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Abstract

We consider the gross-substitute (GS) condition introduced by Kelso and Crawford (1982). GS is a condition
on the demand-flow in a specific scenario: some items become more expensive while other items retain their
price. We prove that GS is equivalent to a much stronger condition, describing the demand-flow in the
general scenario in which all prices may change: the demand of GS agents always flows (weakly) downwards,
i.e, from items with higher price-increase to items with lower price-increase. JEL classification: D11
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1. Introduction

Many markets involve a set of distinct indivisible goods that can be bought and sold for money. The
analysis of such markets crucially depends on the agents’ valuation functions — the functions that assign
monetary values to bundles. It is common to assume that agents’ valuations are weakly increasing (more
goods mean weakly more value) and quasi-linear in money. Even so, without further restrictions on the
valuations, the market may fail to have desirable properties such as the existence of a price-equilibrium.
Kelso and Crawford [1] introduced a property of valuations which they called gross-substitutes (GS). An
agent’s valuation has the GS property if, when the prices of some items increase, the agent does not decrease
its demand for the other items. Kelso and Crawford [1] proved that a market in which all agents are GS
always has a price-equilibrium. Gul and Stacchetti [2, 3] complemented this result by proving that the GS
condition is, in some sense, necessary to ensure existence of a price-equilibrium. The GS condition has been
widely used in the study of matching markets [4], auctions [5] and algorithmic mechanism design [6].

The GS condition specifies the behavior of an agent in a very specific situation: some items become more
expensive, while other items retain their original price. In this paper we characterize the behavior of GS
agents in the more general situation, in which the prices of all items change in different ways and in different
directions. This characterization may have several potential applications:

(a) Analyzing the response of markets to exogenous shocks. For example, suppose the government
puts price-ceilings on several items. With a single item-type, it is obvious that a price-ceiling below the
equilibrium-price will result in excess demand. But with multiple item-types, this is not necessarily so. For
example, it is possible that the prices of both item x and item y are below their equilibrium prices, but
because of substitution effects, buyers switch from demanding y to demanding x so the net effect is an excess
supply in y and an excess demand in x. In order to analyze such markets, we have to understand how exactly
agents move from one item-type to another when the prices change.

(b) designing dynamic combinatorial auctions. In such an auction, the auctioneer modifies the prices
of different items in different rates in an attempt to change the aggregate demand. Gul and Stacchetti [3]
describe one such auction, in which the prices are always ascending. In order to design different auctions, it
may be useful to know the effect of different price-changes on the agents’ demand.
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(c) Using field-data to detect the existence of complementarities (i.e, valuations that are not GS) by
comparing demands under different price-vectors.

(d) Our original application [7] was a double-auction mechanism where the market-prices are set by
the auctioneer in a way that guarantees truthfulness but might not be entirely efficient; understanding the
demand-flow of agents let us calculate an upper bound on the loss of efficiency.

Consider two price-vectors: old and new. For every item x, define ∆x as the price-increase of x (the new
price minus the old price). Add a ”null item” ∅ and set its price-increase to 0. Arrange the items vertically
by ascending price-increase. Then, our main result is that:

The demand of a gross-substitute agent always flows weakly downwards.

I.e, an agent may switch from wanting an item whose price increased more to an item whose price increased
less, but not vice-versa. This property is trivially true for a unit-demand agent, but it is not true when the
agent regards some items as complementaries.

Example 1.1. There are three items: x,y,z. Initially their prices are $10,$10,$10. Then, the prices increase
by ∆x = $20,∆y = $30,∆z = $40, so that the new prices are $30,$40,$50. Consider two agents with the
following valuations:

x y z x+y x+z y+z x+y+z
Alice $65 $70 $75 $70 $75 $75 $75
Bob $40 $40 $66 $80 $75 $75 $80

Alice has unit-demand: she needs only one item and values each bundle as the maximum item in that bundle.
Bob regards x and y as complementaries: each of them alone is worth less than z, but together they are
worth more than x+z and y+z (Note that Bob’s valuation is submodular but not GS).

In the initial prices Alice’s preferred bundle is z, and after the price-change her preferred bundle is x, so
her demand flows downwards — towards the smaller price-increase.

In contrast, Bob’s demand is initially x+y, and after the price-change his demand is z, so his demand
flows upwards — towards the item with the larger price-increase.

Our main result is that GS agents behave like unit-demand agents in this regard: their demand flows
only downwards.

