The Douglas-Rachford algorithm in the affine-convex case

Heinz H. Bauschke, Minh N. Dao, ${ }^{\dagger}$ and Walaa M. Moursi ${ }^{\ddagger}$

May 23, 2015

Abstract

The Douglas-Rachford algorithm is a simple yet effective method for solving convex feasibility problems. However, if the underlying constraints are inconsistent, then the convergence theory is incomplete. We provide convergence results when one constraint is an affine subspace. As a consequence, we extend a result by Spingarn from halfspaces to general closed convex sets admitting least-squares solutions.

2010 Mathematics Subject Classification: Primary 90C25; Secondary 49M27, 65K05, 65K10.
Keywords: Affine subspace, convex feasibility problem, Douglas-Rachford splitting operator, halfspace, least-squares solution, normal cone operator, projection, Spingarn's method.

1 Introduction

We shall assume throughout this paper that X is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$, and that

$$
\begin{equation*}
A \text { and } B \text { are nonempty closed convex (not necessarily intersecting) subsets of } X \text {. } \tag{1}
\end{equation*}
$$

Consider the problem of finding a best approximation pair relative to A and B (see [3], [9]), that is to

$$
\begin{equation*}
\text { find }(a, b) \in A \times B \text { such that }\|a-b\|=\inf \|A-B\| . \tag{2}
\end{equation*}
$$

[^0]Recall that the Douglas-Rachford splitting operator [8] for the ordered pair of sets (A, B) is defined by

$$
\begin{equation*}
T=T_{(A, B)}:=\frac{1}{2}\left(\mathrm{Id}+R_{B} R_{A}\right)=\mathrm{Id}-P_{A}+P_{B} R_{A} \tag{3}
\end{equation*}
$$

where P_{A} is the projector onto A and $R_{A}:=2 P_{A}$ - Id is the reflector onto A. Let $x \in X$. In the consistent case, when $Z_{A, B}:=A \cap B \neq \varnothing$, the "governing sequence" $\left(T^{n} x\right)_{n \in \mathbb{N}}$ generated by iterating the Douglas-Rachford operator converges weakly to a fixed point ${ }^{1}$ of T (see [8]), and the "shadow sequence" $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to a point in $A \cap B$ (see [12] or [2, Theorem 25.6]). For further information on the Douglas-Rachford algorithm (DRA), see also [8] and [6].

In [3], the authors showed that in the inconsistent case, when $A \cap B=\varnothing,\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ remains bounded with the weak cluster points of $\left(P_{A} T^{n} x, P_{B} P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ being best approximation pairs relative to A and B whenever $g:=P_{\overline{B-A}} 0 \in B-A$. The goal of this paper is to study the case when $A \cap B$ is possibly empty in the setting that one of the sets A and B is a closed affine subspace of X. Our results show that the shadow sequence will always converge to a best approximation solution in $A \cap(B-g)$. As a consequence we obtain a far-reaching refinement of Spingarn's splitting method introduced in [11].

2 Main results

We start with the following key lemma, which is well known when $A=X$.
Lemma 2.1. Let A be a closed linear subspace of X, let C be a nonempty closed convex subset of A, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to C, i.e., $(\forall n \in \mathbb{N})(\forall c \in C)\left\|x_{n+1}-c\right\| \leq\left\|x_{n}-c\right\|$, and that all its weak cluster points of $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ lie in C. Then $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to some point in C.

