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Abstract

2016

We study the mixing time of the Dikin walk in a polytope — a random walk based on the log-barrier from the interior
point method literature. This walk, and a close variant, were studied by Narayanan (2016) and Kannan-Narayanan
(2012). Bounds on its mixing time are important for algorithms for sampling and optimization over polytopes. Here,

we provide a simple proof of their result that this random walk mixes in time O(mn) for an n-dimensional polytope

described using m inequalities.
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1. Introduction

Sampling a point from the uniform distribution on a
= polytope K C R" is an extensively-studied problem and is
() a crucial ingredient in several computational tasks involv-
—Iing convex bodies. Towards this, typically, one sets up an
ergodic and reversible random walk inside K whose sta-
> tionary distribution is uniform over K. The mixing time
of such a walk determines its efficacy, and, in turn, de-
pends on the isoperimetric constant of K with respect to
the transition function of the walk. Starting with the in-
fluential work of Dyer et al. B], there has been a long line
- of work on faster and faster algorithms for generating an
approximately uniform point from a convex body. More-
over, since convex bodies show up in a variety of areas,
« ‘there is a wide body of work connecting random walks and
isoperimetry in convex bodies to several areas in mathe-
.~ matics and optimization.
One such important connection to the interior point
R method literature was presented in the works of Kannan
and Narayanan [6] and Narayanan [9] who proposed the
Dikin walk in a polytope. Roughly, the uniform version of
the Dikin walk, considered by ﬂa], when at a point = € K|
computes the Dikin ellipsoid at x, and moves to a random
point in it after a suitable Metropolis filter. The Metropo-
lis step ensures that the walk is ergodic and reversible.
The Gaussian version of the Dikin walk, considered by E],
picks the new point from a Gaussian distribution centered
at x with its covariance given by the Dikin ellipsoid at =,
and applies a suitable Metropolis filter. The Dikin ellip-
soid at a point z is the ellipsoid described by the Hessian of
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the log-barrier function at x. It was introduced by Dikin in
the first interior point method for linear programming [2].

Several virtues of the Dikin ellipsoid (see [1d, [11], [7])
were used by ﬂa, @] to prove that the mixing time of the
Dikin walk is O(mn) starting from a warm start, when
K is described by m inequality constraints. Recall that a
distribution over K is said to be a warm start if its den-
sity is bounded from above by a constant relative to the
uniform distribution on K. Roughly, the proof (for either
walk) consists of two parts: (1) an isoperimetric inequal-
ity, proved by Lovész [§], for convex bodies in terms of a
distance introduced by Hilbert, and (2) a bound on the
changes in the sampling distributions of the Dikin walk in
terms of the Hilbert distance. The bound in (2) was the
key technical contribution of ﬂa, @] towards establishing the
mixing time of the Dikin walk. We present a simple proof
of this bound for the Gaussian Dikin walk implying that
it mixes in time O(mn). Our proof uses well-known facts
about Gaussians, and concentration of Gaussian polyno-
mials.

1.1. Dikin walk on Polytopes

Suppose K C R™ is a bounded polytope with a non-
empty interior, described by m inequalities, a;rx > b;, for
i € [m]. We use the notation z € K to denote that z is in
the interior of K. The log-barrier function for K at z € K
is F() == = ieim) log(a; z — b;). Let H(z) denote the
Hessian of I at z, i.e., H(z) := () Waia; For
all z € K, H(x) is a positive definite matrix, and defines
the local norm at z, denoted |||, as |[v]> = vT H(z)wv.
The ellipsoid {z : ||z — ||, < 1} is known as the Dikin
ellipsoid at x.

From a point x € K, the next point z in the Dikin
walk is sampled from the Dikin ellipsoid at x. The uni-
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form Dikin walk, considered by ﬂa], sampled the new point
z from the uniform distribution in this ellipsoid. In the
Gaussian Dikin walk, considered by E], z is sampled from
g, a multivariate Gaussian distribution centered at z with
covariance matrix %H (x)~!, where r is a constant. Thus,
the density of the distribution is given by

n/g
n n
g2 (2) = \/det H(x) <2W2> - exp (—272 Nz = $||i> :

Equivalently, the next point z is given by

r —1/s
s=at = (1),
where ¢ is an n-dimensional vector with each coordinate of
g sampled as an independent standard gaussian A(0,1).
In order to convert this into a random walk that stays
inside K, with its stationary distribution as the uniform
distribution on K, we apply the Metropolis filter to obtain
the transition probability density p, of the Gaussian Dikin
walk: Vz # z, if z € K, py(2) = min{g.(z),g.(z)} (the
walk stays at © with the remaining probability).

