
The Douglas–Rachford algorithm
in the affine-convex case

Heinz H. Bauschke∗, Minh N. Dao†, and Walaa M. Moursi‡

May 23, 2015

Abstract

The Douglas–Rachford algorithm is a simple yet effective method for solving convex
feasibility problems. However, if the underlying constraints are inconsistent, then the
convergence theory is incomplete. We provide convergence results when one constraint
is an affine subspace. As a consequence, we extend a result by Spingarn from halfspaces
to general closed convex sets admitting least-squares solutions.
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1 Introduction

We shall assume throughout this paper that X is a real Hilbert space with inner product 〈·, ·〉
and induced norm ‖·‖, and that

A and B are nonempty closed convex (not necessarily intersecting) subsets of X. (1)

Consider the problem of finding a best approximation pair relative to A and B (see [3], [9]),
that is to

find (a, b) ∈ A× B such that ‖a− b‖ = inf ‖A− B‖. (2)
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Recall that the Douglas–Rachford splitting operator [8] for the ordered pair of sets (A, B) is
defined by

T = T(A,B) := 1
2 (Id+RBRA) = Id−PA + PBRA, (3)

where PA is the projector onto A and RA := 2PA − Id is the reflector onto A. Let x ∈ X. In
the consistent case, when ZA,B := A ∩ B 6= ∅, the “governing sequence” (Tnx)n∈N generated
by iterating the Douglas–Rachford operator converges weakly to a fixed point1 of T (see [8]),
and the “shadow sequence” (PATnx)n∈N converges weakly to a point in A ∩ B (see [12] or [2,
Theorem 25.6]). For further information on the Douglas–Rachford algorithm (DRA), see also
[8] and [6].

In [3], the authors showed that in the inconsistent case, when A ∩ B = ∅, (PATnx)n∈N

remains bounded with the weak cluster points of (PATnx, PBPATnx)n∈N being best approx-
imation pairs relative to A and B whenever g := PB−A0 ∈ B− A. The goal of this paper is to
study the case when A ∩ B is possibly empty in the setting that one of the sets A and B is a closed
affine subspace of X. Our results show that the shadow sequence will always converge to
a best approximation solution in A ∩ (B − g). As a consequence we obtain a far-reaching
refinement of Spingarn’s splitting method introduced in [11].

2 Main results

We start with the following key lemma, which is well known when A = X.

Lemma 2.1. Let A be a closed linear subspace of X, let C be a nonempty closed convex subset of A,
and let (xn)n∈N be a sequence in X. Suppose that (xn)n∈N is Fejér monotone with respect to C, i.e.,
(∀n ∈N) (∀c ∈ C) ‖xn+1 − c‖ ≤ ‖xn − c‖, and that all its weak cluster points of (PAxn)n∈N lie
in C. Then (PAxn)n∈N converges weakly to some point in C.

Proof. Since (xn)n∈N is bounded (by e.g., [2, Proposition 5.4(i)]) and PA is (firmly) nonexpan-
sive we learn that (PAxn)n∈N is bounded and by assumption, its weak cluster points lie in
C ⊆ A. Now let c1 and c2 be in C. On the one hand the Fejér monotonicity of (xn)n∈N implies
the convergence of the sequences (‖xn − c1‖2)n∈N and (‖xn − c2‖2)n∈N by e.g., [2, Proposi-
tion 5.4(ii)]. On the other hand, expanding and simplifying yield ‖xn − c1‖2 − ‖xn − c2‖2 =
‖xn‖2 + ‖c1‖2 − 2〈xn, c1〉 − ‖xn‖2 − ‖c2‖2 + 2〈xn, c2〉 = ‖c1‖2 − 2〈xn, c1 − c2〉 − ‖c2‖2, which
in turn implies that (〈xn, c1 − c2〉)n∈N converges. Since c1 ∈ A and c2 ∈ A we have

〈xn, c1 − c2〉 = 〈xn, PAc1 − PAc2〉 = 〈xn, PA(c1 − c2)〉 = 〈PAxn, c1 − c2〉. (4)

Now assume that (PAxkn)n∈N and (PAxln)n∈N are subsequences of (PAxn)n∈N such that
PAxkn ⇀ c1 and PAxln ⇀ c2. By the uniqueness of the limit in (4) we conclude that
〈c1, c1 − c2〉 = 〈c2, c1 − c2〉 or equivalently ‖c1 − c2‖2 = 0, hence (PAxn)n∈N has a unique
weak cluster point which completes the proof. �

