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Abstract

We study the mixing time of the Dikin walk in a polytope — a random walk based on the log-barrier from the interior
point method literature. This walk, and a close variant, were studied by Narayanan (2016) and Kannan-Narayanan
(2012). Bounds on its mixing time are important for algorithms for sampling and optimization over polytopes. Here,
we provide a simple proof of their result that this random walk mixes in time O(mn) for an n-dimensional polytope
described using m inequalities.
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1. Introduction

Sampling a point from the uniform distribution on a
polytope K ⊆ R

n is an extensively-studied problem and is
a crucial ingredient in several computational tasks involv-
ing convex bodies. Towards this, typically, one sets up an
ergodic and reversible random walk inside K whose sta-
tionary distribution is uniform over K. The mixing time
of such a walk determines its efficacy, and, in turn, de-
pends on the isoperimetric constant of K with respect to
the transition function of the walk. Starting with the in-
fluential work of Dyer et al. [3], there has been a long line
of work on faster and faster algorithms for generating an
approximately uniform point from a convex body. More-
over, since convex bodies show up in a variety of areas,
there is a wide body of work connecting random walks and
isoperimetry in convex bodies to several areas in mathe-
matics and optimization.

One such important connection to the interior point
method literature was presented in the works of Kannan
and Narayanan [6] and Narayanan [9] who proposed the
Dikin walk in a polytope. Roughly, the uniform version of
the Dikin walk, considered by [6], when at a point x ∈ K,
computes the Dikin ellipsoid at x, and moves to a random
point in it after a suitable Metropolis filter. The Metropo-
lis step ensures that the walk is ergodic and reversible.
The Gaussian version of the Dikin walk, considered by [9],
picks the new point from a Gaussian distribution centered
at x with its covariance given by the Dikin ellipsoid at x,
and applies a suitable Metropolis filter. The Dikin ellip-
soid at a point x is the ellipsoid described by the Hessian of
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the log-barrier function at x. It was introduced by Dikin in
the first interior point method for linear programming [2].

Several virtues of the Dikin ellipsoid (see [10, 11, 7])
were used by [6, 9] to prove that the mixing time of the
Dikin walk is O(mn) starting from a warm start, when
K is described by m inequality constraints. Recall that a
distribution over K is said to be a warm start if its den-
sity is bounded from above by a constant relative to the
uniform distribution on K. Roughly, the proof (for either
walk) consists of two parts: (1) an isoperimetric inequal-
ity, proved by Lovász [8], for convex bodies in terms of a
distance introduced by Hilbert, and (2) a bound on the
changes in the sampling distributions of the Dikin walk in
terms of the Hilbert distance. The bound in (2) was the
key technical contribution of [6, 9] towards establishing the
mixing time of the Dikin walk. We present a simple proof
of this bound for the Gaussian Dikin walk implying that
it mixes in time O(mn). Our proof uses well-known facts
about Gaussians, and concentration of Gaussian polyno-
mials.

1.1. Dikin walk on Polytopes

Suppose K ⊆ R
n is a bounded polytope with a non-

empty interior, described by m inequalities, a⊤i x ≥ bi, for
i ∈ [m]. We use the notation x ∈ K to denote that x is in
the interior of K. The log-barrier function for K at x ∈ K
is F (x) := −∑i∈[m] log(a

⊤
i x − bi). Let H(x) denote the

Hessian of F at x, i.e., H(x) :=
∑

i∈[m]
1

(a⊤

i
x−bi)2

aia
⊤
i . For

all x ∈ K, H(x) is a positive definite matrix, and defines

the local norm at x, denoted ‖·‖x , as ‖v‖2x := v⊤H(x)v.
The ellipsoid {z : ‖z − x‖x ≤ 1} is known as the Dikin
ellipsoid at x.

From a point x ∈ K, the next point z in the Dikin
walk is sampled from the Dikin ellipsoid at x. The uni-
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form Dikin walk, considered by [6], sampled the new point
z from the uniform distribution in this ellipsoid. In the
Gaussian Dikin walk, considered by [9], z is sampled from
gx, a multivariate Gaussian distribution centered at x with

covariance matrix r2

n H(x)−1, where r is a constant. Thus,
the density of the distribution is given by

gx(z) =
√

detH(x)

(

n

2πr2

)n/2

· exp
(

− n

2r2
· ‖z − x‖2x

)

.