2. Model and Notation

There is a finite set of indivisible items, M = {1, . . . ,m}. There is an m-sized price-vector p: a price per
item. The price of a bundle is the sum of the prices of the items in it: p(X) :=

∑
x∈X px.

The present paper focuses on a single agent with a single valuation-function u : 2M → R. u is assumed
to be weakly-increasing: if a bundle X ⊆ Y then u(X) ≤ u(Y ).

The agent’s utility is quasi-linear in money. Given a utility function u and a price-vector p, the agent’s
net-utility function up is: up(X) := u(X)− p(X).

Definition 2.1. Given a valuation function u and a price-vector p, we say that a bundle P is a p-demand
if it is optimal for the agent to buy this bundle when the prices are p, i.e, the set P maximizes the net-utility
function up(·) over all bundles of items: ∀X : up(P ) ≥ up(X).

Definition 2.2. Given a valuation function u and a price-vector p, we say that an item x is p-demanded
if there exists a p-demand P such that P 3 x.

Definition 2.3. Given an agent, an item x and a pair of price-vectors (p, q), we say that:
(a) The agent abandoned item x if x is p-demanded but not q-demanded.
(b) The agent discovered item x if x is q-demanded but not p-demanded.

Definition 2.4 ([1]). An agent’s valuation function has the gross-substitute (GS) property if, for every
price-vectors (p, q) such that ∀y : ∆y ≥ 0, if ∆x = 0 then the agent has not abandoned x.
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Definition 2.5. A valuation has the downward-demand-flow (DDF) property if the following are true
for every pair of price-vectors (p, q) (where ∆x := qx − px):

(a) If ∆x ≤ 0 and the agent abandoned x, then he discovered some y with ∆y < ∆x.
(b) If ∆x ≥ 0 and the agent discovered x, then he abandoned some y with ∆y > ∆x.

DDF implies GS: part (a) of the DDF definition implies the GS definition. Our main result is the converse
implication: GS implies DDF.

3. M \-concavity

Our main technical tool is the following characterization of GS valuations [8]:

Definition 3.1. A valuation function u is M \-concave if-and-only-if, for every two bundles X,Y and for
every X ′ ⊆ X \ Y with |X ′| = 1 (i.e, X’ is a singleton), there exists a subset Y ′ ⊆ Y \X with |Y ′| ≤ 1 (i.e,
Y’ is either empty or a singleton) such that:

u(X \X ′ ∪ Y ′) + u(Y \ Y ′ ∪X ′) ≥ u(X) + u(Y )

Lemma 3.1 ([8]). A valuation function u is M \-concave if-and-only-if it is gross-substitute.

Below we prove that M \-concavity is preserved in net-utility and marginal-valuation functions.

Lemma 3.2. Let p be an arbitrary price vector. A valuation function u is M \-concave if-and-only-if the
net-utility function up is M \-concave.

Proof. The price function p(·) is additive. Hence, for all X ′ ⊆ X \ Y and Y ′ ⊆ Y \X:

p(X \X ′ ∪ Y ′) + p(Y \ Y ′ ∪X ′) = p(X) + p(Y )

Hence, the M \-concave condition is independent of price:

u(X \X ′ ∪ Y ′) + u(Y \ Y ′ ∪X ′) ≥u(X) + u(Y )

⇐⇒
up(X \X ′ ∪ Y ′) + up(Y \ Y ′ ∪X ′) ≥up(X) + up(Y )

Definition 3.2. Given a valuation u and a constant bundle Z, the marginal valuation uZ+ is a function
that returns, for every bundle X that does not intersect Z, the additional value that an agent holding Z
gains from having X:

uZ+(X) := u(Z ∪X)− u(Z) for all X with X ∩ Z = ∅

Lemma 3.3. A valuation function u is M \-concave if-and-only-if, for every bundle Z, the marginal-valuation
function uZ+ is M \-concave.