1Fix T =
{

x ∈ X
∣∣ x = Tx

}
is the set of fixed points of T.
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From now on we work under the assumption that

g = g(A,B) := PB−A0 ∈ B− A. (5)

In view of (5) we have

E = E(A,B) := A ∩ (B− g) 6= ∅ and F = F(A,B) := (A + g) ∩ B 6= ∅. (6)

For sufficient conditions on when g ∈ B− A (or equivalently the sets E and F are nonempty)
we refer the reader to [1, Facts 5.1].

Lemma 2.2. Let x ∈ X. Then the following hold:

(i) If C ∈ {A, B} is a closed affine subspace of X, then g ∈ (C− C)⊥.

(ii) The sequence (Tnx− ng)n∈N is Fejér monotone with respect to E.

(iii) The sequence (PATnx)n∈N is bounded and its weak cluster points lie in E.

(iv) If B is a closed affine subspace, then PBTnx − PATnx → g, the sequence (PBTnx)n∈N is
bounded and all weak cluster points lie in F.

(v) If E = {x̄} and hence F = {x̄ + g}, then PATnx ⇀ x̄ and PBTnx ⇀ x̄ + g.

Proof. (i): See [3, Corollary 2.7 and Remark 2.8(ii)]. (ii): It follows2 from [3, Theorem 3.5] that
E + NA−B(−g) ⊆ Fix(−g + T) :=

{
x ∈ X

∣∣ x = −g + Tx
}
⊆ −g + E + NA−B(−g). Con-

sequently, E ⊆ Fix(−g + T). Moreover, [3, Remark 3.15] implies that the sequence (Tnx −
ng)n∈N is Fejér monotone with respect to Fix(−g+ T). (iii): See [3, Theorem 3.13(iii)(b)]. (iv):
See [3, Theorem 3.17]. (v): This follows from (iii) and (iv). �

We are now ready for our main results.

Theorem 2.3 (convergence of DRA when A is a closed affine subspace). Suppose that A is a
closed affine subspace of X, and let x ∈ X. Then the following hold:

(i) The shadow sequence (PATnx)n∈N converges weakly to some point in E = A ∩ (B− g).

(ii) No general conclusion can be drawn about the sequence (PBTnx)n∈N.

Proof. (i): After translating the sets A and B by a vector, if necessary, we can and do assume
that A is a closed linear subspace of X. Using Lemma 2.2(i) we learn that (∀n ∈N) PATnx =
PA(Tnx − ng). Note that E = A ∩ (B − g) ⊆ A. Now combine Lemma 2.2(ii)–(iii) and
Lemma 2.1 with C = E, and (xn)n∈N replaced by (Tnx − ng)n∈N. (ii): In fact, (PBTnx)n∈N

can be unbounded (see Example 2.4) or bounded (e.g., when A = B = X). �

2 We use NC to denote the normal cone operator associated with a nonempty closed convex subset C of X.
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Example 2.4. Suppose that X = R2, that A = R × {0} and that B = epi (|·|+ 1). Then
A ∩ B = ∅ and for the starting point x ∈ [−1, 1] × {0} we have (∀n ∈ {1, 2, . . .}) Tnx =
(0, n) ∈ B and therefore ‖PBTnx‖ = ‖Tnx‖ = n→ ∞.

Proof. Let x = (α, 0) with α ∈ [−1, 1]. We proceed by induction. When n = 1 we
have T(α, 0) = PA⊥(α, 0) + PBRA(α, 0) = PB(α, 0) = (0, 1). Now suppose that for some
(n ∈ {1, 2, . . .}) Tnx = (0, n). Then Tn+1x = T(0, n) = PA⊥(0, n) + PBRA(0, n) =
(0, n) + PB(0,−n) = (0, n + 1) ∈ B. �

When B is an affine subspace, the convergence theory is even more satisfying:

Theorem 2.5 (convergence of DRA when B is a closed affine subspace). Suppose that B is a
closed affine subspace of X, and let x ∈ X. Then the following hold:

(i) The shadow sequence (PATnx)n∈N converges weakly to some point in E = A ∩ (B− g).

