i ] instead of m intervals given in the case of unrelated

machines. Thus we omit the simple proof of correctness of Formulas (3)–(5).
Let us encode a feasible solution π of the considered problem in terms of

binary variables x as follows: let xijk = 1 iff the ith job is processed on the jth
machine as the kth to the last.

For any feasible schedule x the maximum regret can be computed as:
m
∑

j=1

n
∑

i=1

n
∑

k=1

kp+i xijk −min
y

m
∑

j=1

n
∑

i=1

n
∑

k=1

cijk(x)yijk , (3)

where

cijk(x) = kp−i + (p+i − p−i )

m
∑

l=1

n
∑

r=1

min{r, k}xilr. (4)

The minimization in (3) is equivalent to the minimum assignment problem and
thus can be solved in polynomial time, using e.g. the Hungarian method [8].
Variable y is an n× (mn) permutation matrix.

Let xij = k iff xijk = 1, and yij = k iff yijk = 1. For a fixed x, given a
solution y of the minimization in (3), the worst-case scenario can be obtained
as:

pi =

{

p+i if
∑m

j=1(xij − yij) ≥ 0,

p−i otherwise.
(5)

3



4. Properties of optimal solutions

Denote by Z(π) the solution value of the interval minmax regret P ||
∑

Ci

problem for a schedule π = [π1, . . . , πm]. The maximum regret can be written
as:

Z(π) = max
S

(F (π, S)− F ∗(S)) = max
S

m
∑

j=1

(

Fj(πj , S)− F ∗
j (S)

)

=

m
∑

j=1

Zj(πj).

Here Fj(πj , S) =
∑nj

k=1 kp
S
πj(k)

is the sum of completion times of the jobs on

machine j under scenario S, nj = |πj | is the number of jobs assigned to ma-
chine j, F ∗

j (S) is the sum of completion times of the jobs on machine j in an
optimal solution under scenario S, and finally, Zj(πj) is the difference between
Fj(πj , S) and F ∗

j (S) for a scenario S that maximizes the total regret. Let π∗

denote an optimal robust solution, i.e., a schedule that minimizes Z.
Consider a worst-case scenario for any schedule π (see Eq. (5)). This scenario

defines an instance of the deterministic version of the problem. An optimal
solution of this deterministic problem is called a worst-case alternative for π.

From now on, we consider only instances satisfying the following assumption.

Assumption 1. The number of jobs n is divisible by the number of machines m,

i.e., there exists an integer n0 > 0 such that n = m · n0.

In particular, if m|n, then any schedule has a worst-case alternative with an
equal number of jobs on each machine. Moreover, the following is true.

Lemma 1. If m|n, then in an optimal robust schedule every machine is assigned

the same number of jobs.

Proof. Let π2 be any schedule with different number of jobs on at least two
machines. Under a fixed scenario S, there exists a schedule π1 with an equal
number of jobs on each machine, such that F (π1, S) < F (π2, S). This follows
from the fact that we can construct π1 from π2 by performing a sequence of
the following job displacements: from the machine with the longest schedule
remove the job from the first position and insert it at the first position on the
machine with the least number of jobs (the multipliers k in (1) of the remaining
jobs are unchanged, but the multiplier of the moved job may decrease; the last
such displacement must be performed between two machines that differ in the
number of jobs by 2, thus the multiplier of that job decreases by 1, and the
overall cost of the schedule decreases).

Let us denote by Sπ the worst-case scenario for π. Then we get:

Z(π1) = F (π1, S
π1)− F ∗(Sπ1) < F (π2, S

π1)− F ∗(Sπ1)

≤ F (π2, S
π2)− F ∗(Sπ2) = Z(π2).

The last inequality follows from the fact that Sπ1 is not necessarily the
worst-case scenario for π2, thus by definition the value of regret Z(π2, S

π1) is no

4



greater than that of the maximum regret, computed for the worst-case scenario
Sπ2 . Lemma 1 follows from the above reasoning, which indicates that for any
schedule with a different number of jobs on machines, there exists a strictly
better solution with an equal number of jobs on each machine, so only such a
solution could be optimal.

