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The value function approach to convergence analysis in composite optimization

Edouard Pauwels

IRIT-UPS, 118 route de Narbonne, 31062 Toulouse, France.

Abstract

This works aims at understanding further convergence properties of first order local search methods with complex geometries. We
focus on the composite optimization model which unifies within a simple formalism many problems of this type. We provide
a general convergence analysis of the composite Gauss-Newton method as introduced in [11] (studied further in [13, 12, 21])
under tameness assumptions (an extension of semi-algebraicity). Tameness is a very general condition satisfied by virtually all
problems solved in practice. The analysis is based on recentprogresses in understanding convergence properties of sequential
convex programming methods through the value function as introduced in [8].
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1. Introduction

In composite optimization, convergence of Gauss-Newton
methods is a question that has attracted a lot of research ef-
forts in the past decades. Let us mention a few milestones:
criticality of accumulation points was proved in [10], conver-
gence under sharpness assumption around accumulation points
is given in [11], and extensions to weaker regularity conditions
are described in [13, 12]. Assymptotic behaviour under prox-
regularity and identification under partial smoothness is inves-
tigated in [21]. These results attest to the difficulty of this un-
dertaking. Although the composite model is strongly structured
and Gauss-Newton method is explicitly designed to take advan-
tage of it, convergence of iterates always rely on strong local
growth conditions around accumulation points. These are of-
ten difficult to check in advance for general problems due to
the complexity of the optimization model. To our knowledge,a
simple and flexible global convergence analysis is still lacking
for these methods.

Departing from existing approaches to adress such complex
geometries, we rely on tameness assumptions. In the nons-
mooth nonconvex world, this assumption allows to use a pow-
erful geometric property, the so-called nonsmooth Kurdyka-
Łojasiewicz (KL) inequality, which holds true for many classes
of functions [22, 20, 6, 7]. We require problem data to be defin-
able, a generalization of the property of being semi-algebraic
[17, 15]. This rules out non favorable pathological situations
such as wild oscillations (e.g. fractals). This framework is gen-
eral enough to model the vast majority of functions that can be
handled numerically with a classical computer, while provid-
ing a sufficient condition for KL inequality to hold [7]. For a
smoother understanding, the reader non familiar with tame ge-
ometry may replace “definable” by “semi-algebraic”. Recall
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that an object is said to be real semi-algebraic if it can be de-
fined as “the solution set of one of several systems of polyno-
mial equalities and inequalities”.

The use of KL inequality in nonconvex optimization pro-
vided significant advances in understanding convergence offirst
order methods [1, 2, 3, 4, 6, 9]. However, the application of
these techniques in complex geometric settings, such as com-
posite optimization, remains an important challenge. A re-
cent breakthrough has been made in [8], which describes a
general convergence analysis of Sequential Quadratic Program-
ming methods [18, 5, 19]. This is an important example of com-
plex geometric structures with challenging convergence analy-
sis. To overcome the difficulty of dealing with problems with
complex geometries in this context, [8] has introduced a new
methodology based on the so-called value function.

We propose a general convergence guaranty for a variant of
the composite Gauss-Newton method [10, 11]. The main idea
consists in viewing Gauss-Newton method along the lines of [8]
through the value function approach. An important improve-
ment brought to [8] is the integration of a general backtracking
search in the analysis. This allows to deal with smooth func-
tions whose gradients are merelylocally Lipschitz continuous.
This flexibility is extremely important from a practical point of
view and requires non trivial extensions (see [24] for worksin
this direction). To the best of our knowledge this result is new, it
relies on easily verifiable assumptions and it is flexible enough
to encompass many problems encountered in practice. In addi-
tion, we emphasize that it provides a simple and intuitive way to
highlight the potential of the value function approach designed
in [8].