Proof. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded (by e.g., [2, Proposition 5.4(i)]) and P_{A} is (firmly) nonexpansive we learn that $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ is bounded and by assumption, its weak cluster points lie in $C \subseteq A$. Now let c_{1} and c_{2} be in C. On the one hand the Fejér monotonicity of $\left(x_{n}\right)_{n \in \mathbb{N}}$ implies the convergence of the sequences $\left(\left\|x_{n}-c_{1}\right\|^{2}\right)_{n \in \mathbb{N}}$ and $\left(\left\|x_{n}-c_{2}\right\|^{2}\right)_{n \in \mathbb{N}}$ by e.g., [2, Proposition 5.4(ii)]. On the other hand, expanding and simplifying yield $\left\|x_{n}-c_{1}\right\|^{2}-\left\|x_{n}-c_{2}\right\|^{2}=$ $\left\|x_{n}\right\|^{2}+\left\|c_{1}\right\|^{2}-2\left\langle x_{n}, c_{1}\right\rangle-\left\|x_{n}\right\|^{2}-\left\|c_{2}\right\|^{2}+2\left\langle x_{n}, c_{2}\right\rangle=\left\|c_{1}\right\|^{2}-2\left\langle x_{n}, c_{1}-c_{2}\right\rangle-\left\|c_{2}\right\|^{2}$, which in turn implies that $\left(\left\langle x_{n}, c_{1}-c_{2}\right\rangle\right)_{n \in \mathbb{N}}$ converges. Since $c_{1} \in A$ and $c_{2} \in A$ we have

$$
\begin{equation*}
\left\langle x_{n}, c_{1}-c_{2}\right\rangle=\left\langle x_{n}, P_{A} c_{1}-P_{A} c_{2}\right\rangle=\left\langle x_{n}, P_{A}\left(c_{1}-c_{2}\right)\right\rangle=\left\langle P_{A} x_{n}, c_{1}-c_{2}\right\rangle . \tag{4}
\end{equation*}
$$

Now assume that $\left(P_{A} x_{k_{n}}\right)_{n \in \mathbb{N}}$ and $\left(P_{A} x_{l_{n}}\right)_{n \in \mathbb{N}}$ are subsequences of $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ such that $P_{A} x_{k_{n}} \rightharpoonup c_{1}$ and $P_{A} x_{l_{n}} \rightharpoonup c_{2}$. By the uniqueness of the limit in (4) we conclude that $\left\langle c_{1}, c_{1}-c_{2}\right\rangle=\left\langle c_{2}, c_{1}-c_{2}\right\rangle$ or equivalently $\left\|c_{1}-c_{2}\right\|^{2}=0$, hence $\left(P_{A} x_{n}\right)_{n \in \mathbb{N}}$ has a unique weak cluster point which completes the proof.

[^1]From now on we work under the assumption that

$$
\begin{equation*}
g=g_{(A, B)}:=P_{\overline{B-A}} 0 \in B-A \tag{5}
\end{equation*}
$$

In view of (5) we have

$$
\begin{equation*}
E=E_{(A, B)}:=A \cap(B-g) \neq \varnothing \quad \text { and } \quad F=F_{(A, B)}:=(A+g) \cap B \neq \varnothing . \tag{6}
\end{equation*}
$$

For sufficient conditions on when $g \in B-A$ (or equivalently the sets E and F are nonempty) we refer the reader to [1, Facts 5.1].

Lemma 2.2. Let $x \in X$. Then the following hold:
(i) If $C \in\{A, B\}$ is a closed affine subspace of X, then $g \in(C-C)^{\perp}$.
(ii) The sequence $\left(T^{n} x-n g\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to E.
(iii) The sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and its weak cluster points lie in E.
(iv) If B is a closed affine subspace, then $P_{B} T^{n} x-P_{A} T^{n} x \rightarrow g$, the sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and all weak cluster points lie in F.
(v) If $E=\{\bar{x}\}$ and hence $F=\{\bar{x}+g\}$, then $P_{A} T^{n} x \rightharpoonup \bar{x}$ and $P_{B} T^{n} x \rightharpoonup \bar{x}+g$.

Proof. (i), See [3, Corollary 2.7 and Remark 2.8(ii)]. (ii) It follows ${ }^{2}$ from [3, Theorem 3.5] that $E+N_{\overline{A-B}}(-g) \subseteq \operatorname{Fix}(-g+T):=\{x \in X \mid x=-g+T x\} \subseteq-g+E+N_{\overline{A-B}}(-g)$. Consequently, $E \subseteq \operatorname{Fix}(-g+T)$. Moreover, [3, Remark 3.15] implies that the sequence ($T^{n} x-$ $n g)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $\operatorname{Fix}(-g+T)$. (iii) See [3, Theorem 3.13(iii)(b)]. (iv) See [3, Theorem 3.17]. (v). This follows from (iii) and (iv),

We are now ready for our main results.
Theorem 2.3 (convergence of DRA when A is a closed affine subspace). Suppose that A is a closed affine subspace of X, and let $x \in X$. Then the following hold:
(i) The shadow sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $E=A \cap(B-g)$.
(ii) No general conclusion can be drawn about the sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$.

