The value function approach to convergence analysis in ositgoptimization

Edouard Pauwels
IRIT-UPS, 118 route de Narbonne, 31062 Toulouse, France.

{o) Abstract

o, This works aims at understanding further convergence ptiegef first order local search methods with complex geoiextWe

8 focus on the composite optimization model which unifies imith simple formalism many problems of this type. We provide
a general convergence analysis of the composite GausssNew¢thod as introduced in_[11] (studied furtherlin [13, [12]) 2
under tameness assumptions (an extension of semi-algigypraiTameness is a very general condition satisfied byaily all

O problems solved in practice. The analysis is based on rgmegresses in understanding convergence properties aéstg|
convex programming methods through the value functiontasdoced inl[3].
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O
O 1. Introduction that an object is said to be real semi-algebraic if it can be de
. fined as “the solution set of one of several systems of polyno-
E In composite optimization, convergence of Gauss-Newtonmial equalities and inequalities”.
(0 methods is a question that has attracted a lot of research ef- e yse of KL inequality in nonconvex optimization pro-
& forts in the past decades. Let us mention a few milestonesjiged significant advances in understanding convergerfirsbf
. criticality of accumulation points was proved in [10], c@™  grder methods [1,/2) 3] 4] B, 9]. However, the application of
gence under sharpness assumption around accumulatids poighese techniques in complex geometric settings, such as com
(\'is given in [11], and extensions to weaker regularity cdndi  posite optimization, remains an important challenge. A re-
et are des_,crlbed in [ZLQ.B,_ 12.]. Assymptotic behaviour und.er.proxcem breakthrough has been madelin [8], which describes a
LO r.egulan.ty and identification under partial sm_oothnesg;lwzes— general convergence analysis of Sequential Quadratic&rog
tigated in [21]. These results attest to théidulty of this un-  mjng method< [18]5, 19]. Thisis an important example of com-
dertaking. Although the composite model is strongly sttt jex geometric structures with challenging convergenagyan
and Gauss-Newton method is explicitly designed to takemdva gis  To gvercome the fliculty of dealing with problems with

- tage of it, convergence of iterates always rely on stronglloc complex geometries in this context| [8] has introduced a new
growth conditions around accumulation points. These are ofyyethodology based on the so-called value function.
ten dificult to check in advance for general problems due to

— the complexity of the optimization model. To our knowledae,

. simpl d flexible global lysis is stikil SR .
> ?é?qt%:sznmeteh)gdse globat convergence analysis 1s stikiag consists in viewing Gauss-Newton method along the line&€]of [
N ' through the value function approach. An important improve-

Departing from existing approaches to adress such complex

“— geometries, we rely on tameness assumptions. In the nonglent broughtto.[8] is the integration of a general backiragk

. . Search in the analysis. This allows to deal with smooth func-
mooth nonconvex world, this assumption allows to use a pow:

. tions whose gradients are merédgally Lipschitz continuous.
erful geometric property, the so-called nonsmooth Kurdyka__, . o2 . X .
2 X . ; This flexibility is extremely important from a practical mbiof
tojasiewicz (KL) inequality, which holds true for many ct&s . : . . .
. ] ‘ . ._view and requires non trivial extensions (se€ [24] for wdrks
of functions [22] 20,6,/7]. We require problem data to be defin =~ = . . I
s : L this direction). To the best of our knowledge this resuliga/nit
able, a generalization of the property of being semi-algiebr . . o . o :
=Nt . . . > relies on easily verifiable assumptions and it is flexibleugyio
[17,[15]. This rules out non favorable pathological sitoas . ; .
. L . . to encompass many problems encountered in practice. In addi
such as wild oscillations (e.g. fractals). This framewargén- . . . ! : L
S . tion, we emphasize that it provides a simple and intuitivg tea
eral enough to model the vast majority of functions thatoan b /. . : : .
: : ; . . highlight the potential of the value function approach daed
handled numerically with a classical computer, while pdevi in (8]
ing a suficient condition for KL inequality to hold [7]. For a ' _ . . .
smoother understanding, the reader non familiar with taese g In Sectior[2, we describe the problem of interest, the main
ometry may replace “definable” by “semi-algebraic”. Recall@ssumptions and the algorithm. We also state our main con-
vergence result. We introduce notations, important déimét
and results from nonsmooth analysis and geometry in Section
Email addressedouard . pauwels@irit.fr (Edouard Pauwels) [3. The value function and its most important properties are d

