
ar
X

iv
:1

60
1.

03
60

3v
1

 [
cs

.D
M

]
 1

4
Ja

n
20

16

PROTECTION OF FLOWS UNDER TARGETED ATTACKS

JANNIK MATUSCHKE∗, S. THOMAS MCCORMICK†, GIANPAOLO ORIOLO‡ ,

BRITTA PEIS§ , AND MARTIN SKUTELLA¶

Abstract. Due to the importance of robustness in many real-world optimization problems, the
field of robust optimization has gained a lot of attention over the past decade. We concentrate on
maximum flow problems and introduce a novel robust optimization model which, compared to known
models from the literature, features several advantageous properties: (i) We consider a general class of
path-based flow problems which can be used to model a large variety of network routing problems (and
other packing problems). (ii) We aim at solutions that are robust against targeted attacks by a potent
adversary who may attack any flow path of his choice on any edge of the network. (iii) In contrast to
previous robust maximum flow models, for which no efficient algorithms are known, optimal robust
flows for the most important basic variants of our model can be found in polynomial time.

We also consider generalizations where the flow player can spend a budget to protect the network
against the interdictor. Here, we show that the problem can be solved efficiently when the interdic-
tion costs are determined by the flow player from scratch. However, the problem becomes hard to
approximate when the flow player has to improve an initial protection infrastructure.

1. Introduction. Network flow problems form one of the most important classes
of optimization problems with numerous real-world applications, e. g., in production
systems, logistics, and communication networks. The increasing dependence of our
society on constant availability of such network services motivates the study of new
flow models that are robust against unforeseen interferences, link failures, and targeted
attacks by external forces.

The theory of robust optimization offers various techniques to handle the issue
of planning in face of uncertainties and unreliability; see, e. g., [4, 5] for surveys. A
general idea is to model uncertainty by a set of possible scenarios Ω that is specified
along with the instance of the optimization problem under consideration, where each
scenario represents a possible outcome involving failures in the infrastructure, inten-
tional sabotage, or similar complications. With respect to a worst-case analysis, the
robust objective value of a feasible solution x is the worst objective value of x among
all possible scenarios z ∈ Ω.

Robust optimization can thus be interpreted as a two-player game: the first player
(“the decision-maker”) chooses a solution x from a set X of feasible solutions to the
underlying “nominal” optimization problem. Afterwards, the second player (“the
adversary” or “interdictor”) selects a scenario z from the predefined scenario set Ω.
While the first player aims at maximizing the resulting objective value val(x, z), the
adversary selects z ∈ Ω in order to reduce val(x, z) as far as possible. The robust
optimization problem therefore asks for an optimal x ∈ X solving

max
x∈X

min
z∈Ω

val(x, z).

In this paper, we present a new robust optimization model for network flows. In
existing models the interdictor acts on a subset of the arcs of the network and the
interdiction of an arc affects all flow on that arc equally. By contrast, our model allows

∗Institut für Mathematik, Technische Universität Berlin (matuschke@math.tu-berlin.de).
†Sauder School of Business, University of British Columbia (tom.mccormick@sauder.ubc.ca).
‡Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”

(oriolo@disp.uniroma2.it).
§Fakultät für Wirtschaftswissenschaften, RWTH Aachen (britta.peis@oms.rwth-aachen.de).
¶Institut für Mathematik, Technische Universität Berlin (martin.skutella@tu-berlin.de).

1

http://arxiv.org/abs/1601.03603v1
mailto:matuschke@math.tu-berlin.de
mailto:tom.mccormick@sauder.ubc.ca
mailto:oriolo@disp.uniroma2.it
mailto:britta.peis@oms.rwth-aachen.de
mailto:martin.skutella@tu-berlin.de

the interdictor to specify the amount of flow removed from each flow path individually
(we therefore deal with flows on paths). In this context, it might be helpful to think
of the interdictor as a thief who steals particular flow units of his choice: As an
illustrative example, consider a train network in which each flow path represents a
train and train robbers try to remove as much cargo as possible from the trains,
attacking each train at the most vulnerable point it traverses. Besides providing this
new perspective of robust flow optimization, the new model has the advantage that
optimal robust flows can be computed in polynomial time. We also consider further
variants of the problem, in which the flow player can adjust the protection for the
flow he sends through the network on each arc, subject to a budget. While we focus
our discussion throughout this paper mainly on the classic maximum flow problem,
we also point out that our results directly extend to robust optimization versions of
a general class of packing problems that extends beyond network flows.