Proof. The ”if” direction is obvious since ∅ is also a bundle and u∅+ ≡ u.
For the ”only if” direction, suppose u is M \-concave and let Z be an arbitrary bundle. We have to prove

that uZ+ is M \-concave, i.e, for all bundles X,Y with X ∩ Z = Y ∩ Z = ∅, and for every X ′ ⊆ X \ Y with
|X ′| = 1, there exists a Y ′ ⊆ Y \X with |Y ′| ≤ 1 such that:

u(Z ∪ (X \X ′ ∪ Y ′)) + u(Z ∪ (Y \ Y ′ ∪X ′)) ≥u(Z ∪X) + u(Z ∪ Y ) (1)

Since u is M \-concave, we can apply the definition of M \-concave to the bundles Z ∪ X and Z ∪ Y . For
every X ′′ ⊆ (Z ∪X) \ (Z ∪ Y ) with |X ′′| = 1, there exists Y ′′ ⊆ (Z ∪ Y ) \ (Z ∪X) with |Y ′′| ≤ 1 such that:

u((Z ∪X) \X ′′ ∪ Y ′′) + u((Z ∪ Y ) \ Y ′′ ∪X ′′) ≥u(Z ∪X) + u(Z ∪ Y ) (2)
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This is particularly true when X ′′ = X ′ from above, since (Z ∪X)\ (Z ∪Y ) ≡ X \Y . We can take Y ′ := Y ′′,
since (Z ∪ Y ) \ (Z ∪X) ≡ Y \X. It remains to prove that (2) implies (1).

Indeed, since X ∩ Z = X ′ ∩ Z = Y ′ ∩ Z = ∅:

Z ∪ (X \X ′ ∪ Y ′) = (Z ∪X) \X ′ ∪ Y ′,

since it does not matter whether we first add X to Z and then remove some items from the union, or first
remove these items from X and then add the remaining items to Z. Similarly, since also Y ∩ Z = ∅:

Z ∪ (Y \ Y ′ ∪X ′) = (Z ∪ Y ) \ Y ′ ∪X ′

so (2) and (1) are equivalent.

4. Telescopic Arrangement of Maximizing Bundles

By definition, an agent’s demanded bundles are maximizing-bundles — bundles that maximize his net-
utility over all 2m possible bundles. In addition to the global maximizing-bundles, we can consider the
maximizing-bundles in each size-group, i.e, the maximizing-bundles among the bundles with 1 item, with
2 items, etc. In this section we prove that, when the agents’ valuation is M \-concave, the maximizing-
bundles in the different size-groups have a telescopic arrangement: each maximizing-bundle contains smaller
maximizing-bundles and is contained in larger maximizing-bundles.

Definition 4.1. Given valuation u on m items and a number i ∈ {0, . . . ,m}, a bundle Zi is called i-
maximizer of u if it maximizes u among all bundles with i items. I.e, |Zi| = i and for every other bundle
Xi with i items, u(Zi) ≥ u(Xi).

Lemma 4.1. For every M \-concave valuation u on m items and two integers i, j such that 0 ≤ i < j ≤ m:
(a) For every i-maximizer Zi there is a j-maximizer Z ′j such that Z ′j ⊃ Zi.
(b) For every j-maximizer Zj there is an i-maximizer Z ′i such that Zj ⊃ Z ′i.

Proof. The lemma is obviously true when i = 0 since there is a unique 0-maximizer (the empty set). It is
also true when j = m since there is a unique m-maximizer (the set containing all items). We have to prove
it for 1 ≤ i < j ≤ m− 1, which is possible only when m ≥ 3. The proof is by induction on m.

Base: m = 3, j = 2, i = 1. Let Z1 be a 1-maximizer and Z2 a 2-maximizer. If Z1 ⊆ Z2 then we are
done. Otherwise, Z1 contains a single item, e.g. {x}, and Z2 contains the other two items, {y, z}. Apply
the M \-concavity definition with X = Z2 and Y = Z1 and X ′ = {y}. Then, Y ′ can be either ∅ or {x}:

• If Y ′ = ∅, then by the M \-concavity condition: u({z}) + u({x, y}) ≥ u({x}) + u({y, z}). Then {z}
must be a 1-maximizer and {x, y} must be a 2-maximizer; the former is contained in Z2 and the latter
contains Z1 so we are done.

• If Y ′ = {x}, then by the M \-concavity condition: u({x, z}) + u({y}) ≥ u({x}) + u({y, z}). Then {y}
must be a 1-maximizer and {x, z} must be a 2-maximizer; the former is contained in Z2 and the latter
contains Z1 so we are done.

Step: we assume that the lemma is true when there are less than m items and prove that it is true for
m items, where m ≥ 4. Let Zi be an i-maximizer and Zj a j-maximizer. We consider several cases.