In Section 2, we describe the problem of interest, the main
assumptions and the algorithm. We also state our main con-
vergence result. We introduce notations, important definitions
and results from nonsmooth analysis and geometry in Section
3. The value function and its most important properties are de-
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Composite Gauss-Newton

Choosex0 ∈ D, µ0 > 0, τ > 1 and iterate

Step 1. Setµk = µ0 and compute the candidate iterate:
x̃k+1 ← argminy∈D g(F(xk) + ∇F(xk)(y− xk)) +

µk

2 ‖y− xk‖
2

Step 2. While g (F(x̃k+1)) > g(F(xk) + ∇F(xk)(x̃k+1 − xk)) +
µk

2 ‖x̃k+1 − xk‖
2

µk ← τµk

x̃k+1 ← argminy∈D g(F(xk) + ∇F(xk)(y− xk)) +
µk

2 ‖y− xk‖
2

Step 3. Update
xk+1 ← x̃k+1

(1)

scribed in Section 4. Section 5 contains the proof of the main
result.

2. Problem setting and main result

We consider the composite optimization problem.

min
x∈D⊂Rn

g(F(x)), (2)

Our main standing assumption is the following.

Assumption 1. F : Rn → R
m is C 2 and g: Rm→ R is convex

and finite valued. D⊂ R
n is convex and closed. F, g and D are

definable in the same o-minimal structure on the field of real
numbers (fixed throughout the text).

Note that Assumption 1 ensures thatg is locally Lipschitz con-
tinuous [25, Theorem 10.4]. For anyi = 1, 2, . . . ,m, we use the
notation fi for theC

2 function that corresponds to coordinatei
of F. We denote by∇F(x) the Jacobian matrix ofF at x:

∇F(x) =

[

∂ fi
∂x j

(x)

]

∈ Rm×n.

We will analyse the numerical scheme (1) which is a backtrack-
ing variant of the composite Gauss-Newton descent method
[10, 11, 13, 12, 21].

Remark 1. The dynamical feature of the step-size parameter
µk is akin to a backtracking procedure. Indeed, Assumption
1 ensures that F is locally smooth and g is locally Lipschitz
continuous. However the smoothness and Lipschitz continuity
moduli may be unknown and not be valid in a global sense.
They have to be estimated in an online fashion to prevent un-
wanted divergent behaviours.

The next Lemma shows that the algorithm is well defined and
the sequence of objective values is nonincreasing (the proof is
given in Section 4). The next Theorem is our main result and
the proof is given in Section 5.

Lemma 2.1. For each k, the while loop stops after a finite num-
ber of iterations and we have

g (F(xk+1)) ≤ g(F(xk) + ∇F(xk)(xk+1 − xk)) +
µk

2
‖xk+1 − xk‖

2,

and{g(F(xk))}k∈N is a nonincreasing sequence.

Theorem 2.2. Under Assumption 1, we have the alternatives
when k→ +∞.

• ‖xk‖ → +∞.

• xk converges to a critical point of Problem (2), the se-
quence‖xk+1 − xk‖ is summable,{µk}k∈N is bounded.

Remark 2. In the alternatives of Theorem 2.2, the unbounded
case is due to a lack of coercivity rather than a bad adjustment
of the local model throughµk. Indeed, if we suppose that x0

is chosen such that the set D∩ {x ∈ Rn; g(F(x)) ≤ g(F(x0))}
is compact, Lemma 2.1 ensures that the divergent option can-
not hold and the sequence converges. This phenomenon was
guessed in [3] and also appeared in [8]. Accounting for the
dynamical feature ofµk in our analysis is a contribution of this
work.

3. Notations and preliminary results

3.1. Notations

The symbol∂ refers to the limiting subdifferential. The no-
tion of a critical point is that of a limiting critical point:zero
is in the limiting subdifferential, a necessary condition of opti-
mality (nonsmooth Fermat’s rule). We refer, for instance, the
reader to [26, Chapter 8] for further details on the subject.

An o-minimal structure on the field of real numbers is a struc-
tured collection of definable subsets of finite dimensional Eu-
clidean spaces. It is required to satisfy some of the properties
of semi-algebraic sets. Semi-algebraic sets form an o-minimal
structure but there are many extensions. An introduction tothe
subject can be found in [15] and a survey of relevant results is
available in [16]. In Assumption 1, we have fixed an o-minimal
structure. Definable sets are subsets of Euclidean spaces which
belong to it and a definable function is a function which graph
is definable.