Contribution and structure of the paper. In the remainder of this section,
we present our new robust flow model and compare it to existing robust flow models.
We also discuss literature on the closely related field of network interdiction.

In Section 2, we study the basic version of our new robust flow model, in which
interdiction costs for the arcs of the network are given and the flow player determines
a path flow with the goal of maximizing the surviving flow value after interdiction. We
show that the optimal strategy for the flow player can be found by solving a parametric
LP, where the parameter corresponds to the cost of the most expensive arc affected
by the interdictor. We also show that in general, optimal solutions to our problem are
not integral, and that any combinatorial algorithm for our problem can also be used
to solve a feasibility version of the multicommodity flow problem combinatorially.
Finally, we point out that our results still hold when the flow player’s options are
limited by a budget, and further extend to a very general class of packing problems,
including multicommodity flows, abstract flows, and b-matchings.

In Section 3, we study a design variant of the problem, where the flow player
has to buy the protection of the flow he sends through the network subject to a
limited budget. For each arc, the cost of protection is proportional to the chosen
interdiction cost on that arc and the flow that needs to be protected. We show
that this seemingly hard non-linear optimization problem can be solved by exploiting
insights on the structure of an optimal solution.

In Section 4, we discuss a generalization of the problem from the preceding section,
in which an initial (free) protection of the flow on each arc is given but the interdiction
costs can be further increased by the flow player subject to his budget. We show, that
in contrast to the problems discussed earlier, this problem is not only NP -hard but
does not even allow for approximation algorithms.

1.1. The new model. We are given a directed graph D = (V,A) with source
s ∈ V and sink t ∈ V , and arc capacities u ∈ R

A
+. We consider flows on paths, as in

[7, Section 4], and so let P denote the collection of all s-t-paths in D. The strategy
choices of the decision maker (whom we call the flow player) are given by the set

X :=
{

x ∈ R
P
+ |

∑

P∈P:e∈P

xP ≤ ue ∀e ∈ A
}

of all feasible s-t-flows in the capacitated network (D, u), i. e., the flow player specifies
the amount of flow along each s-t-path subject to the arc capacities.

Classic robust flow models (which are discussed further below) are built on the
assumption that the interdictor attacks arcs of the network subject to a budget,

2

equally affecting all flow paths traversing the interdicted arcs. In contrast, in our
model we instead think of the interdictor as a thief who might directly attack and
steal flow on each individual path rather than manipulating an arc e as a whole. Each
arc e ∈ A is equipped with an interdiction cost ce ≥ 0, specifying the cost of stealing
one unit of flow on that arc. The interdictor can, after the flow player has chosen
a flow x ∈ X , use a given budget BI in order to steal flow on some of the paths.
Therefore the interdictor chooses a scenario/strategy

z ∈ Ω :=
{

z ∈ R
A×P
+ |

∑

e∈A

ce
∑

P∈P:e∈P

ze,P ≤ BI

}

.

The remaining flow after applying the interdiction strategy z to flow x is defined by

x̄P := (xP −
∑

e∈P

ze,P)
+

for each P ∈ P . The goal of the flow player is to maximize val(x, z) :=
∑

P∈P x̄P ,
anticipating the reply of the interdictor who wants to minimize the same quantity,
that is, steal as much flow as possible.