We propose a general convergence guaranty for a variant of
the composite Gauss-Newton method [10, 11]. The main idea
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Composite Gauss-Newton
Choosexgp € D, up > 0,7 > 1 and iterate

Step 1. Setux = up and compute the candidate iterate:
Sr1 e argminey g(F (%) + VE(XQ(Y — X)) + Z1ly — Xl
Step 2. While g (F(%+1)) > 9(F (%) + VF (%) (%1 = X)) + 511K — Xl
Hk < Tk (1)
1 e argminep g(F (%) + VE(XJ(Y — X)) + Z1ly — Xl
Step 3. Update
Xir1 & Kt

scribed in Sectiohl4. Sectigh 5 contains the proof of the maiTheorem 2.2. Under Assumptiofl1, we have the alternatives
result. when k— +co.

2. Problem setting and main result o Ixdl = oo

e X converges to a critical point of Problerhl(2), the se-

We consider the composite optimization problem. quence|Xq1 — Xl is summablel e is bounded.
min_g(F(x). 2) ,
xeDcR Remark 2. In the alternatives of Theorem 2.2, the unbounded
Our main standing assumption is the following. case is due to a lack of coercivity rather than a bad adjustmen

Assumption 1. F: R” — R™is 42 and g R™ — R is convex of the local model throughy. Indeed, if we suppose thag x
and finite valued. D= R" is convex and closed. F, g and D are IS chosen such that the set{x € R", g(F(X)) < 9(F (x0))}

definable in the same o-minimal structure on the field of realS cOMpact, Lemmia 2.1 ensures that the divergent option can-
numbers (fixed throughout the text). not hold and the sequence converges. This phenomenon was

guessed inl|3] and also appeared in [8]. Accounting for the
dynamical feature gfik in our analysis is a contribution of this
work.

Note that Assumptiof] 1 ensures tlgas locally Lipschitz con-
tinuous [25, Theorem 10.4]. For any 1,2,..., m, we use the
notationf; for the € function that corresponds to coordinate
of F. We denote by F(x) the Jacobian matrix df at x:

f.
VE(X) = [ﬁ(x)} e R™, , o
25 3. Notations and preliminary results
We will analyse the numerical scherié (1) which is a backtrack _
ing variant of the composite Gauss-Newton descent method.1. Notations

[20,113]151 12, 21]. The symbol refers to the limiting subdlierential. The no-

tion of a critical point is that of a limiting critical pointzero
Remark 1. The dynamical feature of the step-size parameteis in the limiting subdferential, a necessary condition of opti-
Uk is akin to a backtracking procedure. Indeed, Assumptiormality (nonsmooth Fermat’s rule). We refer, for instandes t
[ ensures that F is locally smooth and g is locally Lipschitzreader tol[26, Chapter 8] for further details on the subject.
continuous. However the smoothness and Lipschitz cotytinui - An o-minimal structure on the field of real numbers is a struc-
moduli may be unknown and not be valid in a global sensetured collection of definable subsets of finite dimensional E
They have to be estimated in an online fashion to prevent urelidean spaces. It is required to satisfy some of the prigsert
wanted divergent behaviours. of semi-algebraic sets. Semi-algebraic sets form an omahi

structure but there are many extensions. An introductidh¢o

The next Lemma shows that the algorithm is well defined andubject can be found in_[15] and a survey of relevant ressilts i

the sequence of objective values is nonincreasing (thef oo available inl[156]. In Assumptioll 1, we have fixed an o-minimal
given in Sectiofi¥). The next Theorem is our main result andtructure. Definable sets are subsets of Euclidean spagels wh
the proofis given in Sectidd 5. belong to it and a definable function is a function which graph
Lemma 2.1. For each k, the while loop stops after a finite num- S définable. _
ber of iterations and we have The normal cone t® atx € D is denoted byNp(x) and the

indicator function ofD is denoted byip (whose value is con-

9 (F(%+1)) < 9(F (%) + VF(X) (Xs1 — X)) + %lem - X%, stantly 0 onD, +oo otherwise)|| - || denotes the Euclidean norm
(which is semi-algebraic). Being given a functibn RP — R,
real numbers andb, we seth < f < bl = {xeR": a<

and{g(F (X)) }kex iS @ Nonincreasing sequence. f(X) < b}.