(ii) The sequence (PBTnx)n∈N converges weakly to some point in F = (A + g) ∩ B.

Proof. (ii): Combine Theorem 2.3(i) and [5, Corollary 2.8(i)]. (i): Combine (ii) and
Lemma 2.2(iv). �

It is tempting to conjecture that Theorem 2.3(i) remains true when A is just convex and not
necessarily a subspace. While this statement may be true3, the proof of Theorem 2.3(i) does
not admit such an extension:

Example 2.6. Suppose that X = R, that A = [1, 2] and that B = {0}. Then g = −1 and
E = {1}. Let x = 4. We have (Tnx)n∈N = (4, 2, 0,−1,−2,−3, . . . ), PATnx → 1 ∈ E and
(∀n ∈ {2, 3, 4, . . . }) Tnx− ng = −(n− 2)− n(−1) = 2 ∈ A and PA(Tnx− ng) = 2 ∈ A r E.
In the proof of Theorem 2.3(i), we had (PATnx)n∈N = (PA(Tnx− ng))n∈N which is strikingly
false here.

3 Spingarn’s method

In this section we discuss the problem to find least-squares solutions of
⋂M

i=1 Ci, i.e., to

find minimizers of
M

∑
i=1

d2
Ci

, (7)

where C1, . . . , CM are nonempty closed convex (possibly nonintersecting) subsets of X with
corresponding distance functions dC1 , . . . , dCM . Now consider the product Hilbert space X :=
XM, with the inner product ((x1, . . . , xM), (y1, . . . , yM)) 7→ ∑M

i=1 〈xi, yi〉. We set

A =
{
(x, . . . , x) ∈ X

∣∣ x ∈ X
}

and B = C1 × · · · × CM. (8)

3In [3, Remark 3.14(ii)], the authors claim otherwise but forgot to list the assumption that A ∩ B 6= ∅.
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Then the projections of x = (x1, . . . , xM) ∈ X onto A and B are given by, respectively, PAx =(
1
M ∑M

i=1 xi, . . . , 1
M ∑M

i=1 xi

)
and PBx = (PC1 x1, . . . , PCM xM). Now assume that

g = (g1, . . . , gM) := PB−A0 ∈ B−A. (9)

Then we have

E := A ∩ (B− g) 6= ∅, and (x, . . . , x) ∈ A ∩ (B− g) ⇔ x ∈
M⋂

j=1

(Cj − gj). (10)

Using [1, Section 6], we see that the M-set problem (7) is equivalent to the two-set problem

find least-squares solutions of A ∩ B. (11)

It follows from (9) and (10) that g is the unique vector in B−A that satisfies

(w1, w2, . . . , wM) 6= (g1, g2, . . . , gM),

and
M⋂

j=1
(Cj − wj) 6= ∅

 ⇒
M

∑
j=1
‖wj‖2 >

M

∑
j=1
‖gj‖2. (12)

We have the following result for the problem of finding a least-squares solution for the inter-
section of a finite family of sets.

Corollary 3.1. Suppose that C1, . . . , CM are closed convex subsets of X. Let T = Id−PA + PBRA,
let x ∈ X and recall assumption (9). Then the shadow sequence (PATnx)n∈N converges to x̄ =
(x̄, . . . , x̄) ∈ A ∩ (B− g), where x̄ ∈ ⋂M

j=1(Cj − gj) and x̄ is a least-squares solution of (7).

Proof. Combine Theorem 2.3 with (12) and (10). �

Remark 3.2. When we particularize Corollary 3.1 from convex sets to halfspaces and X is
finite-dimensional, we recover Spingarn’s [11, Theorem 1]. Note that in this case, in view of
[1, Facts 5.1(ii)] we have g ∈ B− A. Recall that Spingarn used the following version of his
method of partial inverses from [10]:

(a0, b0) ∈ A×A⊥ and (∀n ∈N)

{
a′n = PB(an + bn), b′n = an + bn − a′n,
an+1 = PAa′n, bn+1 = b′n − PAb′n.

(13)

This method is the DRA in X, applied to A and B with starting point (a0 − b0) (see, e.g., [4,
Lemma 2.17]).
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Figure 1: A GeoGebra [7] snapshot that illustrates Corollary 3.1. Three nonintersecting closed
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