The normal cone toD at x ∈ D is denoted byND(x) and the
indicator function ofD is denoted byiD (whose value is con-
stantly 0 onD, +∞ otherwise).‖ · ‖ denotes the Euclidean norm
(which is semi-algebraic). Being given a functionf : Rp → R,
real numbersa andb, we set [a < f < b] = {x ∈ R

n : a <
f (x) < b}.
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3.2. Results from nonsmooth analysis

The next Lemma provides a formula for the subdifferential
of the objective function.

Lemma 3.1. The chain rule holds for g(F(·)).

∂g(F(x)) = ∇F(x)Tv

where v∈ ∂g at F(x). Furthermore g(F(·)) is subdifferentially
regular.

Proof. Sinceg is locally Lipschitz continuous, its horizon sub-
differential only contains 0. Since it is convex, it is subdiffer-
entially regular and the result follows from [26, Theorem 10.6].
�

We consider the functionh : Rn × Rn→ R, given by

h(x, y) = g(F(x) + ∇F(x)(y− x)) for anyx, y ∈ Rn. (3)

Lemma 3.2. h satisfies the properties:

1. h is continuous and subdifferentially regular.
2. h(x, x) = g(F(x)) for any x∈ Rn.
3. ∂h(x,y)

∂y = {∇F(x)Tv; v ∈ ∂g(F(x) + ∇F(x)(y− x))} for any
x, y ∈ Rn.

4. ∂h(x,y)
∂x = {(

∑m
i=1 vi∇

2 fi(x))(y − x); v = (v1, v2, . . . , vm)T ∈

∂g(F(x) + ∇F(x)(y− x))} for any x, y ∈ Rn.
5. h is convex in its second argument.

Proof.

1, 3, 4. Continuity follows from Assumption 1, regularity and sub-
differential formulas from the same argument as in Lemma
3.1.

2. Is by the definition ofh in (3).

5. y→ g(F(x)+∇F(x)(y− x)) is the composition of a convex
function and an affine map and hence is convex.

�

3.3. Results from geometry

The next remark gathers important properties of the class of
definable functions.

Remark 3. Semi-algebraic functions are definable. Definable
functions are closed under addition, multiplication, composi-
tion, differentiation, projection and partial minimization. De-
tailed proof of these facts may be found in [17, 15]. See also
[4, Theorem 2.2] for a specific example in optimization.

In the context of dynamical systems, a fundamental question
is that of the growth of the subdifferential around critical points.
This question has a long history in geometry [22, 20, 6, 7].
In the remainder of this text, KL is a short hand for Kurdyka-
Łojasiewicz. We will use the following definition from [3].

Definition 1 (KL function). Let f be a proper lower semi-con-
tinuous function fromRp to (−∞,+∞].

(i) f has theKurdyka-Łojaziewicz (KL) propertyat x̄ ∈

dom∂ f , if there existα ∈ (0,+∞], a neighborhoodV of x̄
and a functionϕ : [0, α] → R, non-negative, concave and
continuous,C 1 on (0, α) with ϕ′ > 0 andϕ(0) = 0 such
that, for allx ∈ V ∩ [ f (x̄) < f (x) < α].

ϕ′( f (x) − f (x̄)) dist (0, ∂ f (x)) ≥ 1 (4)

(ii) The function f is said to be aKL functionif it has the KL
property at each point of dom∂ f .

KL property rules out pathological oscilations around critical
points. It turns out that all definable functions, even nonsmooth
extended-valued functions, have the KL property.

Theorem 3.3 (Theorem 11 [7]).Let g be a proper lower semi-
continuous function fromRp to (−∞,+∞]. If g is definable, then
g is a KL function.

KL property has been extensively used for convergence analysis
for nonconvex dynamics both in continuous and discrete time
[22, 20, 1, 6, 2, 3, 4, 9, 8]. We conclude this section with a
density result whose proof can be found, for example, in [15,
Chapter 6].

Lemma 3.4. Let f : Rp → R be definable, then f is differen-
tiable almost everywhere.