Justified by Lemma 1, we restrict in the rest of the paper to schedules with
an equal number of jobs on all machines, i.e., we consider m×n0 matrices, with
each row representing a sequence of jobs on a machine. In order to prove the
main result, we need the following lemmas.

Lemma 2. Given a schedule π, where π is an m×n0 matrix, consider a schedule

π′ obtained by switching a pair of elements in any column of π. Both schedules

have the same maximum regret.

Proof. Let kπ(i) be the position of the ith job on its machine, counting from
the last position on the machine (i.e., if i happens to be scheduled on machine
j, then the last position is nj , and 1 ≤ kπ(i) ≤ nj). Since every job has to be
assigned to exactly one position on one machine, then clearly the cost of the
schedule π under the scenario S is F (π, S) =

∑n

i=1 k
π(i)pSi . Let σ be the worst-

case alternative for π, and let kσ(i) be the position to the last of the ith job on
its machine in the worst-case alternative. Let Sπ be the worst-case scenario.
Then the maximum regret can be expressed as:

Z(π) = F (π, Sπ)− F (σ, Sπ) =
n
∑

i=1

(

kπ(i) − kσ(i)
)

pS
π

i . (6)

The worst-case scenario Sπ can be found by taking pS
π

i = p+i if kπ(i)−kσ(i) ≥ 0,
and pS

π

i = p−i otherwise. Values kπ(i) and kσ(i) can be easily determined given
π and σ.

Observe that in the Eq. (6) there are no machine indices associated with jobs.
The value of the maximum regret can be computed knowing only positions of
jobs on machines, while the assignment of jobs to machines is irrelevant. Thus
we may arbitrarily permute jobs within columns of π obtaining schedules with
the same maximum regret and the same worst-case alternative.

Lemma 3. There exists an optimal robust schedule of interval minmax re-

gret P ||
∑

Ci such that for any machine j = 1, . . . ,m the schedule on ma-

chine j is the same as the optimal robust schedule in the interval minmax

regret 1||
∑

Ci problem.

Proof. According to Lemma 2, given any schedule π, it is possible to construct
an equivalent schedule π′ by permuting jobs within a column of π arbitrarily.
The worst-case scenario for π′ is identical to the worst-case scenario of π due
to Lemma 2 and Eq. (5). The worst-case alternative for π′ can be obtained by

5



sorting allm·n0 processing times of the worst-case scenario for π′ in an ascending
order, then grouping them into n0 consecutive sets of m numbers, so that jobs
from the same group occupy the ith position on a machine, i = 1, . . . , n0 (again,
jobs within a group may be assigned to machines arbitrarily without changing
the value of the solution). By σ we denote the worst-case alternative for π.

Given a schedule π and its worst-case alternative σ, we construct a schedule
π′ and its worst-case alternative σ′, such that:

(i) solution π′ has the same maximum regret as π and

(ii) for each machine j = 1, . . . ,m, each job processed in π′ on the jth machine
is also processed on the jth machine in its worst-case alternative σ′.

See Fig. 1 for an example. If we can prove that such a construction always
exists, then we can argue that we may restrict to the single machine problem.

To accomplish this, we construct an n0 × n0 matrix M with the following
properties. Let xi and yi be the position (column) of job i in π and σ, respec-
tively. Then job i is inserted into M at (xi, yi). Note that several jobs can
be at the same position in M , but in every row and in every column of M we
have exactly m jobs. Empty positions in M are marked with an empty sign.
Matrix M tells us that if two jobs i1 and i2 are in the same row or column of
M , then they are in conflict, i.e., i1 and i2 cannot run on the same machine
in π′ and σ′. The question is now if we can color the jobs in M with m colors
such that the jobs of each row and of each column have different colors. If two
jobs have the same color, then they run on the same machine in π′ and σ′, the
position remains the same as in π and σ.

We give a positive answer and show it by induction on m. Clearly, if we
have only one machine, then we need only one color (machine). Suppose the
statement holds for m − 1 machines. Assume for the moment that we can
choose a set of jobs from M so that we have exactly one job in each row and
each column. Removing the chosen jobs from M gives the m− 1 case, which by
induction can be (m − 1)-colored. The chosen jobs can be colored with a new
color, yielding an m-coloring.