3.2. Results from nonsmooth analysis (i) f has theKurdyka-tojaziewicz (KL) propertat X €

The next Lemma provides a formula for the sutetiential domdft, if there exista € (0, +co], a neighborhood of x
of the objective function. and a functiornp: [0,e] — R, non-negative, concave and
continuous%* on (Q @) with ¢’ > 0 andg(0) = 0 such
Lemma 3.1. The chain rule holds for@-(-)). that, forallx e VN [f(X) < f(X) < a].
ag(F(¥) = VF(x)"v ¢ (F(X) - (X)) dist(QaF(x) > 1 (4)
where ve dg at F(x). Furthermore @F(-)) is subdjferentially (i) The functionf is said to be &L functionif it has the KL
regular. property at each point of do#a.

Proof. Sincegis locally Lipschitz continuous, its horizon sub- | property rules out pathological oscilations aroundicait
differential only contains 0. Since it is convex, it is suteft  gints. It turns out that all definable functions, even noosth

entially regular and the result follows from [26, Theorem6l0  oytended-valued functions, have the KL property.
O

We consider the function: R" x R" — R, given by Theorem 3.3 (Theorem 111[7]).Let g be a proper lower semi-
continuous function froRP to (— oo, +o0]. If g is definable, then
h(x,y) = g(F(X) + VF(x)(y — x)) foranyx,ye R". ~ (3)  gis a KL function.

KL property has been extensively used for convergence aisaly
for nonconvex dynamics both in continuous and discrete time

Lemma 3.2. h satisfies the properties: [22,120,1,6,2,13,14,/9,/8]. We conclude this section with a
1. his continuous and subgirentially regular. density result whose proof can be found, for example,_in [15,
2. h(x, x) = g(F(x)) for any xe R". Chapter 6].

ah(x. _
3. —g,” :n{VF(x)Tv, v e dg(F() + VF(X)(y - )} forany | emma3.4. Let f: RP — R be definable, then f is giéren-
% I tiable almost everywhere.

4. TN — (3 VRN~ X V= (Vi Vo, V)T €
09(F(X) + VF(X)(y — X))} for any xy € R".

5. h is convex in its second argument. 4. Value function and fundamental properties

As in [€], we introduce théteration mappingp,: R" — D,
such that for anx € R" andu > 0,

Proof.

3, 4. Continuity follows from Assumptidn 1, regularitychsub-

differential formulas from the same argumentas in Lemma Pu.(X) = argmin, h(x,y) + %Hx —yll2 (5)
B.1.

2. Is by the definition oh in (3). Note that, from LemmB_3l2, probleild (5)gsstrongly convex,
5. y — g(F(X) + VF(X)(y— X)) is the composition of a convex hence, from closedness bf the minimum is indeed attained.

function and an ine map and hence is convex. According to this definition, the sequenggproduced by the
. composite algorithm satisfieg.1 = p,(X). The next result
provides a link between the choicefind Step 2 of the algo-
rithm.
3.3. Results from geometry

The next remark gathers important properties of the class dfémma 4.1. Given a compact set & R, there existg > 0
definable functions. such that for any x S and any: > y, we have

Remark 3. Semi-algebraic functions are definable. Definable g(F(pH(x))) < g(F(X) + VE(X)(p.(X) — X)) + %Hp,l(x) - x|?
functions are closed under addition, multiplication, caap

tion, differentiation, projection and partial minimization. De-

tailed proof of these facts may be foundlinl[L7, 15]. See als,(broof

[4, Theorem 2.2] for a specific example in optimization. The optimization problem inl{5) is strongly convex

and its data depends continuouslyxrhence, fo > o > 0

In the context of dynamical systems, a fundamental questiodnd X € S, p,(X) remains bounded. Le$; be a com-
is that of the growth of the subifiérential around critical points. Pact convex set that contail®u {p,(x); X € S,u > uo}.
This question has a long history in geomelry! [22, [0,/6, 7].From Assumption[]1, VF is globally Lipschitz contin-
In the remainder of this text, KL is a short hand for Kurdyka-Uous on S; which ensures the existence of a positive

tojasiewicz. We will use the following definition frorh![3]. real a such that|IF(y) - VF()(y - ¥l < ally - x|
for all x,y € S; (see for example the proof ol [23,