4. Value function and fundamental properties

As in [8], we introduce theiteration mapping, pµ : Rn → D,
such that for anyx ∈ Rn andµ > 0,

pµ(x) = argminy∈D h(x, y) +
µ

2
‖x− y‖2. (5)

Note that, from Lemma 3.2, problem (5) isµ-strongly convex,
hence, from closedness ofD, the minimum is indeed attained.
According to this definition, the sequencexk produced by the
composite algorithm satisfiesxk+1 = pµk(xk). The next result
provides a link between the choice ofµ and Step 2 of the algo-
rithm.

Lemma 4.1. Given a compact set S⊂ R
n, there exists̄µ > 0

such that for any x∈ S and anyµ ≥ µ̄, we have

g
(

F(pµ(x))
)

≤ g(F(x) + ∇F(x)(pµ(x) − x)) +
µ

2
‖pµ(x) − x‖2

Proof. The optimization problem in (5) is strongly convex
and its data depends continuously onx, hence, forµ ≥ µ0 > 0
and x ∈ S, pµ(x) remains bounded. LetS1 be a com-
pact convex set that containsS ∪ {pµ(x); x ∈ S, µ ≥ µ0}.
From Assumption 1, ∇F is globally Lipschitz contin-
uous on S1 which ensures the existence of a positive
real a such that ‖F(y) − ∇F(x)(y − x)‖ ≤ a‖y − x‖2

for all x, y ∈ S1 (see for example the proof of [23,
Lemma 1.2.3]). SinceS and S1 are compact, the set
S2 = {F(x); x ∈ S1} ∪ {F(x) + ∇F(x)(y− x); x ∈ S, y ∈ S1}
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is compact by continuity ofF and ∇F. Hence,g is glob-
ally Lipschitz continuous onS2 [25, Theorem 10.4].
This shows existence of a positive realb such that
|g(F(y)) − g(F(x) + ∇F(x)(y − x))| ≤ ab‖y − xk‖

2 for all
y ∈ S1 andx ∈ S. We can take ¯µ := max{µ0, 2ab}. �

Proof of Lemma 2.1. Let µ̄ be given by Lemma 4.1 with
S = {xk}. Condition of Step 2 is automatically satisfied for
anyµk ≥ µ̄ and the while loop must stop. The nonincreasing
property follows by considering in addition the fact that
for k ∈ N, xk ∈ D and hencexk is always feasible in the
minimization problem of Step 1 with valueg(F(xk)). �

Lemma 3.2 provides differentiation rules that relates the iter-
atesxk to the subdifferential ofg. However this result is difficult
to use in the analysis. Indeed, according to Lemma 3.2, the op-
timality condition that definespµ can be written

−∇F(x)Tv− µ(pµ(x) − x) ∈ ND(pµ(x)) (6)

wherev ∈ ∂g(F(x) + ∇F(x)(pµ(x) − x)). We have no con-
trol on the relation betweenv and∂g at F(x) or at F(pµ(x)),
which induces a major difficulty in the interpretation of the al-
gorithm as a gradient or a subgradient method. This features
led the authors in [8] to introduce and study the value function
which we now consider in the composite case with the addi-
tional step size parameter feature. For anyµ > 0, the value
functionVµ : Rn→ R, is such that,

Vµ(x) = min
y∈D

h(x, y) +
µ

2
‖x− y‖22, for anyx ∈ Rn. (7)

The value function has the subsequent properties.

Lemma 4.2.

1. For any x∈ Rn, Vµ(x) = h(x, pµ(x)) + µ2‖pµ(x) − x‖2.
2. For anyµ > 0, pµ and Vµ are definable and continuous on

R
n.

3. For anyµ > 0, the fixed points of pµ are exactly the critical
points of Problem (2).

4. For anyµ > 0, Vµ(x) ≤ g(F(x)) − µ2‖pµ(x) − x‖2 for all
x ∈ D.

5. For any bounded nonempty set C, there is a constant
K(C) ≥ 0 such that for all x∈ C and anyµ > 0,

dist (0, ∂Vµ(x)) ≤ (K(C) + µ)‖x− pµ(x)‖

Proof. We mostly follow [8, Section 4.2].