Equivalently, the next point z is given by

z = x+
r√
n

(

H(x)
)−1/2

g,

where g is an n-dimensional vector with each coordinate of
g sampled as an independent standard gaussian N (0, 1).

In order to convert this into a random walk that stays
inside K, with its stationary distribution as the uniform
distribution on K, we apply the Metropolis filter to obtain
the transition probability density px of the Gaussian Dikin
walk: ∀z 6= x, if z ∈ K, px(z) = min{gx(z), gz(x)} (the
walk stays at x with the remaining probability).

1.2. Hilbert Metric, Isoperimetry, and Mixing Time

We introduce the distance function which plays an im-
portant role in establishing the mixing time of the Dikin
walk. Given two points x, y ∈ K, let p, q be the end
points of the chord in K passing through x, y, such that
the points lie in the order p, x, y, q. We define σ(x, y) :=
|xy||pq|
|px||qy| , where |xy| denotes the length of the line segment

xy. log(1 + σ(x, y)) is a metric on K, known as Hilbert
metric.

Lovász proved the following theorem for any random
walk on K: Suppose for any two initial points x, y ∈ K
that are close in σ distance, the statistical distance of the
distributions after one step of the walk each from x and
y, is bounded away from 1. Then, the lazy version of the
random walk (where we stay at the current point with
probability 1/2 at each step) mixes rapidly.

Theorem 1 (Lovász [8]). Consider a reversible random

walk in K with its stationary distribution being uniform

on K. Suppose ∃∆ > 0 such that for all x, y ∈ K with

σ(x, y) ≤ ∆, we have
∥

∥px − py
∥

∥

1
≤ 1 − Ω(1), where px

denotes the distribution after one step of the random walk

from x. Then, after O(∆−2) steps, the lazy version of the

walk from a warm start is within 1/4 total variation dis-

tance from the uniform distribution on K.

Kannan and Narayanan proved that the transition func-
tion of the uniform Dikin walk, px, for x ∈ int(K), satisfies

the hypothesis of the theorem above with ∆ = Ω
(

1√
mn

)

,

thus implying that it mixes in O(mn) steps from a warm
start. An analogous result for the Gaussian Dikin walk is
implicit in the work of Narayanan. Our main contribution
is an alternative and simple proof of their main technical
contributions. In particular, we prove the following theo-
rem.

Theorem 2. Let ε ∈ (0, 1/2]. For the Gaussian Dikin walk

on K with r ≤ ε
400 (log

200
ε )−3/2, for any two points x, y ∈

K such that ‖x− y‖x ≤ r√
n
, we have

∥

∥px − py
∥

∥

1
≤ ε.

In order to use this theorem along with Theorem 1 to
obtain the claimed mixing time bound, one needs a simple
fact that, for any x, y in a polytope K, which is described
using m inequalities, σ(x, y) ≥ 1√

m
‖x− y‖x . A proof of

this fact is given in the appendix; see Lemma 9.
The following two lemmas are the main ingredients in

the proof of Theorem 2: (1) If two points x, y are close in
the local norm, i.e, ‖x− y‖x ≤ r√

n
, then the two Gaussian

distributions gx and gy are close in statistical distance. (2)
If r is small enough (as a function of ε), then for all x, px
and gx are ε-close in statistical distance.

Lemma 3. Let r ≤ 1, and c ≥ 0 be such that c ≤ min{r, 1/3}.
Let x, y ∈ K. If ‖x− y‖x ≤ c√

n
, then

∥

∥gx − gy
∥

∥

1
≤ 3c.

This lemma relies on a well-known fact about the Kullback-
Leibler divergence between two multivariate Gaussian dis-
tributions, and Pinsker’s inequality that bounds the statis-
tical distance between two distributions in terms of their
divergence.

Lemma 4. Given ε ∈ [0, 1/2], for r ≤ ε
100 (log

50
ε )

−3/2, we
have ‖px − gx‖1 ≤ ε.

This lemma, which shows that the Metropolis filter does
not change the distribution much, relies on a result on
the concentration of Gaussian polynomials, proved using
hypercontractivity. Given the above lemmas, Theorem 2
follows by applying triangle inequality.

2. Statistical distance between Gaussians and the
local norm

In this section, we present a proof of Lemma 3 that
bounds the statistical distance between gx and gy for two
points x, y that are close in the local norm. We need the
following well-known fact about the Kullback-Leibler di-
vergence between two multivariate Gaussian distributions.