Proof. (i); After translating the sets A and B by a vector, if necessary, we can and do assume that A is a closed linear subspace of X. Using Lemma 2.2(i) we learn that $(\forall n \in \mathbb{N}) P_{A} T^{n} x=$ $P_{A}\left(T^{n} x-n g\right)$. Note that $E=A \cap(B-g) \subseteq A$. Now combine Lemma 2.2 (ii) $+($ (iii) and Lemma 2.1 with $C=E$, and $\left(x_{n}\right)_{n \in \mathbb{N}}$ replaced by $\left(T^{n} x-n g\right)_{n \in \mathbb{N}}$. (ii); In fact, $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ can be unbounded (see Example 2.4) or bounded (e.g., when $A=B=X$).

[^2]Example 2.4. Suppose that $X=\mathbb{R}^{2}$, that $A=\mathbb{R} \times\{0\}$ and that $B=\operatorname{epi}(|\cdot|+1)$. Then $A \cap B=\varnothing$ and for the starting point $x \in[-1,1] \times\{0\}$ we have $(\forall n \in\{1,2, \ldots\}) T^{n} x=$ $(0, n) \in B$ and therefore $\left\|P_{B} T^{n} x\right\|=\left\|T^{n} x\right\|=n \rightarrow \infty$.

Proof. Let $x=(\alpha, 0)$ with $\alpha \in[-1,1]$. We proceed by induction. When $n=1$ we have $T(\alpha, 0)=P_{A^{\perp}}(\alpha, 0)+P_{B} R_{A}(\alpha, 0)=P_{B}(\alpha, 0)=(0,1)$. Now suppose that for some $(n \in\{1,2, \ldots\}) T^{n} x=(0, n)$. Then $T^{n+1} x=T(0, n)=P_{A^{\perp}}(0, n)+P_{B} R_{A}(0, n)=$ $(0, n)+P_{B}(0,-n)=(0, n+1) \in B$.

When B is an affine subspace, the convergence theory is even more satisfying:
Theorem 2.5 (convergence of DRA when B is a closed affine subspace). Suppose that B is a closed affine subspace of X, and let $x \in X$. Then the following hold:
(i) The shadow sequence $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $E=A \cap(B-g)$.
(ii) The sequence $\left(P_{B} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to some point in $F=(A+g) \cap B$.

Proof. (ii) Combine Theorem 2.3(i)] and [5, Corollary 2.8(i)]. (i); Combine (ii) and Lemma 2.2(iv).

It is tempting to conjecture that Theorem 2.3)(i) remains true when A is just convex and not necessarily a subspace. While this statement may be tru ${ }^{3}$, the proof of Theorem 2.3)(i) does not admit such an extension:

Example 2.6. Suppose that $X=\mathbb{R}$, that $A=[1,2]$ and that $B=\{0\}$. Then $g=-1$ and $E=\{1\}$. Let $x=4$. We have $\left(T^{n} x\right)_{n \in \mathbb{N}}=(4,2,0,-1,-2,-3, \ldots), P_{A} T^{n} x \rightarrow 1 \in E$ and $(\forall n \in\{2,3,4, \ldots\}) T^{n} x-n g=-(n-2)-n(-1)=2 \in A$ and $P_{A}\left(T^{n} x-n g\right)=2 \in A \backslash E$. In the proof of Theorem 2.3)(i), we had $\left(P_{A} T^{n} x\right)_{n \in \mathbb{N}}=\left(P_{A}\left(T^{n} x-n g\right)\right)_{n \in \mathbb{N}}$ which is strikingly false here.