Now we need to show that it is possible to select a set of jobs so that we
have exactly one job in each row and each column of M . This can be shown
by Hall’s marriage theorem [9]. We associate with our matrix M the following
bipartite graph. We create a vertex for each row and each column of M and
connect the vertex for row i with the vertex for column j if the matrix M has
at least one element at position (i, j). If this graph has a perfect matching,
then we can select a set of jobs so that we have exactly one job in each row
and each column. Assume, by contradiction, that this graph has no perfect
matching. Then, by Hall’s marriage theorem, there is a set R of row vertices
such that the neighbouring set N(R) of column vertices is strictly smaller, i.e.,
|N(R)| < |R|. Consider the total number τ of jobs being in the rows and
columns which are represented by R and N(R), i.e., we consider the submatrix
formed by rows R and columns N(R). In every row from R there are m jobs
and, by the definition of the graph, they are all in the columns associated with
N(R). That is, τ = m|R|. In every column of N(R) there are at most m jobs

6



when restricting to rows in R. Therefore, we have that τ ≤ m|N(R)|, which
contradicts our assumption that |N(R)| < |R|, since m > 1.

Let π∗ be an optimal robust solution. We have shown that it is possible
to obtain a schedule π′ which has the same total processing time as π∗ and
the property that all jobs from the jth machine in π′ also appear on the jth
machine in the worst-case alternative for π′. Thus π′ is also optimal robust and
we may consider independently each schedule π′

j on each jth machine. For any
such machine the minimum of Zj(πj) ≥ 0 is obtained if πj is the optimal robust
solution of the single machine scheduling problem interval minmax regret

1||
∑

Ci.

Figure 1: Example of a pair of schedule π and its worst-case alternative σ, along with a
corresponding pair π

′, σ′ satisfying the condition of the Lemma 3; m = 4 machines, n0 = 4
jobs on each machine (numbers denote the indices of jobs).

π =









1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16









σ =









1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16









π′ =









1 6 11 16
2 5 12 15
3 8 9 14
4 7 10 13









σ′ =









1 6 11 16
5 2 15 12
9 14 3 8
13 10 7 4









Let us take a closer look at the interval minmax regret 1||
∑

Ci problem.
Observe that its formulation remains valid when the bounds of intervals p−i and
p+i are arbitrary (possibly negative) integers, and that adding the same constant
to all bounds of intervals does not change the value of the maximum regret [5].

Consider instances with equal midpoints c of all job processing time intervals,
that is [p−i , p

+
i ] = [c − pi, c + pi], for all i = 1, . . . , n. Due to [5] we know that

an optimal solution for a single machine can be obtained as:
(a) for an even number of jobs n = 2k on a machine, Z(π∗) = k

∑

i pi,
(b) for an odd number of jobs n = 2k + 1 on a machine we have:

Z(π∗) = k

n
∑

i=1

pi +max{P1, P2}, (7)

where (P1, P2) is a solution of the optimization version of the balanced-

partition problem, i.e., P1 and P2 are the sums of two disjoint k-element
subsets of the set of 2k smallest values pi, and the value |P1 − P2| is minimal
among all such 2-partitions. The job with the widest interval is always inserted
in the middle of the permutation and does not appear in P1 or P2. The re-
maining jobs are scheduled in such a way that the wider the interval, the closer

7



the job is to the middle of the permutation (in [5] authors call such schedules
uniform).

5. Problem complexity

The main result in this paper, stated as Theorem 2, is based on the reduction
from a variant of a set partitioning problem that is strongly NP-complete.

Consider an instance of the 3-partition problem: given is a set of 3m
positive integers ai, i = 1, . . . , 3m, and an integer B, such that

∑3m
i=1 ai = mB,

and for all i, B/4 < ai < B/2. The question is: can we partition the given set
of integers into m disjoint triplets of integers, such that each triplet sums up to
exactly B?