Fact 5. Let G1 = N (µ1,Σ1) and G2 = N (µ2,Σ2) be two

n-dimensional Gaussian distributions. Then,

DKL(G2||G1) =
1

2

(

Tr
(

Σ−1
1 Σ2

)

− n+ log
detΣ1

detΣ2

+(µ1 − µ2)
⊤Σ−1

1 (µ1 − µ2)
)

,

where DKL denotes the Kullback-Leibler divergence

DKL(P ||Q) =

∫

log
P (x)

Q(x)
dP (x).

In order to use this theorem, we have to bound the eigen-
values of H(x)H(y)−1. For x, y that are close in the local
norm, this follows since H(x) ≈ H(y).
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Proof Lemma 3: From the assumption, we have,

c2

n
≥ ‖x− y‖2x =

∑

i∈[m]

(a⊤i (x− y))2

(a⊤i x− bi)2
≥ max

i∈[m]

(a⊤i (x− y))2

(a⊤i x− bi)2
.

Thus, for all i ∈ [m], we have

(

1− c√
n

)

(a⊤i x−bi) ≤ (a⊤i y−bi) ≤
(

1 +
c√
n

)

(a⊤i x−bi).

By the definition of H, we get,

(

1− c√
n

)2

H(y) � H(x) �
(

1 +
c√
n

)2

H(y).

Thus, all eigenvalue λ1, . . . , λn > 0 ofH(x)H(y)−1, satisfy

(

1− c√
n

)2

≤ λi ≤
(

1 +
c√
n

)2

.

We can now bound the statistical distance between gx =

N
(

x, r2

n H(x)−1
)

and gy = N
(

y, r2

n H(y)−1
)

by using

Pinsker’s inequality [1, p. 44], which gives that
∥

∥gx − gy
∥

∥

2

1
≤

2 ·DKL(gy||gx). Letting Σ1,Σ2 denote the covariance ma-

trices of g1, g2, we can write Tr
(

Σ−1
1 Σ2

)

=
∑n

i=1 λi, and

log detΣ1

detΣ2

= log 1
detΣ−1

1
Σ2

=
∑n

i=1 log
1
λi
.

∥

∥gx − gy
∥

∥

2

1
≤

n
∑

i=1

(

λi − 1 + log
1

λi

)

+
n

r2
‖x− y‖2x

(Using Fact 5)

≤
n
∑

i=1

(

λi +
1

λi
− 2

)

+
n

r2
‖x− y‖2x

(

Using log 1
λ ≤ 1

λ − 1
)

≤ n ·max

{

(2c/
√
n−c2/n)2

(1− c/
√
n)2

,
(2c/

√
n+c2/n)2

(1 + c/
√
n)2

}

+
n

r2
· c

2

n
.

(

Using the convexity of λ+ 1
λ − 2

)

≤ n · (
2c/

√
n−c2/n)2

(1 − c/
√
n)2

+
c2

r2

= c2 · (2−
c/
√
n)2

(1− c/
√
n)2

+
c2

r2
≤ 25

4
c2 + c2 ≤ 9c2,

where the last line uses c ≤ 1/3, r ≤ 1 and n ≥ 1. ✷

3. The effect of the Metropolis filter

In this section, we prove Lemma 4 that shows that for
any x ∈ K, the statistical distance between the Gaussian

distribution gx and the random walk distribution px, ob-
tained by applying the Metropolis filter to gx, is small. We
have,

∥

∥px(z)− gx(z)
∥

∥

1
= 1− E

z∼gx
min

{

1,
gz(x)

gx(z)

}

. (1)

Given ε ∈ (0, 1/2], we show that for an appropriate choice
of r, the above statistical distance is bounded by ε.

The ratio of gz and gx has two terms: one involving the
ratio of detH(x) and detH(z), and one involving the dif-

ference in local norms ‖z − x‖2z − ‖z − x‖2x . Proposition 6
bounds the first by controlling the norm of ∇ log detH(x).
Proposition 7 bounds the second term by using concentra-
tion of Gaussian polynomials.

Proof of Lemma 4: We have,

gz(x)

gx(z)
= exp

(

− n

2r2

(

‖z − x‖2z − ‖z − x‖2x
)

+
1

2

(

log detH(z)− log detH(x)
)

)

.

From Proposition 6, for r ≤ ε
4 (2 log

4/ε)−1/2, we have

Pr[log detH(z)− log detH(x) ≥ −ε/2] ≥ 1− ε/4.