1.2. Hilbert Metric, Isoperimetry, and Mizing Time

We introduce the distance function which plays an im-
portant role in establishing the mixing time of the Dikin
walk. Given two points x,y € K, let p,q be the end
points of the chord in K passing through x,y, such that
the points lie in the order p,z,y,q. We define o(x,y) =
|zy|[pq|
[pz([qy]’
xy. log(l + o(x,y)) is a metric on K, known as Hilbert
metric.

Lovéasz proved the following theorem for any random
walk on K: Suppose for any two initial points =,y € K
that are close in o distance, the statistical distance of the
distributions after one step of the walk each from x and
y, is bounded away from 1. Then, the lazy version of the
random walk (where we stay at the current point with
probability 1/2 at each step) mixes rapidly.

where [Ty| denotes the length of the line segment

Theorem 1 (Lovész [8]). Consider a reversible random
walk in K with its stationary distribution being uniform
on K. Suppose A > 0 such that for all z,y € K with
o(z,y) < A, we have pr —pyHl < 1-Q(1), where p,
denotes the distribution after one step of the random walk
from x. Then, after O(A™2) steps, the lazy version of the
walk from a warm start is within 1/a total variation dis-
tance from the uniform distribution on K.

Kannan and Narayanan proved that the transition func-
tion of the uniform Dikin walk, p,., for z € int(K), satisfies

the hypothesis of the theorem above with A = Q (\/717%),

thus implying that it mixes in O(mn) steps from a warm
start. An analogous result for the Gaussian Dikin walk is
implicit in the work of Narayanan. Our main contribution
is an alternative and simple proof of their main technical
contributions. In particular, we prove the following theo-
rem.

Theorem 2. Lete € (0,1/2]. For the Gaussian Dikin walk
on K with r < 455 (log @)73/2, for any two points x,y €
K such that ||z —y||, < o we have P — pyl|, <e.

n

In order to use this theorem along with Theorem [ to
obtain the claimed mixing time bound, one needs a simple
fact that, for any z,y in a polytope K, which is described
using m inequalities, o(z,y) > ﬁ |z —yll, . A proof of
this fact is given in the appendix; see Lemma [l

The following two lemmas are the main ingredients in
the proof of Theorem 2t (1) If two points z,y are close in
the local norm, i.e, ||z — y||, < —=, then the two Gaussian
distributions g, and g, are close in statistical distance. (2)
If r is small enough (as a function of €), then for all z, p,
and g, are e-close in statistical distance.

Lemma 3. Letr <1, and ¢ > 0 be such that ¢ < min{r, 1/3}.
Let z,y € K. If & —y|, < =, then ||gs — gy]|, < 3c.

This lemma relies on a well-known fact about the Kullback-
Leibler divergence between two multivariate Gaussian dis-
tributions, and Pinsker’s inequality that bounds the statis-
tical distance between two distributions in terms of their
divergence.

Lemma 4. Given ¢ € [0,1/2], for r < 155(log 22)=%2, we
have ||py — ga||; < e.

This lemma, which shows that the Metropolis filter does
not change the distribution much, relies on a result on
the concentration of Gaussian polynomials, proved using
hypercontractivity. Given the above lemmas, Theorem
follows by applying triangle inequality.

2. Statistical distance between Gaussians and the
local norm

In this section, we present a proof of Lemma [3] that
bounds the statistical distance between g, and g, for two
points x,y that are close in the local norm. We need the
following well-known fact about the Kullback-Leibler di-
vergence between two multivariate Gaussian distributions.

Fact 5. Let Gy = N(u1,%1) and G = N (2, X2) be two
n-dimensional Gaussian distributions. Then,

det 21
det EQ

(1 — p2) ST — Mz)) ,

1
DKL(GQHGl) = 5 (T?“ (2;122) —n +10g

where Dgy, denotes the Kullback-Leibler divergence

P(x)
Q(x)
In order to use this theorem, we have to bound the eigen-

values of H(z)H (y)~!. For x,y that are close in the local
norm, this follows since H(z) ~ H(y).

Din(PlIQ) = / log 2 4p(z),



Proof Lemma From the assumption, we have,

@ @-9)? (=)
(a] x — ;)2 ~iclm] (a z— b))%

C2 2
e =Y

i€[m]

Thus, for all ¢ € [m], we have

(1_%)@ 2—b;) < (a) y—b;) < ( —l—%)(a?x—bi).

By the definition of H, we get,

(1- %)QH@) < H) = (14 %> Hy).
An >0 ofH(x)H(y)_l

(57) == (+)

We can now bound the statistical distance between g, =
N(z, %H(z)fl) and g, = N(y, %H(y)’l) by using
Pinsker’s inequality ﬂ, p. 44], which gives that ng — ng? <
2 - Dkr.(gy]]gz)- Letting X1, X9 denote the covariance ma-
trices of g1, g2, we can write Tr (2;122) =37, N, and

det>; __ _\\ 1
det o 7Zi:110g)\i'

Thus, all eigenvalue A1, ..., , satisfy

1
log 98 Get PRSI

= 1
Jon ol <3 (-1 1og ) + 2 e — 2
i=1 ¢

(Using Fact [H)

Z(H—z) e~ yl?

i=1

(Using 1og§ < % — 1)

L 2
r2 n’

(Usmg the convexity of A + T — 2)

< n -max (3¢/vn—c/n)? (3 vi+e/n)?
- (1 —</vn)? " (1+/vn)?