Definition 1 (KL function). Letf be a properlower semi-con- Lemma 1.2.3]). SinceS and S; are compact, the set
tinuous function fronRP to (—oo, +o]. Sy = {F(X); xe S} U{F(X)+ VF(X)(Y—X); X€ S, ye S1}



is compact by continuity oF and VF. Hence,g is glob-
ally Lipschitz continuous onS; [25, Theorem 10.4].
This shows existence of a positive red such that
I9(F(y)) = 9(F() + VE(X)(y - x))I < ablly - xd|* for all
y € S; andx € S. We can take: 1= maXuo, 2ab}. O

Proof of Lemmal[2d. Let 4 be given by Lemm&=4l1 with

S = {xJ. Condition of Step 2 is automatically satisfied for

any u > p and the while loop must stop. The nonincreasing 3.

property follows by considering in addition the fact that

for k € N, xx € D and hencex is always feasible in the

minimization problem of Step 1 with valugF (x)). O 4.
Lemmd 3.2 provides fferentiation rules that relates the iter-

atesx, to the subdferential ofg. However this result is dicult

to use in the analysis. Indeed, according to Lerimh 3.2, the op

timality condition that definep, can be written S.

~VF()"V ~ p(pu(X) = ) € No(pu(x)) (6)

wherev € dg(F(x) + VF(X)(p.(X) — X)). We have no con-
trol on the relation between anddg at F(x) or at F(p,(X)),
which induces a major fliculty in the interpretation of the al-
gorithm as a gradient or a subgradient method. This features
led the authors in_[8] to introduce and study the value fumcti
which we now consider in the composite case with the addi-
tional step size parameter feature. For any 0, the value
functionV,: R" — R, is such that,

Vu(9 = minh(x.y) + Six—yi3. foranyxe R".  (7)
ye

The value function has the subsequent properties.

Lemma 4.2.

1. For any xe R", V,(X) = h(x, p.(X) + 4l1p.(x) — XII%.
2. Foranyu > 0, p, and V, are definable and continuous on
R".
3. Foranyu > 0, the fixed points of pare exactly the critical
points of Problem{2).
. Foranyu > 0, V,(x) < g(F(X) — 4llp.(x) — X|I? for all
x e D.
5. For any bounded nonempty set C, there is a constant
K(C) = O such that for all xe C and anyu > 0,

dist (Q V(X)) < (K(C) + m)lIx = p.(Ml

Proof. We mostly follow [8, Section 4.2].

1. This is a consequence of the definitiorppfin () and the
definition ofV, in (7).

2. Continuity ofp, holds because of uniqueness of the min-
imizer in (8) and continuity oh. For anyx,z € R", we
have

take p any accumulation point ofy,(x). By continuity of
h, we have

hiz p) + 51IP - 2P < hiz @) + 51In.@ - 2™

By strong convexity, we must have = p.(z), hence
p.(X) = pu(2). Continuity ofV, follows and definabil-
ity is a consequence of Remaurk 3.

From [®), ifx is a fixed point ofp,, we have-VF(x)Tv €
Nb(X) wherev € dg(F(x)). Using Lemma3l1, we see that

this is exactly the optimality condition for Problef (2).
From Lemm&3]2, and strong convexity of Probleim (5), we

have for anyx € D,

V(9 < (%) = S1Ip 0 = X1 = g(F(9) = SlIp. (0 - xIP

We introduce a parametrized function, for gay> O,
g, R"xR" - R, foranyx,y e R",

6.0¢Y) = h(xy) + Slx =17 + in(y)

SinceV,: R" — R is definable, using Lemnfa_3.4, it is
differentiable almost everywhere. L8f be the set where
V, is differentiable (dense R"). Fix a pointx € S,,. We
have, for anyu, § € R",

e(X+ 6, Pu(X) + 1)
> h(X+ 6, pu(X+ 6)) + %||>?+ 5 — pu(X+ 8)I

= V(X + 8) = V(%) + (VV,u(X). 8) + ol61l)
= &(X pu(X) + (VVu(X), 5) + o(llel).