1. This is a consequence of the definition ofpµ in (5) and the
definition ofVµ in (7).

2. Continuity ofpµ holds because of uniqueness of the min-
imizer in (5) and continuity ofh. For anyx, z ∈ R

n, we
have

h(x, pµ(x)) +
µ

2
‖pµ(x) − x‖2 ≤ h(x, pµ(z)) +

µ

2
‖pµ(z) − x‖2.

From strong convexity and continuity ofh, F and∇F, pµ
must be bounded on bounded sets. Letx converge tozand

take p̄ any accumulation point ofpµ(x). By continuity of
h, we have

h(z, p̄) +
µ

2
‖p̄− z‖2 ≤ h(z, pµ(z)) +

µ

2
‖pµ(z) − z‖2.

By strong convexity, we must have ¯p = pµ(z), hence
pµ(x) → pµ(z). Continuity of Vµ follows and definabil-
ity is a consequence of Remark 3.

3. From (6), ifx is a fixed point ofpµ, we have−∇F(x)Tv ∈
ND(x) wherev ∈ ∂g(F(x)). Using Lemma 3.1, we see that
this is exactly the optimality condition for Problem (2).

4. From Lemma 3.2, and strong convexity of Problem (5), we
have for anyx ∈ D,

Vµ(x) ≤ h(x, x) −
µ

2
‖pµ(x) − x‖2 = g(F(x)) −

µ

2
‖pµ(x) − x‖2

5. We introduce a parametrized function, for anyµ > 0,
eµ : Rn × Rn→ R̄, for anyx, y ∈ Rn,

eµ(x, y) = h(x, y) +
µ

2
‖x− y‖2 + iD(y)

SinceVµ : Rn → R is definable, using Lemma 3.4, it is
differentiable almost everywhere. LetSµ be the set where
Vµ is differentiable (dense inRn). Fix a pointx̄ ∈ Sµ. We
have, for anyµ, δ ∈ Rn,

e(x̄+ δ, pµ(x̄) + µ)

≥ h(x̄+ δ, pµ(x̄+ δ)) +
µ

2
‖x̄+ δ − pµ(x̄+ δ)‖2

= Vµ(x̄+ δ) = Vµ(x̄) +
〈

∇Vµ(x̄), δ
〉

+ o(‖δ‖)

= e(x̄, pµ(x̄)) +
〈

∇Vµ(x̄), δ
〉

+ o(‖δ‖).

This shows that (∇Vµ(x̄), 0) ∈ ∂̂e(x̄, pµ(x̄)) where∂̂ denotes
the Fréchet sudifferential [26, Definition 8.3]. Hence, from
Lemma 3.2 and [26, Corollary 10.11], we have

∇Vµ(x̄) =















m
∑

i=1

vi∇
2 fi(x̄)















(pµ(x̄) − x̄) + µ(x̄− pµ(x̄))

wherev = (v1, v2, . . . , vm)T ∈ ∂g(F(x̄) + ∇F(x̄)(pµ(x̄) −
x̄)). By local Lipschitz continuity ofg, twice continuous
differentiability ofF and continuity ofpµ, all the quantities
that appear in this formula are locally bounded. Hence,
for any neighborhoodV of x̄ there must exist a constant
K such that‖∇Vµ(x)‖ ≤ (K + µ)‖x − pµ(x)‖ for all x ∈
V ∩ Sµ. The result is proved by combining continuity of
pµ, definition of the limiting subdifferential [26, Definition
8.3] and the fact thatSµ is dense inRn.

�

5. Proof of Theorem 2.2

We extend the proof of [8, Proposition 4.12] to handle the
fact thatµk is not constant. We actually show that if‖xk‖ 6→

+∞, µk does not diverge. An important ingredient of the proof
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is the subsequent inequality which can be obtained by combin-
ing Lemma 4.2 and Lemma 2.1.

Vµk(xk) +
µk

2
‖xk+1 − xk‖

2 ≤ h(xk, xk) = g(F(xk)) ≤ Vµk−1(xk−1).

(8)

We will also rely on properties ofVµk andpµk given in Lemma
4.2 (for a fixedk ∈ N) and use them in the spirit of [4, 9].
Finally, we handle the dynamical behaviour ofµk, k ≥ 0,
defined in Steps 1 and 2 of the algorithm, thanks to Lemma
2.1.Throughout the proof, we assume that‖xk‖ 6→ +∞ that is
{xk} has at least one accumulation point.