3 Spingarn's method

In this section we discuss the problem to find least-squares solutions of $\bigcap_{i=1}^{M} C_{i}$, i.e., to

$$
\begin{equation*}
\text { find minimizers of } \sum_{i=1}^{M} d_{C^{\prime}}^{2} \tag{7}
\end{equation*}
$$

where C_{1}, \ldots, C_{M} are nonempty closed convex (possibly nonintersecting) subsets of X with corresponding distance functions $d_{C_{1}}, \ldots, d_{C_{M}}$. Now consider the product Hilbert space $\mathbf{X}:=$ X^{M}, with the inner product $\left(\left(x_{1}, \ldots, x_{M}\right),\left(y_{1}, \ldots, y_{M}\right)\right) \mapsto \sum_{i=1}^{M}\left\langle x_{i}, y_{i}\right\rangle$. We set

$$
\begin{equation*}
\mathbf{A}=\{(x, \ldots, x) \in \mathbf{X} \mid x \in X\} \quad \text { and } \quad \mathbf{B}=C_{1} \times \cdots \times C_{M} \tag{8}
\end{equation*}
$$

[^3]Then the projections of $\mathbf{x}=\left(x_{1}, \ldots, x_{M}\right) \in \mathbf{X}$ onto \mathbf{A} and \mathbf{B} are given by, respectively, $P_{\mathbf{A}} \mathbf{x}=$ $\left(\frac{1}{M} \sum_{i=1}^{M} x_{i}, \ldots, \frac{1}{M} \sum_{i=1}^{M} x_{i}\right)$ and $P_{\mathbf{B}} \mathbf{X}=\left(P_{C_{1}} x_{1}, \ldots, P_{C_{M}} x_{M}\right)$. Now assume that

$$
\begin{equation*}
\mathbf{g}=\left(g_{1}, \ldots, g_{M}\right):=P_{\overline{\mathbf{B}-\mathbf{A}}} 0 \in \mathbf{B}-\mathbf{A} . \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathbf{E}:=\mathbf{A} \cap(\mathbf{B}-\mathbf{g}) \neq \varnothing, \quad \text { and } \quad(x, \ldots, x) \in \mathbf{A} \cap(\mathbf{B}-\mathbf{g}) \Leftrightarrow x \in \bigcap_{j=1}^{M}\left(C_{j}-g_{j}\right) . \tag{10}
\end{equation*}
$$

Using [1. Section 6], we see that the M-set problem (7) is equivalent to the two-set problem

$$
\begin{equation*}
\text { find least-squares solutions of } \mathbf{A} \cap \mathbf{B} \text {. } \tag{11}
\end{equation*}
$$

It follows from (9) and (10) that \mathbf{g} is the unique vector in $\overline{\mathbf{B}-\mathbf{A}}$ that satisfies

$$
\left.\begin{array}{c}
\left(w_{1}, w_{2}, \ldots, w_{M}\right) \neq\left(g_{1}, g_{2}, \ldots, g_{M}\right) \tag{12}\\
\text { and } \bigcap_{j=1}^{M}\left(C_{j}-w_{j}\right) \neq \varnothing
\end{array}\right\} \Rightarrow \sum_{j=1}^{M}\left\|w_{j}\right\|^{2}>\sum_{j=1}^{M}\left\|g_{j}\right\|^{2} .
$$

We have the following result for the problem of finding a least-squares solution for the intersection of a finite family of sets.

Corollary 3.1. Suppose that C_{1}, \ldots, C_{M} are closed convex subsets of X. Let $\mathbf{T}=I d-P_{\mathbf{A}}+P_{\mathbf{B}} R_{\mathbf{A}}$, let $\mathbf{x} \in \mathbf{X}$ and recall assumption (9). Then the shadow sequence $\left(P_{\mathbf{A}} \mathbf{T}^{n} \mathbf{x}\right)_{n \in \mathbb{N}}$ converges to $\overline{\mathbf{x}}=$ $(\bar{x}, \ldots, \bar{x}) \in \mathbf{A} \cap(\mathbf{B}-\mathbf{g})$, where $\bar{x} \in \bigcap_{j=1}^{M}\left(C_{j}-g_{j}\right)$ and \bar{x} is a least-squares solution of (7).