Note that an interdictor’s attack on a particular path P ∈ P should always happen
on a cheapest arc e ∈ P . Therefore, after the flow x ∈ X has been chosen, an optimal
strategy for the interdictor is the following greedy approach: Sort the paths P ∈ P
in order of non-decreasing bottleneck cost c̄P := mine∈P ce and steal flow along the
paths in this order until the budget BI has been used up.

This tractability of the interdictor’s optimal strategy is a desirable property of
our model as it allows computation of the robust value of any given flow. Note that,
in contrast, for the models in [7, 17] discussed below, the interdictor’s optimal answer
to a given flow is NP -hard to compute in general (in both cases, the interdictor’s
problem is equivalent to the budgeted maximum coverage problem [7]).

Also, with the exception of the basic model in [2], no efficient algorithm or con-
stant factor approximation is known for the flow player’s problem in the robust flow
models discussed below despite intense research. We will show that for our model,
both the maximum flow version as well as a network design version (in which the flow
player adjusts the protection of the links in the network) can be solved efficiently.
Furthermore, our model and these positive algorithmic results naturally extend to a
very general class of packing linear programs, including, e. g., multicommodity flows,
abstract flows, and b-matchings, and allows the easy integration of additional budget
constraints.

1.2. Related work. In the following, we discuss existing robust flow models
and the related concepts of network interdiction and fortification games.

Robust flows. Robust flows subject to cost uncertainties were studied by Bertsi-
mas and Sim [8]. Aneja et al. [2] started the study of robust maximum (path) flows in
presence of an interdictor (capacity uncertainty), who in their model could remove a
single arc from the network. The goal of the flow player, as in all subsequent papers, is
to maximize the value of the surviving flow. Aneja et al. showed that the problem can
be solved in polynomial time using a parametric LP. However, as soon as the interdic-
tor is allowed to remove two arcs, the corresponding dual separation problem becomes
NP -hard as was shown by Du and Chandrasekaran [11]. On the positive side, Bertsi-
mas et al. [7] building upon a generalization of the parametric LP used in [2], gave an
LP-based approximation, in terms of the amount of flow removed by the interdictor in

3

an optimal solution, for the case where the interdictor can remove any given number
of arcs BI . More recently, Bertsimas et al. [6] showed that the same flow also yields a
1 + (BI/2)

2/(BI + 1)-approximation. Formally, the model considered in [2, 7, 11] is
defined for the uncertainty set Ω = {z ∈ {0, 1}A | 1T z ≤ BI} and the flow player aims
at solving maxx∈X minz∈Ω val(x, z), where val(x, z) =

∑

P∈P(1−maxe∈P ze)xP is the
amount of flow x ∈ X that survives after the interdictor selects the scenario z ∈ Ω.
A fractional version of this uncertainty set was proposed in [9]: Each arc has a cost
ce for destroying the entire capacity on e and the interdictor is allowed to fractionally
attack the capacities on the arcs, i. e., Ω = {z ∈ [0, 1]A | cT z ≤ BI}. For this setting
the LP-based approximation algorithm from [7] can be combinatorialized using the
discrete Newton method [17].

Network interdiction and fortification games. Robust flows are closely re-
lated to network interdiction, which takes the opposite view of letting the interdictor
move first (i. e., destroy a part of the network) and then letting the flow player decide
to send the flow within the remaining network. Network interdiction has many appli-
cations such as, e. g., drug interdiction, protection of networks against terrorism, or
hospital infection control and has been studied extensively [1, 10, 18, 21, 23, 24, 25].
In the basic network interdiction problem (NI), an interdictor faces a capacitated net-
work ((V,A), u), with two distinguished nodes s and t, and aims at choosing a subset
F ⊆ A of arcs, whose removal cost

∑

e∈F ce does not exceed his budget BI , so as to
minimize the value of the maximum s-t-flow that can be routed in ((V,A\F), u|A\F).
In 1993, Phillips [18] proved that the problem is weakly NP -hard on planar graphs,
and gave an FPTAS for planar graphs. At the same time Wood [25] proved that NI
is strongly NP -hard on general graphs, even when c ≡ 1 and fractional interdiction
of an arc is allowed, i. e., by paying αe, for some 0 ≤ α ≤ 1, the interdictor can delete
αeue units of capacity from arc e. Recently, Baffier and Suppakitpaisarn [3] and Bert-
simas et al. [6] independently derived a BI + 1-approximation for the case c ≡ 1. For
general interdiction costs, Burch et al. [9] provided a bicriteria pseudo-approximation
algorithm when fractional interdiction is allowed.