Case 1: xk is stationary.. Suppose that there existsk0 ≥ 0 such
that xk0+1 = xk0. We have a fixed point ofpµk0

, hence ofpµ for
anyµ > 0. This implies thatxk0+l = xk0 for all l ≥ 0. Thusxk is
stationary, hence converges and the increments are summable.
Furthermore, from Lemma 4.1,µk must be bounded. Finally,
according to Lemma 4.2, we have a critical point of Problem
(2).

Case 2: xk is not stationary..We now suppose that
||xk+1 − xk|| > 0 for all k ≥ 0. From (8), we have that
bothVµk(xk), andg(F(xk)) are decreasing sequences. Let ¯x be
an accumulation point ofxk. The sequence of valuesg(F(xk))
cannot go to−∞ and hence converges tog(F(x̄)) by continuity.
With no loss of generality, we assume thatg(F(x̄)) = 0. From
(8) again, this implies thatµk‖xk+1−xk‖

2 is summable and hence
goes to 0 and thatVµk(xk) also converges from above tog(F(x̄)).

Definition of a KL neighborhood.Fix δ1 > 0. By Lemma 4.1,
there must exist a constant ¯µ > 0 such that for anyµ ≥ µ̄ and
anyx, with ‖x− x̄‖ ≤ δ1, it must hold thatg(F(pµ(x))) ≤ Vµ(x).
In other words, for anyk ∈ N, ‖xk − x̄‖ ≤ δ1 implies thatµ0 ≤

µk ≤ µ+ := max{µ0, τµ̄}. We define the setΘ = {µ0τ
i ; i ∈

N} ∩ {t ∈ R; µ0 ≤ t ≤ µ+} which is a nonempty finite set and
satisfies for allk ∈ N

‖xk − x̄‖ ≤ δ1⇒ µk ∈ Θ. (9)

For a fixedµ ∈ Θ, combining Lemma 4.2 and Theorem 3.3,Vµ
is a KL function. There existsδµ > 0, αµ > 0 andϕµ which is
positive, concave and continuous on [0, αµ] andC 1 on (0, αµ)
with ϕ′µ > 0 andϕµ(0) = 0, such that

ϕ′µ(Vµ(x)) dist (0, ∂Vµ(x)) ≥ 1,

for all x such that‖x− x̄‖ ≤ δµ andx ∈ [0 < Vµ < αµ]. Let us
consider the following quantities (recall thatΘ is finite),

δ = min

{

δ1,min
µ∈Θ

{

δµ
}

}

> 0, α = min
µ∈Θ

{

αµ
}

> 0, ϕ =
∑

µ∈Θ

ϕµ.

(10)

We deduce from properties of eachϕµ for µ ∈ Θ thatϕ is pos-
itive, concave and continuous on [0, α] andC 1 on (0, α) with
ϕ′ > 0 andϕ(0) = 0. For anyµ ∈ Θ, we have

ϕ′(Vµ(x)) dist (0, ∂Vµ(x)) ≥ ϕ′µ(Vµ(x)) dist (0, ∂Vµ(x)) ≥ 1,
(11)

for all x such that‖x − x̄‖ ≤ δ andx ∈ [0 < Vµ < α]. In view
of Lemma 4.2, setK2 = K

(

B̄(x̄, δ)
)

, so that for anyx ∈ B(x̄, δ)
and anyµ ∈ Θ,

dist (0, ∂Vµ(x)) ≤ (K2 + µ)‖x− pµ(x)‖. (12)

Estimates within the neighborhood.Let r ≥ s > 1 be some
integers and assume that the pointsxs−1, xs . . . , xr−1 belong to
B(x̄, δ) with Vµs−1(xs−1) < α. Fix k ∈ {s, . . . , r}, we have

Vµk(xk)
(8)
≤ Vµk−1(xk−1) −

µk

2
||xk+1 − xk||

2

= Vµk−1(xk−1) −
µk

2
||xk+1 − xk||

2

||xk − xk−1||
||pµk−1(xk−1) − xk−1||

(12)
≤ Vµk−1(xk−1) −

µk

2(K2 + µk)
||xk+1 − xk||

2

||xk − xk−1||
dist (0, ∂Vµk−1(xk−1))

(9)
≤ Vµk−1(xk−1) −

µ0

2(K2 + µ0)
||xk+1 − xk||

2

||xk − xk−1||
dist (0, ∂Vµk−1(xk−1)).