We define the 4-partition-into-pairs problem (the 4-pp problem for short)
as follows: given is a set of 4m positive integers ai, i = 1, . . . , 4m. The question
is whether it is possible to partition the given set of integers into m disjoint
quadruplets of integers A1, . . . , Am, such that there exists a bijective function
f : {1, . . . ,m} → {1, . . . ,m}, such that:

∀i∈{1,...,m} s(Ai) = s(Af(i)) and f(i) 6= i and f(f(i)) = i,

where s(A) is the sum of elements in A. In other words, we want to partition
the set of integers into m 4-sets in such a way that all the 4-sets can be arranged
in distinct pairs of equal sums.

Theorem 1. The 4-pp problem is strongly NP-complete.

Proof. We reduce 3-partition to 4-pp. Given an instance of 3-partition with
3m elements and the target sum B, let us consider the instance of 4-pp with
the following input data:

(a) all integers from the instance of 3-partition, denoted a1, a2, . . . , a3m,
(b) for j = 1, 2, . . . ,m, an integer 5j+1B,
(c) for j = 1, 2, . . . ,m, a group of four integers (5j+1 + 1)B/4.
In the obtained instance we have 8m integers and the solution consists of

2m disjoint quadruplets.
Suppose the instance of 3-partition is positive. Denote its solution (m

triplets of integers): A1, A2, . . . , Am. Then clearly the obtained instance of 4-pp
is positive, since we take each triplet of integers Aj and add one integer 5j+1B
from the set (b) to obtain a 4-set with the sum s(Aj ∪{5j+1B}) = (5j+1 +1)B,
for j = 1, . . . ,m. The corresponding 4-set with an equal sum is just the four
integers (5j+1 + 1)B/4 from the set (c).

Suppose the instance of 3-partition is negative. Then in the set (a) in
every possible combination of triplets there would always be at least one triplet
with a sum different than B, strictly between 3B/4 and 3B/2. We argue that
it is not possible to match every 4-set with another one, so that these matches
are all distinct, and both 4-sets in every pair have equal sums.

Given a 4-set S, if there exists a 4-set S′ such that s(S) = s(S′), we say that
S′ is a match for S.

8



We first show that no match is possible for any 4-set containing more than
one (b)-element. To see this, consider the representations of the given numbers
in numeral system with the base 5, after dividing all the numbers by B. Each el-
ement from (b) is represented by a distinct digit 1. Numbers 1

45
k are represented

by the first k digits 1 in the integral part, numbers 1
25

k are represented by the
first k digits 2 in the integral part, and numbers 3

45
k are represented by the first

k digits 3 in the integral part, where k ≥ 2 (all these numbers also have digits
in their fractional parts that continue indefinitely). For example, (5k + 1)/4 is
represented by (11 . . . 1.2̄)5, where there are k digits 1 in the integral part.

Sum of any number of (b)-elements with up to 3 (c)-elements cannot result in
the carry in integral digits, except at the first integral digit and in the fractional
digits. Since all ai < B/2, adding elements from the set (a) may affect only the
first integral digit and the fractional digits.

It is clear that no match is possible for any 4-set consisting of only (b)-
elements, since they are all distinct powers of 5.

Moreover, if there are three (b)-elements and one element from either (a) or
(c) in S, then a match would require that S′ contains the same four elements
as S, but the (b)-elements are all unique.

Denote the elements from (b) by b(j) = 5j+1B and the elements from (c)
by c(j) = (5j+1 + 1)B/4. If there are two (b)-elements in S, then in order to
find a match we need to have S′ without any (b)-elements. The only way to
accomplish this is to use a (c)-element in S′ that can be expressed as the sum
of a (b)-element and a (c)-element in S, that is, c(j+1) = c(j)+ b(j). But then
we have S = {b(j), b(j+1), c(j), ai1} and S′ = {c(j+2), ai2 , ai3 , ai4}, and since
B/4 < ai < B/2, then no such match is possible. The same is true if we replace
ai1 in S by a (c)-element, as S′ would then have to contain another (c)-element.

Consequently, only single (b)-elements in any 4-set S are possible. But again,
examining a base-5 representation of s(S) containing element b(j), we can see
that a match for S must have the same digit at the (j+1)-th position set. This
can be obtained only in two ways:

(i) by using c(j + 1) = b(j) + c(j) and matching S with a set S′ containing
element c(j + 1),

(ii) by matching S with S′ consisting of four elements c(j).
Suppose we have one match of the former type for a 4-set S containing b(j).