In later sections, we discuss models in which the flow player can adjust the in-
terdiction cost for flow in the network. The corresponding concept in the context of
network interdiction are so-called fortification games, in which the flow player can pro-
tect network elements from the interdictor before the latter takes his action; see [22]
for an overview.

Weighted abstract flows. At various places in the analysis of our models
we will encounter a weighted version of the maximum flow problem, where each
path P ∈ P is associated with a weight rP specifying the reward per unit of flow
send along P : max{

∑

P∈P rPxP | x ∈ X}. Unfortunately it has been known since
Prömel [19] that it is NP -hard to find an optimal flow for general weights r ∈ R

P
+.

However, Hoffman [13] showed that when the rewards satisfy the following supermod-
ularity property, such problems have integral optimal solutions1: Whenever P,Q ∈ P
share an arc e, then there exist paths P ′, Q′ ∈ P such that P ′ is contained in the first
part of P up to e and the last part of Q after e, and Q′ is the same but with Q first
and P second, and

(1.1) rP ′ + rQ′ ≥ rP + rQ.

1Hoffman’s model is more general than this, but it is this supermodularity that will concern us
here.

4

Martens and McCormick [15] call Hoffman’s model Weighted Abstract Flow (WAF),
and developed an oracle-polynomial algorithm for WAF.

2. Solving the robust flow model. As mentioned above, we are given a di-
rected graph D = (V,A) with arc capacities u ∈ R

A
+ and costs c ∈ R

A
+, and a bud-

get BI . Let s, t ∈ V be a source and a sink and let P denote the set of all s-t-paths
in D (at the end of this section we will also discuss other set systems for which our
results hold). The task of the flow player is to find a feasible path-flow x ∈ R

P
+ with

∑

P∈P:e∈P xP ≤ ue for all e ∈ A. Then the interdictor can use his budget BI to
steal flow along paths P ∈ P at cost c̄P = mine∈P ce per flow unit. The goal of the
flow player is to maximize his profit, i. e., the amount of flow that remains, while the
interdictor tries to minimize this quantity, i. e., steal as much as possible. We denote
the resulting bilevel optimization problem by FP.

Again recall that the interdictor’s optimal strategy is to be greedy, i. e., sort the
paths P ∈ P by non-decreasing c̄P and steal flow along the paths in this order until
the budget BI has been used up. The flow player’s optimal strategy is less obvious.
To compute it, we define the following LP. For a fixed arc f ∈ A, let B′ := BI/cf ,
c′e := min{ce/cf , 1}, for e ∈ A, and c̄′P := mine∈P c′e for P ∈ P . Consider the linear
program

[LPflow] max
∑

P∈P

c̄′PxP −B′

s. t.
∑

P∈P:e∈P

xP ≤ ue for all e ∈ A,

xP ≥ 0 for all P ∈ P .

The intuition behind [LPflow] is as follows. Assume that f is the most expensive
arc that the interdictor touches in his greedy strategy when attacking flow x. Then for
any flow path P that still carries flow after the interdiction, we have that c̄′P = 1, i. e.,
the total interdiction cost of the surviving flow with respect to c̄′ is equal to its value.
Furthermore, the interdiction cost of all flow stolen by the interdictor is scaled by the
same value as the interdictors budget, i. e., the interdictor removes flow equivalent to
a total cost of B′ from x, motivating the term −B′ in the objective function. [LPflow]
thus asks for a flow maximizing the value of the surviving flow assuming that f is
the most expensive arc touched by the interdictor in a pair of optimal strategies. The
proof of the following theorem formalizes this intuition and shows that it indeed yields
the optimal strategy of the flow player.