We useϕ as defined in (10). This is possible becauseVµk(xk) is
decreasing, andVµs−1(xs−1) < α. Let K = µ0

2(K2+µ0) > 0, using
the monotonicity, the differentiability and the concavity ofϕwe
derive

ϕ(Vµk(xk))

≤ ϕ(Vµk−1(xk−1)) (13)

− ϕ′(Vµk−1(xk−1))dist (0, ∂Vµk−1(xk−1))K
||xk+1 − xk||

2

||xk − xk−1||

(14)

(9),(11)
≤ ϕ(Vµk−1(xk−1)) − K

||xk+1 − xk||
2

||xk − xk−1||
. (15)

It is easy to check that fora > 0 andb ∈ R

2(a− b) ≥
a2 − b2

a
. (16)

We have therefore, fork in {s, . . . , r},

||xk − xk−1||

=
||xk − xk−1||

2

||xk − xk−1||

=
||xk+1 − xk||

2

||xk − xk−1||
+
||xk − xk−1||

2 − ||xk+1 − xk||
2

||xk − xk−1||

(16)
≤
||xk+1 − xk||

2

||xk − xk−1||
+ 2(||xk − xk−1|| − ||xk+1 − xk||)

(15)
≤ K−1

(

ϕ
(

Vµk−1(xk−1)
)

− ϕ
(

Vµk(xk)
))

+ 2(||xk − xk−1|| − ||xk+1 − xk||).

Hence by summation

r
∑

k=s

||xk − xk−1|| ≤ K−1
(

ϕ
(

Vµs−1(xs−1)
)

− ϕ
(

Vµr (xr )
))

(17)

+ 2(||xs− xs−1|| − ||xr+1 − xr ||). (18)
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The sequence remains in the neighborhood and converges.
TakeN sufficiently large so that

‖xN − x̄‖ ≤
δ

4
, (19)

K−1ϕ
(

VµN(xN)
)

≤
δ

4
, (20)

VµN (xN) < α (21)

‖xN+1 − xN‖ <
δ

4
. (22)

One can require (19) together with (20), (21) becauseϕ is con-
tinuous andVµk(xk) ↓ 0 and (22) because‖xk+1 − xk‖ → 0. Let
us prove thatxr ∈ B(x̄, δ) for r ≥ N + 1. We proceed by induc-
tion on r. By (19) and (22),xN+1 ∈ B(x̄, δ) thus the induction
assumption is valid forr = N + 1. Using (21), estimation (17)
can be applied withs = N + 1. Suppose thatr ≥ N + 1 and
xN, . . . , xr−1 ∈ B(x̄, δ), then we have

‖xr − x̄‖

≤ ‖xr − xN‖ + ‖xN − x̄‖
(19)
≤

r
∑

k=N+1

‖xk − xk−1‖ +
δ

4

(17)
≤ K−1ϕ

(

VµN(xN)
)

+ 2||xN+1 − xN|| +
δ

4
(20),(22)
< δ.

HencexN, . . . , xr ∈ B(x̄, δ) and the induction proof is complete.
Therefore,xr ∈ B(x̄, δ) for any r ≥ N andµr takes value in
the finite setΘ and remains bounded for allr ≥ N. Using (17)
again, we obtain that the series

∑

‖xk+1−xk‖ converges, hencexk

also converges by Cauchy’s criterion. Letx∞ be its limit, taking
µ∞ any limiting value ofµr , it must hold thatx∞ is a fixed point
of pµ∞ and by Lemma 4.2 a critical point of Problem (2) and the
proof is complete.
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[22] S. Łojasiewicz, Une propriété topologique des sous-ensembles analy-
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