Cefyctin)?
2

=n- +
(1 —¢/vm)
_ 2 (2 -/ vm)? 02 25 , 2
C (1_C/f)2+—2§4c + 2 < 9c¢”,
where the last line uses ¢ < /3,7 < 1 and n > 1. O

3. The effect of the Metropolis filter

In this section, we prove Lemma M that shows that for
any x € K, the statistical distance between the Gaussian

distribution g, and the random walk distribution p,, ob-
tained by applying the Metropolis filter to g,, is small. We

have,
[pe() — ge()||, =1~ B min {1, 2:(z) } G
G 9a(2)
Given ¢ € (0, 1/2], we show that for an appropriate choice

of r, the above statistical distance is bounded by «¢.

The ratio of g, and g, has two terms: one involving the
ratio of det H(z) and det H(z), and one involving the dif-
ference in local norms ||z — zHi — |z — x||i . Proposition [
bounds the first by controlling the norm of Vlog det H (x).
Proposition [[l bounds the second term by using concentra-
tion of Gaussian polynomials.

Proof of Lemma[d We have,

9:(x) n 2 2
= exp (g (s =l = 1 - al2)

+% (log det H(z) — log det H(x))) :

From Proposition [Gl for r < , we have

%(2 log 4/8
_8/2] >

Also, from Proposition[d for r < 5 (log 50/=) =2

Pr(logdet H(z) —logdet H(x) > 1—¢/a.

, we have,

T2

Pr |z—x||§—|z—w||is§;] >1- /.

Combining the two using a union bound, we get that ex-
cept with probability ¢/2, we have, gZE ; >e 2 >1—¢/a

Thus,
E min 1,92@ Ss(1-%)pr [0 o ¢
Zga 9:(2) 2 ) z~ge | Ga(2) 2
2
> (1 - %) >1 ¢
The claim now follows from (). O

o . - 1 1S
Proposition 6. Given ¢ € (0,1/2], for r < Valos and

z ~ g, we have

Prllogdet H(z) — logdet H(x) > —2¢] > 1 —e.
Proof of Proposition Let V(z) := 3 logdet H(z).
From the work of Vaidya [12], we know that V(z) is a
convex function. Thus, V() -V (z) > (z—2)"VV(z). We
know that z = 2 + —= (H(x))_l/zg, where g ~ N(0,L,).
Thus,

V(z) = V() > —g' (H@)) " VV(a).

NG



g" (H(z))" & VV(x) is a Gaussian with mean 0 and vari-

_1/y 2
‘(H(x)) v VV(x)|| .From Lemma 4.3 in the work
of Vaidya and Atkinson [13], it follows that

ance

H (H(z))™ " VV(x)Hz <n.

Using standard tail bounds, we get that for all A > 0,

Prlg” (H(x)) " VV(2) > ~A/n] > 1 - exp(—¥/2).

Picking A = /2log /e, and combining, we get, Pr[V(z) —
V(z) > —ry/2logl/c] > 1 —e. For r < m, we have

ry/2log1/e < e, which gives the claim. O

Proposition 7. Given e € (0,1/2], for r < 55(log 11/)~3,
and z ~ g., we have,

Pri|lz—a)®—|lz—2)?<2 —|>1-=c
n

Nh—‘

~

)

a;, we

Proof Proposition[t We have z = 2+ Tn (H(z
where g ~ N(0,1,,). If we let a; = —— (H(z))

i

get a] (z —x) = Z=(a] w = b;)-a] g, and 7, Gs0] = T,,.

I\il»—l

Iz = =[lZ = Iz = «l;
3 aj (z —x))? L L
;(Z( ) ((a—rzb) (a zb))

7 i(ﬁ i 2 N 1
) a; g  ~ A
2= 1+ Z=alg)  (1+Z=a]g)?
23 & .
—r 2 _alg)’ (2)
=1

We now use concentration of Gaussian polynomials (see
Theorem [§]) to bound the two terms above. Let P;(g) :=
> (a) g)®. From Fact [0, we know E, Pi(g)? < 15n.
Thus, using Theorem ] we know that for any Ay > (\/%)3,

3 .2
Pr [|P1(g)| > A1\/15n] < exp (—2—)\1/3) .
g e

we

2\/ )\’

Picking Ay = (max {26 2 Jog %}) ,and r <
5. Thus, with probability

obtain, Pr [|Pi(g)| > gr\f] <
at least 1 — 5,

2% O 23 ¢ r
—WZ(% 0k S oangpVn=e 3)

i=1

Now, we let Py(g) := 31" (4, g)*. Again, from Fact [T, we

know that E, P>(g)? < 105n2, and applying T2heorem B

we obtain that for \y = (maX{Qe, 2746 10g2}) and r <
NG .