Theorem 2.1. Solving [LPflow] for every fixed arc f ∈ A and taking the solution
with the largest objective function value is an optimal strategy for the flow player.

Proof. Consider an arbitrary flow x ∈ X and arc f ∈ A. We first show that
∑

P∈P c̄′PxP −B′ is a lower bound on the flow player’s profit in the original problem
when choosing flow x as his strategy. Consider an optimal response z of the interdictor
and let ∆P =

∑

e∈P ze,P denote the amount of flow stolen from path P ∈ P in this
response. Note that

∑

P∈P

(xP −∆P) ≥
∑

P∈P

c̄′P (xP −∆P) ≥
∑

P∈P

c̄′PxP −B′,(2.1)

where the first inequality follows from the fact that c̄′P ≤ 1 for all P ∈ P , and the
second inequality is a consequence of c̄′P ≤ c̄P /cf and

∑

P∈P c̄P∆P /cf ≤ BI/cf = B′.

5

Suppose now that f is indeed the most expensive arc that the interdictor touches
in his greedy strategy when attacking flow x. We also assume that the interdictor’s
budget does not exceed the cost of stealing all flow; otherwise, from the flow player’s
perspective, x is a meaningless solution. Observe that in this case c̄′P = 1 for all P
with xP −∆P > 0, implying that the first inequality in (2.1) is fulfilled with equality.
Note further that c̄′P = c̄P /cf for all P with ∆P > 0, implying that the second
inequality is also fulfilled with equality, and therefore the flow player’s profit equals
the LP value in this case.

Although [LPflow] has a possibly exponential number of variables, the following
lemma shows that we can actually solve it in polynomial time.

Lemma 2.2. The linear program [LPflow] can be solved in polynomial time.

Proof. Notice that the second term B′ in the objective function is constant and
can be ignored for the purpose of the lemma. Consider the dual linear program:

min
∑

e∈A

ueye

s. t.
∑

e∈P

ye ≥ c̄′P for all P ∈ P ,

ye ≥ 0 for all e ∈ A.

The separation problem can be solved by a series of shortest path computations as
follows. For every possible value γ of c̄′P (i. e., for every γ ∈ Γ := {c′e | e ∈ A}), find a
shortest path P (γ) ∈ P for the arc weights

yγe :=

{

ye if c′e ≥ γ,

∞ otherwise,

and denote its length by π(γ) :=
∑

e∈P (γ) y
γ
e . We will show that if π(γ) ≥ γ for every

γ ∈ Γ, then y is a feasible dual solution. Vice versa, if π(γ) < γ for some γ ∈ Γ, then
the dual constraint associated with P (γ) ∈ P is violated.

Suppose in fact that there is a path P ∈ P whose dual constraint is violated, and
let γ = c̄′P . Observe that this implies yγe = ye for all e ∈ P and thus π(γ) < ∞.
Therefore, the shortest path computation with respect to weights yγ will find a path
P (γ) ∈ P containing only arcs with c′e ≥ γ and thus π(γ) = yγ(P (γ)) ≤ yγ(P) =
y(P) < c̄′P = γ. Conversely, suppose that the length π(γ) of a shortest path P (γ)
with respect to the arc weights determined by some γ ∈ Γ is such that π(γ) < γ.
Since π(γ) is finite, it follows that c′e ≥ γ and yγe = ye for all e ∈ P (γ). Therefore,
y(P (γ)) = yγ(P (γ)) = π(γ) < γ ≤ c̄′

P (γ), i. e., the dual constraint associated with

P (γ) is violated.