Also, from Proposition 7, for r ≤ ε
100 (log

50/ε)−3/2, we have,

Pr

[

‖z − x‖2z − ‖z − x‖2x ≤ ε

2
· r

2

n

]

≥ 1− ε/4.

Combining the two using a union bound, we get that ex-

cept with probability ε/2, we have, gz(x)
gx(z)

≥ e−ε/2 ≥ 1− ε/2.

Thus,

E
z∼gx

min

{

1,
gz(x)

gx(z)

}

≥
(

1− ε

2

)

Pr
z∼gx

[

gz(x)

gx(z)
≥ 1− ε

2

]

≥
(

1− ε

2

)2

≥ 1− ε.

The claim now follows from (1). ✷

Proposition 6. Given ε ∈ (0, 1/2], for r ≤ ε√
2 log 1/ε

, and

z ∼ gx we have

Pr[log detH(z)− log detH(x) ≥ −2ε] ≥ 1− ε.

Proof of Proposition 6: Let V (x) := 1
2 log detH(x).

From the work of Vaidya [12], we know that V (x) is a
convex function. Thus, V (z)−V (x) ≥ (z−x)⊤∇V (x). We

know that z = x + r√
n

(

H(x)
)−1/2

g, where g ∼ N (0, In).

Thus,

V (z)− V (x) ≥ r√
n
g⊤
(

H(x)
)−1/2 ∇V (x).
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g⊤
(

H(x)
)−1/2 ∇V (x) is a Gaussian with mean 0 and vari-

ance
∥

∥

∥

(

H(x)
)−1/2 ∇V (x)

∥

∥

∥

2

2
. From Lemma 4.3 in the work

of Vaidya and Atkinson [13], it follows that

∥

∥

∥

(

H(x)
)−1/2 ∇V (x)

∥

∥

∥

2

2
≤ n.

Using standard tail bounds, we get that for all λ > 0,

Pr[g⊤
(

H(x)
)−1/2 ∇V (x) ≥ −λ

√
n] ≥ 1− exp(−λ2

/2).

Picking λ =
√

2 log 1/ε, and combining, we get, Pr[V (z)−
V (x) ≥ −r

√

2 log 1/ε] ≥ 1 − ε. For r ≤ ε√
2 log 1/ε

, we have

r
√

2 log 1/ε ≤ ε, which gives the claim. ✷

Proposition 7. Given ε ∈ (0, 1/2], for r ≤ ε
20 (log

11/ε)−
3

2 ,
and z ∼ gx, we have,

Pr

[

‖z − x‖2z − ‖z − x‖2x ≤ 2ε · r
2

n

]

≥ 1− ε.

Proof Proposition 7: We have z = x+ r√
n

(

H(x)
)− 1

2 g,

where g ∼ N (0, In). If we let âi =
1

a⊤

i
x−bi

(

H(x)
)− 1

2 ai, we

get a⊤i (z − x) = r√
n
(a⊤i x− bi) · â⊤i g, and

∑m
i=1 âiâ

⊤
i = In.

‖z − x‖2z − ‖z − x‖2x

=

m
∑

i=1

(a⊤i (z − x))2

(

1

(a⊤i z − bi)2
− 1

(a⊤i x− bi)2

)

=
r2

n

m
∑

i=1

(â⊤i g)
2





1

(1 + r√
n
â⊤i g)

2
− 1





=
r4

n2

m
∑

i=1

(â⊤i g)
4





2

(1 + r√
n
â⊤i g)

+
1

(1 + r√
n
â⊤i g)

2





− 2r3

n3/2

m
∑

i=1

(â⊤i g)
3. (2)

We now use concentration of Gaussian polynomials (see
Theorem 8) to bound the two terms above. Let P1(g) :=
∑m

i=1(â
⊤
i g)

3. From Fact 10, we know Eg P1(g)
2 ≤ 15n.

Thus, using Theorem 8, we know that for any λ1 ≥ (
√
2e)3,

Pr
g

[

|P1(g)| ≥ λ1

√
15n

]

≤ exp

(

− 3

2e
λ

2/3
1

)

.