Case 1: There is an item which is not in Zi nor in Zj . W.l.o.g. call it item 1. Let u′ be the restriction
of u to the items {2, . . . ,m}. Then Zi is an i-maximizer of u′ and Zj is a j-maximizer of u′. By the
induction assumption, the lemma is true for u′. Hence, there is a j-maximizer of u′, say Z ′j , which contains
Zi. Since both Zj and Z ′j are j-maximizers of u′, u′(Zj) = u′(Z ′j). Hence u(Zj) = u(Z ′j). Hence, Z ′j is also
a j-maximizer of u, so part (a) is done. Similarly, there is an i-maximizer of u′, say Z ′i, which is contained
in Zj . Since both Zi and Z ′i are i-maximizers of u′, u′(Zi) = u′(Z ′i). Hence u(Zi) = u(Z ′i). Hence, Z ′i is also
an i-maximizer of u, so part (b) is done.

Case 2: There is an item which is in both Zi and Zj . W.l.o.g. call it item 1. Let u′ be the marginal
valuation function u{1}+. By Lemma 3.3, u′ also is M \-concave. It is a valuation function on m− 1 items,
{2, . . . ,m}. The bundle Zi−1 = Zi \ {1} is an (i − 1)-maximizer of u′ and the bundle Zj−1 = Zj \ {1}
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is a (j − 1)-maximizer of u′. By the induction assumption the lemma is true for u′. Hence, there is a
j − 1-maximizer of u′, say Z ′j−1, which contains Zi−1. Since both Z ′j−1 and Zj−1 are (j − 1)-maximizers
of u′, u′(Zj−1) = u′(Z ′j−1). By definition of the marginal valuation function, this equality is equivalent to:
u(Zj) = u(Z ′j−1 ∪ {1}). Since Zj is a j-maximizer of u, Z ′j−1 ∪ {1} is also a j-maximizer of u. It contains
Zi−1 ∪{1} = Zi so part (a) is done. Similarly, there is an i− 1-maximizer of u′, say Z ′i−1, which is contained
in Zj−1. Since both Zi−1 and Z ′i−1 are (i − 1)-maximizers of u′, u′(Zi−1) = u′(Z ′i−1). By definition of the
marginal valuation function, this equality is equivalent to: u(Zi) = u(Z ′i−1∪{1}). Since Zi is an i-maximizer
of u, u(Z ′i−1 ∪ {1}) is also an i-maximizer of u. It is contained in Zj−1 ∪ {1} = Zj so part (b) is done.

By Case 1, the lemma is true whenever i + j < m.
By Case 2, the lemma is true whenever i + j > m.
Case 3: i + j = m. If i + 1 < j, then i + (i + 1) < m and (i + 1) + j > m. Hence, by cases 1 and 2,

there is an (i + 1)-maximizer, Z ′i+1, containing Zi and an (i + 1)-maximizer, Z ′′i+1, contained in Zj . Again
by cases 1 and 2, there is a j-maximizer Z ′j containing Z ′i+1, and an i-maximizer Z ′′i contained in Z ′′i+1. Z ′j
contains Zi and Z ′′i is contained in Zj so we are done.

The only case that remains is: i + j = m and i + 1 = j. In that case, m = 2i + 1 (the total number of
items is odd). The case m = 3, i = 1, j = m − 1 was already handled in the Base, so we can assume that
m ≥ 5, i ≥ 2, j ≤ m− 2.

Since i + (j + 1) > m, by Case 2 part (a), there exists a (j + 1)-maximizer, Z ′j+1, which contains Zi.
Also, j + (j + 1) > m, so by Case 2 part (b), there exists a j-maximizer, Z ′j , contained in Z ′j+1. Starting at
Zi, we added two items to create Z ′j+1 and then removed one item to create Z ′j . Since i ≥ 2, at least one
item of Zi is also in Z ′j . Hence, Zi and Z ′j are covered by Case 2. By part (a), there exists a j-maximizer
containing Zi.

Similarly, j + (i− 1) < m. Hence, by Case 1 part (b), there exists an (i− 1)-maximizer, Z ′i−1, contained
in Zj . Also, i+(i−1) < m, so by Case 1 part (a), there exists an i-maximizer, Z ′i, containing Z ′i−1. Starting
at Zj , we removed two items to create Z ′i−1 and then added one item to create Z ′i. Since j ≤ m− 2, at least
one item not in Zj is also not in Z ′i. Hence, Zj and Z ′i are covered by Case 1. By part (b), there exists an
i-maximizer contained in Zj .

Remark 4.1. For a non-GS valuation, the “telescopic” property may or may not hold. For example, it
holds trivially for any valuation on two item-types; it does not hold for Bob’s valuation in Example 1.1.