Solving the LP using Discrete Newton. It is possible to treat [LPflow] as a
parametric LP, where the objective coefficients c̄′p depend on the parameter λ = 1/cf .
In these terms, the objective function can be written as

∑

P∈P min{λc̄(P), 1}xP−λBI .
Define cmin := mine∈A ce, cbot := maxP∈P c̄(P), and C := maxe∈A ce. Note that a
bottleneck shortest path computation can compute cbot in O(m log n) time. When
λ ≥ 1/cmin, then the objective function is

∑

P∈P xP , i. e., the standard maximum
flow problem, and when λ ≤ 1/cbot, then the objective function is λ

∑

P∈P c̄(P)xP .
Thus the region of interest is λ ∈ [1/cbot, 1/cmin]. This proves that the optimal
objective value of [LPflow] is a piecewise linear concave function with breakpoints at

6

the inverse of ce for each value of ce ∈ [cmin, cbot]. Thus the maximum occurs at one
such breakpoint. Given that it is expensive (though polynomial) to solve the LP, we
would like to minimize the number of values of λ for which we have to solve it. One
way to do this is to use the Newton-B algorithm of [17], which uses a result of Radzik

[20] to get a bound of O(log(mC)
1+log log(mC)−log log(m)) LP solves, which is typically much

faster than O(m). It is also possible that the flow player is interested to know what
his optimal solution is at all possible breakpoints. For each ce ∈ [cmin, cbot] it is easy
to compute the range of BI such that the optimal solution of [LPflow] occurs at ce.

Relation to multicommodity flow. While Theorem 2.1 and Lemma 2.2 yield
an efficient algorithm for computing an optimal strategy for the flow player, this
algorithm is based on linear programming. Aneja et al. [2] also deal with a parametric
LP for solving their robust flow model. Unlike in our case however, their LP can be
formulated in terms of an arc flow and can be solved combinatorially in strongly
polynomial time by at most |V | maximum flow computations. Moreover, they also
obtain the insight that there is an optimal flow that, before the interdiction, is a
maximum flow. Finally, even if the optimal flow needs not to be integer, building
upon the concavity of their parametric LP, an optimum integral solution can also be
obtained by solving two more maximum flow problems, corresponding to the rounding
(up and down) of the fractional optimal value of the parameter.

Motivated by these results, we now discuss whether it is also possible to obtain a
combinatorial (strongly polynomial) algorithm for FP. A first observation is that the
path weights c̄ ∈ R

P
+ do not fulfill the supermodularity condition (1.1) for weighted

abstract flows. It is also not hard to construct instances where no optimal robust flow
x ∈ X is a maximum flow in the network. Finally, we establish a close connection of
FP to the following feasibility version of the multicommodity flow problem.

(MF) Given a directed graphD = (V,A), capacities u ∈ R
A
+, a finite set of commodi-

ties K with demands di, sources si, and sinks ti for i ∈ K, decide whether
there is a feasible multicommodity flow satisfying all demands.

Given an instance I of MF, we construct the following instance I ′ of FP as follows:
We add a super source s with arcs ai = (s, si) for every i ∈ K and a super sink t with
arcs zi = (ti, t) for all i ∈ K. For these arcs, we set uai

= uzi = di and cai
= czi = i

for all i ∈ K (assuming w.l.o.g. K = {1, . . . , k}). We further add an additional arc
e∗ = (s, t) with ue∗ = 1 and ce∗ = k + 1. Finally, we set ce = ∞ for all arcs e ∈ A of
the original network and let BI =

∑

i∈K di · i.
Note that any s-t-path P starting with arc ai and ending with arc zj fulfills

c̄P = min{i, j}. This can be used to show that any robust flow of value 1 induces a
feasible multicommodity flow and vice versa, as formalized in the proof of the following
lemma.

Lemma 2.3. There is a feasible solution to instance I of MF if and only if the
flow player can achieve a profit of 1 in the instance I ′ of FP.