Picking λ1 =
(

max
{

2e, 2e3 log 2
ε

}

)3/2

, and r ≤ ε
2
√
15λ1

, we

obtain, Pr
[

|P1(g)| ≥ ε
2r

√
n
]

≤ ε
2 . Thus, with probability

at least 1− ε
2 ,

− 2r3

n3/2

m
∑

i=1

(â⊤i g)
3 ≤ 2r3

n3/2
· ε

2r

√
n = ε · r

2

n
. (3)

Now, we let P2(g) :=
∑m

i=1(â
⊤
i g)

4. Again, from Fact 10, we
know that Eg P2(g)

2 ≤ 105n2, and applying Theorem 8,

we obtain that for λ2 =
(

max
{

2e, 2e4 log 2
ε

}

)2

and r ≤
√
ε√

8λ2

√
105

, we obtain, Pr
[

|P2(g)| ≥ ε
8r2n

]

≤ ε
2 . Thus, with

probability at least 1− ε
2 .

r4

n2

m
∑

i=1

(â⊤i g)
4 ≤ r4

n2
· ε

8r2
n =

ε

8
· r

2

n
.

Note that this also implies that for all i, r√
n
|â⊤i g| ≤

(

εr2

8n

)1/4

≤ 1
2 , where the last inequality holds for all r ≤ 1.

Thus, with probability at least 1− ε
2 , we have

r4

n2

m
∑

i=1

(â⊤i g)
4





2

(1 + r√
n
â⊤i g)

+
1

(1 + r√
n
â⊤i g)

2





≤ 8
r4

n2

m
∑

i=1

(â⊤i g)
4 ≤ ε · r

2

n
.

Combining this with Equations (2) and (3), and applying
a union bound, we get that with probability at least 1− ε

‖z − x‖2z − ‖z − x‖2x ≤ 2ε · r
2

n
.

Finally, we verify that for ε ∈ (0, 1/2], any r ≤ ε
20 (log

11/ε)−
3

2

satisfies the conditions

r ≤ min

{

1,
ε

2
√
15λ1

,

√
ε

√

8λ2

√
105

}

.

✷

Theorem 8. (see Janson [5, Thm 6.7]) Let P (g) be a

degree q polynomial, where g ∈ R
n such that g ∼ N (0, In).

Then, for any t ≥
√
2e

q
, we have,

Pr
g

[

|P (g)| ≥ t
(

EP (g)2
)1/2

]

≤ exp

(

− q

2e
t
2/q

)

.
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Appendix A. Relating the local metric to the Hilbert
metric

Lemma 9 ([6]). For any x, y ∈ K, we have σ(x, y) ≥
1√
m
‖x− y‖x .

Proof Lemma 9: Let p, x, y, q be the points in order
on the chord of K that passes through x, y with p, q being
the end-points of the chord. Thus,

σ(x, y) =
|x− y||p− q|
|p− x||q − y| ≥ max

{ |x− y|
|p− x| ,

|x− y|
|x− q|

}

= max
i∈[m]

|a⊤i (x − y)|
(a⊤i x− bi)

≥ 1√
m





∑

i∈[m]

(a⊤i (x− y))2

(a⊤i x− bi)2





1/2

=
1√
m

‖x− y‖x .

✷

Appendix B. Moments of Gaussian Polynomials

Fact 10. Suppose g ∈ R
n is distributed according to N (0, In),

and
∑m

i=1 bib
⊤
i = In. Then, we have,

E





m
∑

i=1

(b⊤i g)
3





2

≤ 15n, and E





m
∑

i=1

(b⊤i g)
4





2

≤ 105n2.

Proof of Fact 10: We first consider the first part of the
fact. From Fact 11, we know that for all i, j,

E
g
(b⊤i g)

3(b⊤j g)
3 = 9 ‖bi‖2

∥

∥bj
∥

∥

2
(b⊤i bj) + 6(b⊤i bj)

3.

Summing over all i, j, we get,

E





m
∑

i=1

(b⊤i g)
3





2

=

m
∑

i,j=1

E(b⊤i g)
3(b⊤j g)

3

= 9

m
∑

i,j=1

‖bi‖22
∥

∥bj
∥

∥

2

2
(b⊤i bj) + 6

m
∑

i,j=1

(b⊤i bj)
3. (B.1)

This equality can also be derived using Isserlis’ theorem
([4]). If we let B be the m × n matrix with its ith row

being b⊤i , and w ∈ R
m be such that wi = ‖bi‖22 , we can

simplify the first term in the above sum as follows.

m
∑

i,j=1

‖bi‖22
∥

∥bj
∥

∥

2

2
(b⊤i bj) =

∥

∥

∥

∥

∥

∥

m
∑

i=1

‖bi‖2 bi

∥

∥

∥

∥

∥

∥

2

2

=
∥

∥

∥B⊤w
∥

∥

∥

2

2
.