5. Uniform price change

In this section, we prove an intermediate result about the demand-flow of GS agents that may be inter-
esting in its own right: if all items become cheaper by the same additive amount then the agent does not
abandon any item, and if all items become more expensive by the same additive amount then the agent does
not discover any item.

Lemma 5.1. Let p be a price-vector, d a real constant, and p′ another price-vector such that for every item
x: p′x = px + d. If the valuation is M \-concave, then for every bundle P :

(a) If d ≤ 0 and P is a p-demand, then there exists a p′-demand P ′ ⊇ P .
(b) If d ≥ 0 and P is a p′-demand, then there exists a p-demand P ′ ⊇ P .

Proof. We prove only part (a), since part (b) is its mirror-image.
Let P be a p-demand and Q a p′-demand. We consider two cases.
Case 1: |Q| ≤ |P |. Note that up′(Q) = up(Q)−d · |Q| and up′(P ) = up(P )−d · |P |, so up′(Q)−up(Q) ≤

up′(P )− up(P ). This means that, in the move from p to p′, Q gained weakly less net-utility than P . Hence,
if Q is a p′-demand, P is necessarily a p′-demand too. P ⊇ P so we are done.

Case 2: |Q| > |P |. Let i = |P | and j = |Q|. Then, P is an i-maximizer of the net-utility function up

and Q is a j-maximizer of the net-utility function up′ . But, the change in price between p and p′ does not
affect the preference relation between bundles of the same size. Hence, P is also an i-maximizer of up′ . Since
j > i, by Lemma 4.1/a there exists a j-maximizer of up′ that contains P . Call it P ′. By definition of a
j-maximizer, up′(P ′) ≥ up′(Q). Hence, P ′ is also a p′-demand. P ′ ⊇ P so we are done.
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Figure 1: Illustration of prices in the proof of Lemma 1. Here there are 11 items and px = 0.5 for all items x. The items are
ordered in increasing order of ∆x = qx − px.

Remark 5.1. For a non-GS valuation, the uniform-price-change property may or may not hold. For example,
it holds for any valuation on two item-types, since Lemma 4.1 holds in this case. It does not hold for Bob’s
valuation in Example 1.1, since when the prices change from $10,$10,$10 to $50,$50,$50, Bob discovers z.

6. Downward Demand-Flow Property (Main Result)

Theorem 1. If a valuation function is M \-concave, then it has the DDF property.

Proof. Let p, q be two price-vectors and ∆x = qx − px. We now prove part (a) in the DDF definition: if the
agent abandoned an item x with ∆x ≤ 0, then the agent must have discovered some item y with ∆y < ∆x.
The proof of part (b) is analogous.

Consider an item x with ∆x ≤ 0 that is p-demanded but not q-demanded. Define a price-vector p′ as
(see Figure 1):

∀y : p′y = py + ∆x

By Lemma 5.1(a), all items that are p-demanded, including item x, are also p′-demanded.
Define the price-vector q′ as (see Figure 1):

∆y ≤ ∆x : q′y = p′y = py + ∆x

∆y ≥ ∆x : q′y = p′y + (∆y −∆x) = py + ∆y = qy

Between p′ and q′, the prices of items above x weakly increased while the prices of item x and the items
below x remained the same. By the GS property, item x is q′-demanded, and all items below x that were
p-demanded are q′-demanded.

The last step of the proof — the move from q′ to q — is true for arbitrary valuations (not only GS).
Since x was q′-demanded, there was a q′-demand Q′ that contained x. Since x is not q-demanded, Q′ is not
a q-demand. This means that there must be a different q-demand, say Q, that became more attractive than
Q′, i.e, uq(Q) > uq(Q′). But uq′(Q) ≤ uq′(Q

′), so necessarily, in the move from q′ to q, the bundle Q became
cheaper more than Q′. Since the only items that became cheaper from q′ to q are items with ∆y < ∆x, the
bundle Q must contain at least one of these items y which was not previously demanded. This implies that
our agent, who abandoned x, has discovered y.

7. Remark

Gul and Stacchetti [2] prove that GS is equivalent to two other properties: Single Improvement (SI) and
No Complementaries (NC). They also present a property which they call Strong No Complementaries (SNC)
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and prove that it implies NC. They do not prove that NC implies SNC, but they also do not prove otherwise,
i.e, they do not give an example of a valuation that is NC and not SNC. Based on our failure to find such
an example ourselves, and based on the similarity between the SNC condition and the MC condition, we
conjecture that SNC is actually equivalent to MC (and hence, to NC and SI and GS).
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