Proof. Combine Theorem 2.3 with (12) and (10).
Remark 3.2. When we particularize Corollary 3.1 from convex sets to halfspaces and X is finite-dimensional, we recover Spingarn's [11, Theorem 1]. Note that in this case, in view of [1. Facts 5.1(ii)] we have $\mathbf{g} \in \mathbf{B}-\mathbf{A}$. Recall that Spingarn used the following version of his method of partial inverses from [10]:

$$
\left(\mathbf{a}_{0}, \mathbf{b}_{0}\right) \in \mathbf{A} \times \mathbf{A}^{\perp} \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad \begin{cases}\mathbf{a}_{n}^{\prime}=P_{\mathbf{B}}\left(\mathbf{a}_{n}+\mathbf{b}_{n}\right), & \mathbf{b}_{n}^{\prime}=\mathbf{a}_{n}+\mathbf{b}_{n}-\mathbf{a}_{n}^{\prime} \tag{13}\\ \mathbf{a}_{n+1}=P_{\mathbf{A}} \mathbf{a}_{n}^{\prime}, & \mathbf{b}_{n+1}=\mathbf{b}_{n}^{\prime}-P_{\mathbf{A}} \mathbf{b}_{n}^{\prime}\end{cases}
$$

This method is the DRA in \mathbf{X}, applied to \mathbf{A} and \mathbf{B} with starting point $\left(\mathbf{a}_{0}-\mathbf{b}_{0}\right)$ (see, e.g., [4, Lemma 2.17]).

References

[1] H.H. Bauschke and J.M. Borwein, Dykstra's alternating projection algorithm for two sets, Journal of Approximation Theory 79 (1994), 418-443.

Figure 1: A GeoGebra [7] snapshot that illustrates Corollary 3.1. Three nonintersecting closed convex sets, C_{1} (the blue triangle), C_{2} (the red polygon) and C_{3} (the green circle), are shown along with their translations forming the generalized intersection. The first few terms of the sequence $\left(e\left(P_{\mathbf{A}} \mathbf{T}^{n} \mathbf{x}\right)\right)_{n \in \mathbb{N}}$ (yellow points) are also depicted. Here $e: \mathbf{A} \rightarrow \mathbb{R}^{2}:(x, x, x) \mapsto x$.
[2] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
[3] H.H. Bauschke, P.L. Combettes, and D.R. Luke, Finding best approximation pairs relative to two closed convex sets in Hilbert spaces, Journal of Approximation Theory 127 (2004), 178-192.
[4] H.H. Bauschke, M.N. Dao, D. Noll, and H.M. Phan, On Slater's condition and finite convergence of the Douglas-Rachford algorithm, arXiv:1504.06969 [math.OC].
[5] H.H. Bauschke and W.M. Moursi, On the order of the operators in the Douglas-Rachford algorithm, arXiv:1505.02796 [math.OC].
[6] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, Series A 55 (1992), 293-318.
[7] GeoGebra software,http://www.geogebra.org
[8] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis 16 (1979), 964-979.
[9] D.R. Luke, Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space, SIAM Journal on Optimization 19 (2008), 714-739.
[10] J.E. Spingarn, Partial inverse of a monotone operator, Applied Mathematics and Optimization 10 (1983), 247-265.
[11] J.E. Spingarn, A projection method for least-squares solutions to overdetermined systems of linear inequalities, Linear Algebra and its Applications 86 (1987), 211-236.
[12] B.F. Svaiter, On weak convergence of the Douglas-Rachford method, SIAM Journal on Control and Optimization 49 (2011), 280-287.

[^0]: *Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca. The research of all authors was supported by NSERC and by the Canada Research Chair program.
 ${ }^{\dagger}$ Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada, and Department of Mathematics and Informatics, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam. E-mail: minhdn@hnue.edu.vn.
 ${ }^{\ddagger}$ Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada, and Mansoura University, Faculty of Science, Mathematics Department, Mansoura 35516, Egypt. E-mail: walaa.moursi@ubc.ca.

[^1]: ${ }^{1}$ Fix $T=\{x \in X \mid x=T x\}$ is the set of fixed points of T.

[^2]: ${ }^{2}$ We use N_{C} to denote the normal cone operator associated with a nonempty closed convex subset C of X.

[^3]: ${ }^{3}$ In [3] Remark 3.14(ii)], the authors claim otherwise but forgot to list the assumption that $A \cap B \neq \varnothing$.