Using
∑m

i=1 bib
⊤
i = In, we get B⊤B = In. Thus, the m ×

m matrix Π := BB⊤ satisfies Π2 = Π. Since Π is also
symmetric, it is an orthogonal projection. Thus, we have
‖Πw‖2 ≤ ‖w‖2 . We obtain,

∥

∥

∥
B⊤w

∥

∥

∥

2

2
= w⊤BB⊤w = w⊤Πw

= w⊤Π2w

= ‖Πw‖22 ≤ ‖w‖22 =

m
∑

i=1

‖bi‖4 .

Since
∑m

i=1 bib
⊤
i = In, we get that for all i, ‖bi‖ ≤ 1.

Moreover, taking trace, we obtain
∑m

i=1 ‖bi‖
2 = n. Thus,

m
∑

i=1

‖bi‖4 ≤
m
∑

i=1

‖bi‖2 = n.

Thus, we can bound the first term in Equation (B.1) by n.
For the second term in Equation (B.1), using ‖bi‖2 ≤ 1

for all i, and Cauchy-Schwarz, we get |b⊤i bj| ≤ 1 for all
i, j. Using

∑m
i=1 bib

⊤
i = In, we also know that for all j,

∑m
i=1(b

⊤
i bj)

2 =
∥

∥bj
∥

∥

2

2
. Thus, we get,

m
∑

i,j=1

(b⊤i bj)
3 ≤

m
∑

i,j=1

(b⊤i bj)
2 =

m
∑

j=1

∥

∥bj
∥

∥

2

2
= n.
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Combining the bounds for the two terms in Equation (B.1),
we get the first part of the fact.

For the second part of the fact, we use Cauchy-Schwarz
inequality,

E





m
∑

i=1

(b⊤i g)
4





2

=

m
∑

i,j=1

E(b⊤i g)
4(b⊤j g)

4

≤
m
∑

i,j=1

(

E(b⊤i g)
8
)1/2 (

E(b⊤j g)
8
)1/2

.

We have that b⊤i g is distributed as a Gaussian with mean

0 and variance ‖bi‖22 . Thus, E(b⊤i g)
8 = 105 ‖bi‖82 . Hence,

we get,

E





m
∑

i=1

(b⊤i g)
4





2

≤ 105

m
∑

i,j=1

‖bi‖42
∥

∥bj
∥

∥

4

2

= 105





m
∑

i=1

‖bi‖4




2

≤ 105n2,

proving the second part of the fact. ✷

Note: The bounds given by the above fact are tight for the

case where bi form an orthonormal basis.

Fact 11 (Isserlis [4]). Suppose g ∈ R
n is distributed ac-

cording to N (0, In), and b1, b2 are any two vectors in R
n,

E
g
(b⊤1 g)

3(b⊤2 g)
3 = 9 ‖b1‖2 ‖b2‖2 (b⊤1 b2) + 6(b⊤1 b2)

3.

Proof of Fact 11: We define b̂i :=
1

‖bi‖ · bi to be the

corresponding unit vectors. Thus,

E(b⊤1 g)
3(b⊤2 g)

3 = ‖b1‖3 ‖b2‖3 E(b̂⊤1 g)
3(b̂⊤2 g)

3. (B.2)

We let e1, . . . , en denote the standard basis vectors for Rn,
i.e., ei is 1 in the ith coordinate and 0 elsewhere. Since the
distribution of g is rotationally symmetric, we can assume
that b̂1 = e1, and b̂2 = cos θ · e1 +sin θ · e2, where θ is such
that cos θ = b̂⊤1 b̂2. Thus,

E(b̂⊤1 g)
3(b̂⊤2 g)

3 = E g31 (cos θ · g1 + sin θ · g2)3

= cos3 θE g61 + 0 + 3 cos θ sin2 θE g41 E g22 + 0

= 15 cos3 θ + 9 cos θ sin2 θ = 9 cos θ + 6 cos3 θ

= 9
(

b̂⊤1 b̂2
)

+ 6
(

b̂⊤1 b̂2
)3

.

Combining with Equation (B.2), we obtain the fact. ✷
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