\/ﬁ, we obtam, Pr [|P2(g)| Z 88?71}

probability at least 1 — £.
r rt e e r
_ e p=2..
n? Z =02 82" T8

Note that this also implies that for all 1, ﬁm; gl <

< 2 Thus, with

[N~}

1/4

/
( %L;) < l , where the last inequality holds for all » < 1.

Thus, with probablhty at least 1 — £, we have
rt — 2 1
— > (alg)! s —
n? ; 1+ Z=alg) (14 J=a/g)?

Combining this with Equations (2] and (@), and applying
a union bound, we get that with probability at least 1 — ¢

2
=l = ll2 - all} < 2¢- =

3

Finally, we verify that for e € (0, = (log11/c)~2

satisfies the conditions

o], any r < =

r <min< 1, - , Ve .
2\/E)\l 8)\2\/@
O
Theorem 8. (see Janson [8, Thm 6.7]) Let P(g) be a
degree q polynomial, where g € R™ such that g ~ N(0,1,).
Then, for any t > \/%q,

Pr [IP(g)I >t (E P(g)Q)l/Z] < exp <2%t%) :
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Lemma 9 ([!a]) For any x,y € K, we have o(x,y) > [Hw||, < |lw]|, . We obtain,
eyl )
S HBTwH =w' BB "w=w"Tw
Proof Lemma Let p,x,y,q be the points in order 2
on the chord of K that passes through x,y with p, ¢ being =w' Iw
the end-points of the chord. Thus, m
2 2 4
= |Tw|l3 < [lwllz =Y Io:ll*-
i=1

_z—=yllp—dl {wm Wy?
_— max

U(x7y) - —5—
lp — z||q — y| lp— x| |z —q

i ™ opb] = b <
T (z — v)| Since Y, bib; I, we get that for all 4, ||b;]] < 1.

= 112[82(] m Moreover, taking trace, we obtain 3.7 [|b;]|* = n. Thus,

e E:(@fomﬁ olbillt < Y lIbill* = n.
vm ] (aTz —b;) i=1 i=1

K2

Y]
[

i€[m
1 Thus, we can bound the first term in Equation (B by n.
Jm lz =yl - For the second term in Equation (B.), using ||b;||, <1
for all i, and Cauchy-Schwarz, we get b/ b;| < 1 for all

O 4, j. Using Y1t bb] = I, we also know that for all j,

S (b b;)? = Hijz Thus, we get,

S0 < Y0762 = |[b]f; = ne
i,j=1 ij=1 j=1
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Combining the bounds for the two terms in Equation (B.]),
we get the first part of the fact.

For the second part of the fact, we use Cauchy-Schwarz
inequality,

2

= Z E(b/ 9)* (b 9)*

1

m

E|> (b9

=1 1,

<
Il

(E(biT 9)8)1/2 (E(b;g)s)w

<

M:

1,7=1

We have that b, g is distributed as a Gaussian with mean
0 and variance ||b;]|5 . Thus, E(b] ¢)® = 105 |b;]|5 . Hence,
we get,

2
m

E(Y 079t <105 il 1655

i=1 i,j=1
2

=105 [ Y " Jlbafl* | < 10502,
=1

proving the second part of the fact. O

Note: The bounds given by the above fact are tight for the
case where b; form an orthonormal basis.

Fact 11 (Isserlis M]) Suppose g € R™ is distributed ac-
cording to N'(0,1,,), and by, by are any two vectors in R™,

E(b1 )" (b3 9)* = 9 llba|I” 16211 (b1 b2) + 6(b1 b2)*.

Proof of Fact I} We define b; := HbliH - b; to be the

corresponding unit vectors. Thus,

E(b{ 9)°(b3 9)° = Ibr]|* [b2]” E(b] 9)*(b3 9)°.  (B.2)

We let ey, ..., e, denote the standard basis vectors for R",
i.e., e; is 1 in the i*" coordinate and 0 elsewhere. Since the
distribution of g is rotationally symmetric, we can assume
that 131 =eq, and 62 = cosf-e; +sinf - ey, where 0 is such
that cosf = l;;rl;g Thus,

E(b 9)*(b) 9)° = E g} (cosf - g1 +sin0 - go)°
=cos’0E g +0+3cosfsin?0Egi Egs +0
=15c0s> 0 + 9cosfsin® 6 = 9cosh + 6 cos® 0

=9 (b{b) +6 (5;52)3.

Combining with Equation (B.2]), we obtain the fact. O
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