Then element c(j + 1) cannot be used in a match of the second type, because
all four elements c(j + 1) are needed for that and one has already been used.
But then b(j + 1) needs to be matched to a set containing c(j +2). Continuing
this reasoning, we conclude that we would need to use the first type of match
for a set with the element b(m), but this is impossible, since element c(m + 1)
does not exist.

Thus a set S containing b(j) needs to be matched to S′ consisting of four
elements c(j), for all j = 1, . . . ,m. Then s(S′) has exactly two digits 1 in the
base-5 representation: the first digit, and the (j + 1)-th digit. But to have the
first digit 1 in s(S), there must be three (a)-elements in S that sum up to B.

Since there are m (b)-elements, then m 4-sets must contain a single (b)-
element. But that requires that there are also m triplets of (a)-elements that

9



sum up to B each. This contradicts the assumption that there is no solution
for the considered instance of the 3-partition problem.

Theorem 2. The interval minmax regret P ||
∑

Ci problem, in which the

number of machines is given as a part of the input, is strongly NP-hard.

Proof. Given an instance of 4-pp with a set of 4m′ integers a1, . . . , a4m′ , let
us construct an instance of the interval minmax regret P ||

∑

Ci problem
with m = m′/2 machines and n = 4m′ + m′/2 jobs (we assume w.l.o.g. that
m′ is even): for each integer ai in the input data of 4-pp we add a job with a
processing interval [B − ai, B + ai] to the set of jobs, and additionally, we add
m jobs with processing intervals [0, 2B], where B is an integer greater than the
sum of 4 largest integers in the given input data.

Each processing interval is a subset of [0, 2B], and midpoints of all processing
intervals are the same and equal to B., i.e., (p−i + p+i )/2 = B.

We use Lemma 3 and property (7), which imply that a single machine with
9 jobs yields the optimal maximum regret:

Zj(πj) = 4(

9
∑

i=1

aπj(i)) + max{s(Aj1), s(Aj2)},

where s(Aj1) = aπj(1) + aπj(2) + aπj(3) + aπj(4), and s(Aj2) = aπj(6) + aπj(7) +
aπj(8) + aπj(9).

Denote C =
∑4m′

i=1 ai. We claim that the instance of 4-pp has a solution if
and only if Z(π∗) = 4mB + 9C/2.

Assume that there exists a solution of 4-pp.
We know that for each single machine, given 9 jobs on that machine, the

minimal maximum regret is obtained when the widest job is in the middle of the
schedule (position 5), and 4-element subsets on both sides of the widest job have
equal sums (this is always possible if there exists a solution of 4-pp: we take any
two quadruplets of jobs with matching sums of values ai = p+i −B = p−i +B).

We show that in an optimal robust solution exactly one job [0, 2B] must be
assigned to each machine (such job is consequently always in the middle of each
permutation). Then given two 4-job sets with an equal sum Bj = s(Aj1) =
s(Aj2) on each machine j, with Bj ≤ B, we obtain the total maximum regret:

Z∗ =
m
∑

j=1

(4(2Bj +B) +Bj)) = 4mB + 9
m
∑

j=1

Bj = 4mB + 9C/2.

Suppose for the sake of contradiction that a schedule in which at least one
machine is not assigned any [0, 2B] jobs is optimal robust. By the pigeonhole
principle, there must be a machine with more than one [0, 2B] job. Denote by
1 the machine with more than one [0, 2B] jobs, and by 2 the machine with no
[0, 2B] jobs.

10



Let us construct another schedule by exchanging one [0, 2B] job from ma-
chine 1 with job [B − a,B + a] from machine 2, a < B.

Let Z1 be the regret on machine 1 before the exchange, and Z ′
1 be the regret

on machine 1 after the exchange:

Z1 = 4(s(A11) +B + s(A12)) + s(A11),

Z ′
1 = 4(s(A11 \ {B} ∪ {a}) +B + s(A12)) + s(A11 \ {B} ∪ {a}).