This shows that{V,(X), 0) € de(x, PL(X)) whered denotes
the Fréchet sudtierential [26, Definition 8.3]. Hence, from
Lemmd3.2 anad [26, Corollary 10.11], we have

W,(%) = [Z vivzfm) (PR~ ) + (%~ pu(R)
i=1

wherev = (V1,Va,...,Vm)" € dg(F(X) + VF(X)(p.(X) —

X)). By local Lipschitz continuity ofg, twice continuous
differentiability ofF and continuity ofp,, all the quantities
that appear in this formula are locally bounded. Hence,
for any neighborhoo® of x there must exist a constant
K such that|VV, ()l < (K + @)lIx — p.(X)I for all x €

V Nn'S,. The result is proved by combining continuity of
p., definition of the limiting subdferential [26, Definition
8.3] and the fact the, is dense iR". O

5. Proof of Theorem[2.2

h(x, p,09) + 5P (9 = I < h(x. pu(@) + 511Pu(@) - X1

From strong convexity and continuity of F andVF, p,
must be bounded on bounded sets. xebnverge te and

4

We extend the proof of [8, Proposition 4.12] to handle the
fact thatuy is not constant. We actually show that]|i|| A~

+00,

ux does not diverge. An important ingredient of the proof



is the subsequent inequality which can be obtained by combirfor all x such thaf|x - X]| < 6 andx € [0 < V, < a]. In view
of LemmaZ.2, seK; = K (B(X,6)), so that for any € B(X 6)

ing Lemmd4.P and Lemna2.1.

Vi) + Sl = X < % %) = GF ) < Vyy (i ):

(8)

We will also rely on properties df,, andp,, given in Lemma
4.2 (for a fixedk € N) and use them in the spirit of![4 9].

Finally, we handle the dynamical behaviour @f, k > 0,

and anyu € O,

dist 0.0V, (%) < (Kz + )X - POl

(12)

Estimates within the neighborhoodletr > s > 1 be some

integers and assume that the poiris, Xs. . .
B(x, 6) with V,,_, (Xs-1) < @. Fixk € {s,

defined in Steps 1 and 2 of the algorithm, thanks to Lemma

[Z.3.Throughout the proof, we assume tftad| / +oo that is
{x«} has at least one accumulation point.

Case 1: xis stationary.. Suppose that there exidtgs > 0 such
thatx+1 = Xe,. We have a fixed point of,, , hence ofp, for
anyu > 0. This implies that,.1 = X, for all | > 0. Thusx is

stationary, hence converges and the increments are suemabl'<’v,,  (x_1) -
Furthermore, from Lemmia4. 1y, must be bounded. Finally,
according to Lemm&4].2, we have a critical point of Problem @)

@).
Case 2:

X1 — %dl > O for all k > 0. From [8), we have that decreasing, anl, ,(Xs1) < @. LetK = 5t 5

bothV,, (%), andg(F(x)) are decreasing sequences. kdte
an accumulation point afs. The sequence of valuggF (x«))
cannot go to-co and hence convergesdgF (X)) by continuity.
With no loss of generality, we assume tlgdE (x)) = 0. From

() again, this implies thaiti|| X, 1 —X«||* is summable and hence

goes to 0 and that,, (x) also converges from aboveg(F (X)).