Proof. Assume there is a multicommodity flow in I fulfilling all demands. Con-
sider a decomposition of this flow into a path flow along si-ti-paths for i ∈ K. Extend
each si-ti-path of this decomposition by the corresponding arcs ai and zi, obtaining
a flow x on s-t-paths. Further set xP∗ = 1 for the single-arc path P ∗ along e∗. Let
Pi denote the subset of s-t-paths starting with ai and ending with zi. Observe that
∑

P∈Pi
xP = di and c̄P = i for all P ∈ Pi, i ∈ K. Therefore the interdictor can steal

all flow from x except for the 1 unit along P ∗.

7

Now assume there is a path flow x for I ′ with profit 1 for the flow player.
For i ∈ K, let P ′

i denote the set of s-t-paths starting with ai. Observe that
∑

P∈P′

i

xP ≤

di and c̄P ≤ i for P ∈ P ′
i. Therefore

∑

i∈K

∑

P∈P′

i

c̄PxP ≤
∑

i∈K

di · i = BI ,

implying the interdictor’s budget is always sufficient to steal all flow along all s-t-
paths in P \{P ∗}. The flow player’s profit can only reach 1 if the flow on P ∗ remains
untouched, implying that the above inequality must hold with equality. This is only
possible if

∑

P∈P′

i

xP = di and c̄P = i for all P ∈ P ′
i with xP > 0. Thus xP > 0 for

some P ∈ P ′
i implies that P starts with ai and ends with zi. Therefore, x corresponds

to a multicommodity flow in D fulfilling all demands.

This reduction does not only imply that, in general, optimal solutions to FP
are not integral, but also that a combinatorial strongly polynomial algorithm for FP
would lead to a combinatorial strongly polynomial algorithm for MF, the existence of
which is a longstanding open problem in combinatorial optimization. As the integral
version of MF contains the arc-disjoint path problem as a special case, Lemma 2.3
also implies hardness of FP’s integral version.

Corollary 2.4. It is NP -hard to find an optimal integral solution to FP.

Generalizations. The results above can be generalized to a setting where the
flow player is also given a budget and needs to find a flow whose cost is within this
budget. More precisely, non-negative arc costs γ ∈ R

A
+ and the flow player budget

BF are additionally given in the input, and the path flow x must fulfill the constraint
∑

e∈A γe
∑

P :e∈P xP ≤ BF . The resulting problem still has an efficiently solvable dual
separation problem. In the special case of γ = c, paying the cost can be interpreted
as having to pay for the protection of the flow.

Further note that Lemma 2.2 and Theorem 2.1 are not restricted to single-
commodity network flows. In fact, our algorithmic results hold for any set system
P on some finite ground set, as long as a set P ∈ P minimizing

∑

e∈P ye for given
non-negative weights y ∈ R

A
+ can be computed in polynomial time. This includes the

following examples.
• Let D be a network and let K be a set of commodities, each associated with a
source si and a sink ti in D. Let P be the set of si-ti-paths in D for all i ∈ K.
Note that this multicommodity version of FP can be solved by applying the
same separation routine as above to each commodity individually.

• Let P be an abstract network, i. e., a collection of internally ordered subsets
fulfilling the switching axiom defined in [13]. In this case, a minimum weight
subset P ∈ P can be found using the abstract flow algorithm from [16] as
observed in [14].

• Let G = (V,E) be a graph and let P be the set of b-matchings in G for
some fixed vector b ∈ Z

V
+ . As minimum cost b-matchings can be computed in

polynomial time, the corresponding version of FP, which is robustly packing
b-matchings in a capacitated graph, can be solved in polynomial time.

3. A network design variant. We consider the situation where the interdiction
costs c ∈ R

A
+ are not given but have to be determined by the flow player. In the input,

we are given an additional vector γ ∈ R
A
+, such that γece is the cost that the flow

player will pay, for each unit of flow traversing arc e, to protect it by an interdiction

8

cost of ce. Furthermore, the flow player is given a budget BF . The flow player
again specifies a path flow x ∈ X and in addition the interdiction costs c ∈ R

A
+,

subject to the budget constraint
∑

e∈A γece
∑

P∈P:e∈P xP ≤ BF (note that the cost
of protecting flow is proportional to its amount). If γe = 0, we will implicitly assume
ce = ∞, prohibiting the interdictor from stealing flow from such arcs. We are thus
interested in interdiction costs for the set of vulnerable arcs A∗ := {e ∈ A | γe > 0}.