After the exchange the regret on machine 1 has decreased by 5(B−a). Similarly,
let Z2 be the regret on machine 2 before the exchange, and Z ′

2 be the regret on
machine 2 after the exchange:

Z2 = 4(s(A21) + a′ + s(A22)) + s(A21),

Z ′
2 = 4(s(A21 \ {a} ∪ {a′}) +B + s(A22)) + s(A21 \ {a} ∪ {a′}),

where a′ corresponds to the widest interval [B − a′, B + a′] of a job on machine
2 before the exchange, a′ < B. After the exchange the regret on machine 2 has
increased by 4(B − a) − a + a′. Consequently, the new schedule has less total
regret by B − a′, thus the initial schedule could not be optimal. By repeating
the above job exchange operation we conclude that an optimal schedule must
have exactly one [0, 2B] job on each machine.

Now assume that there is no solution of 4-pp. Then it is not possible to have
two 4-job sets with an equal sum on each of m machines, and consequently, at
least one machine gives the regret strictly greater than 4B + 9Bj . Let this be
the machine with index j = 1. To that machine there are assigned two 4-job
sets, with the corresponding values ai denoted A11 and A12 respectively, so that
s(A11) > s(A12). Let us denote the total value of these 8 jobs s(A11)+s(A12) =
2B1, for some B1 > 0. The regret generated by this machine is:

Z1 = 4(s(A11) + s(A12) +B) + s(A11) = 4B + 8B1 + s(A11).

Since s(A11) > B1, and
∑m

j=1 Bj = C/2, the total regret is:

Z1 +

m
∑

j=2

(4B + 9Bj) = 4mB + 9

m
∑

j=2

Bj + 8B1 + s(A11)

> 4mB + 9

m
∑

j=1

Bj = 4mB + 9C/2 = Z∗.

It follows that given a polynomial time algorithm for interval minmax regret

P ||
∑

Ci we would be able to decide 4-pp in polynomial time.

6. Conclusions

In this paper, we proved the strong NP-hardness of the interval minmax

regret P ||
∑

Ci problem, the minmax regret version of one of the basic mul-
tiprocessor scheduling problems. It was shown how to compute the maximum

11



regret of a schedule in polynomial time, and how the problem on parallel identi-
cal machines relates to its single machine variant. An interesting open problem
is to settle the complexity status of the single machine version of the considered
problem, when the input data is encoded in unary. Another future research
direction is to design approximation algorithms for robust scheduling problems
that guarantee approximation ratio below two [10], or prove that it is impossible
(unless P=NP).

References

[1] P. Kouvelis, G. Yu, Robust discrete optimization and its applications,
Springer, 1997.

[2] H. Aissi, C. Bazgan, D. Vanderpooten, Min–max and min–max regret ver-
sions of combinatorial optimization problems: A survey, European Journal
of Operational Research 197 (2) (2009) 427–438.

[3] A. Kasperski, Discrete optimization with interval data: Minmax regret and
fuzzy approach, Springer, 2008.

[4] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer, 2012.

[5] V. Lebedev, I. Averbakh, Complexity of minimizing the total flow time with
interval data and minmax regret criterion, Discrete Applied Mathematics
154 (15) (2006) 2167–2177.

[6] E. Conde, A MIP formulation for the minmax regret total completion time
in scheduling with unrelated parallel machines, Optimization Letters 8 (4)
(2014) 1577–1589.

[7] H. Aissi, C. Bazgan, D. Vanderpooten, Complexity of the min–max and
min–max regret assignment problems, Operations Research Letters 33 (6)
(2005) 634–640.

[8] Christos Papadimitriou, Kenneth Steiglitz. Combinatorial optimization: Al-
gorithms and complexity. Courier Corporation, 1998.

[9] P. Hall, On representatives of subsets, Journal of the London Mathematical
Society 10 (1) (1935) 26–30.

[10] A. Kasperski, P. Zieliński, A 2-approximation algorithm for interval data
minmax regret sequencing problems with the total flow time criterion, Op-
erations Research Letters 36 (3) (2008) 343–344.

12


	1 Introduction
	2 Problem formulation
	3 Computation of maximum regret
	4 Properties of optimal solutions
	5 Problem complexity
	6 Conclusions