Definition of a KL neighborhoodFix §; > 0. By Lemmd4.lL,

there must exist a constamt> 0 such that for any > u and
anyx, with ||x — X|| < 61, it must hold thag(F (p.(X))) < V.(X).
In other words, for ank € N, ||x — X|| < &7 implies thatug <
e < pe = maxiuo, 7). We define the se® = {uo7'; i €

N} n{t e R; uo <t < uy} which is a nonempty finite set and

satisfies for alk e N
1% — X < 61 = ux € ©. 9)

For a fixedu € ®, combining Lemm&4]2 and TheorémI3v/3
is a KL function. There exists, > 0, &, > 0 andyp, which is
positive, concave and continuous ondQ] and ¢ on (Q a,,)
with ¢, > 0 andy,(0) = 0, such that

@, (Vu(X) dist (0 0V,(X) > 1,

for all x such that|lx - X| < ¢, andx € [0 <V, < a,]. Letus
consider the following quantities (recall thatis finite),

0= mln{él,mln{ }}>0

a—mln{aﬂ}>0 cp:thﬂ.

He®

We deduce from properties of eagf for u € © thaty is pos-
itive, concave and continuous on, { and ¢* on (Q &) with
¢ > 0 andyg(0) = 0. For anyu € ®, we have

¢’ (Vu(x)) dist (Q 0V,u(X)) = ¢, (Vu(¥) dist (Q 6V,(x)) = 1,
(11)

Vllk(xk)

Hk
Vi (%-1) — ||Xk+1 — X2

M X — Xk”2

= Vs Oed) = e el
Mk ||Xk+1 - Xk”
2(Kz + i) 1% — Xie-all

Mo X1 — Xdl?
2(Kz + po) 11X = Xk-1ll

1P (Xi—1) = X1l

llk 1(Xk l)

, %—1 belong to
., I}, we have

dist (Q 0V, ,(X-1))

dist (Q 0V, (Xk-1))-

% is not stationary..We now suppose that We usep as defined in{10). This is possible becaMggxy) is
> 0, using

the monotonicity, the diierentiability and the concavity gfwe

derive

¢(Viu ()
< ¢(Vies (%-1))

. X -
— ¢ (Vs (D)t (@ BV, (1)K

@.a0 X1 — Xl

< (X)) - K= B
PO liea) = K S

Itis easy to check that fa > 0 andb e R
2 12
2(a-b) > a-b .

We have therefore, fdein {s,...,r},

X — Xl
X — Xl
1% = Xl
e = X 1% = Xl = 1Xeen = Xl
1% = Xl 1% — X1l
2 et X0 e e~ )

D (Vi a00) — 9 (Vi)
+ 2(1% = X1l = X1 — Xkll).-

Hence by summation

0 (Vi (%))

Xe-1ll = [Xr+1 = Xel]).

r
DI = Xeeall < K7 (Vi , (%6-0)) =
k=s

+2(lIxs —

(13)

l1% = Xl

(14)

(15)

(16)

(17)

(18)



The sequence remains in the neighborhood and convergeg4]
TakeN suficiently large so that

_ 0
[IXn = XI| < T (19) [5]
0
-1
Kt (Vi () < 7. (20)
Vi (0) < @ (1) ©
[IXn+1 = Xnll < 7 (22) 7]
One can requiré (19) together with 120),}(21) becauisecon- 8]
tinuous andv,, (xc) | 0 and [Z2) becaugpi.1 — Xl — O. Let
us prove thak. € B(x, ) forr > N + 1. We proceed by induc-
tion onr. By (I9) and [ZR) xn+1 € B(X, 6) thus the induction  [9]
assumption is valid for = N + 1. Using [21), estimatioi (17)
can be applied witts = N + 1. Suppose that > N + 1 and |1
XNs - - -» %r—1 € B(X, 6), then we have
1% — Xl (11]
< Il = >?|| [12]
@
< Z X = Xl + —
k=N+1 [13]
@ 0
< K=o (V.. (Xn)) + 2l[Xnat — XN + =
< 90( un ( N)) [IXN+1 — Xl 2 »
2022
< 0.
Hencexy, ..., % € B(X,6) and the induction proof is complete. [15]
Therefore,x, € B(x,6) for anyr > N andy, takes value in
the finite se® and remains bounded for all> N. Using [I7)  [16]
again, we obtain that the serigs|xx;1—X«/| converges, hence [17]

also converges by Cauchy’s criterion. et be its limit, taking
U any limiting value ofy,, it must hold thai,, is a fixed point
of p,., and by Lemm&4]2 a critical point of Problefm (2) and the[18]
proof is complete.
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