The interdictor’s budget is still denoted by BI and he again chooses a vector
z ∈ Ω specifying how much flow he steals from each path at each arc, paying a
cost of ce per unit of flow stolen from arc e ∈ A. Note that his optimal strategy is
again to proceed greedily starting with a flow-carrying path P with lowest bottleneck
interdiction cost c̄P = mine∈P ce.

We denote the resulting network design problem by DP. We will show that this
problem can also be solved in polynomial time. The algorithm is based on the insight
that there always exists an optimal solution for the flow player with the property that
arcs have uniform interdiction costs, in which case the interdictor is indifferent about
the possible paths (and arcs) to steal from.

Lemma 3.1. There exists an optimal solution (x∗, c∗) to DP fulfilling

c∗e :=







BF

Γ(x∗)
if there exists P ∈ P with e ∈ P and xP > 0,

0 otherwise

for all e ∈ A∗, where Γ(x) :=
∑

P∈P

∑

e∈P γexP .

Proof. Note that we can ignore all arcs e ∈ A \ A∗ in context of the lemma. We
thus pretend to contract these arcs, replacing every P ∈ P by P ∩ A∗ and removing
all paths P with P ∩ A∗ = ∅ from P for the remainder of this proof. In particular,
this implies

∑

e∈P γe > 0 for all P ∈ P .
For the sake of the proof, we will consider the relaxation of the problem where the

flow player can set different interdiction costs cP,e on the same arc e, depending on
the path P containing e, i. e., the interdictor will have to pay a cost of cP,e for stealing
one unit of flow from path P at arc e. We will show that for this relaxation there is
an optimal solution (x, c) with cP,e = BF

Γ(x∗) if xP > 0, and cP,e = 0 otherwise. Note

that this implies cP1,e = cP2,e for all e ∈ A∗ and all flow-carrying paths P1, P2 ∈ P
containing e. Therefore the relaxation yields a feasible solution (x∗, c∗) of the same
cost to the original problem DP, fulfilling the requirements of the lemma.

Concerning the relaxation, we first observe that there always is an optimal so-
lution (x, c) with cP,e = cP,f for all P ∈ P and e, f ∈ P , because the interdictor
will always strike at the cheapest arc of any path P . We therefore denote by cP the
interdiction cost of each arc e ∈ P , and slightly abuse notations by referring to a
solution to the relaxation by a pair of vectors x, c ∈ R

P with xP specifying the flow
value and cP specifying the interdiction cost for path P ∈ P .

Let (x, c) be an optimal solution to the relaxation. Without loss of generality, we
can assume that cP = 0 implies xP = 0, as the flow player does not gain any profit
from paths with cP = 0. We will now show that we can change c, without decreasing
the flow player’s profit, in such a way that for every P ∈ P we have cP = 0 if xP = 0,
and cP = C if xP > 0 for some fixed value C, yielding therefore a solution to the
relaxation that implies the lemma, as discussed above.

Given the interdictor’s greedy answer z ∈ Ω to (x, c), let

c′ := max{cP |
∑

e∈P

ze,P > 0}

9

be the cost of the most expensive path touched by the interdictor. Note that c′ is also
the cost of the most expensive flow-carrying path in x: If there is any path P with xP >
0 and cP > c′, since this path is not touched by the interdictor, the flow player might
reduce cP to c′ and increase the interdiction cost of all other paths, leading to a higher
profit and contradicting the optimality of (x, c). Thus let P ′ := {P ∈ P | cP = c′} be
the set of most expensive paths, and let ∆ :=

∑

P∈P′

∑

e∈P ze,P be the total amount
of flow stolen by the interdictor from paths in P ′. Furthermore, define γP :=

∑

e∈P γe
and Γ′ :=

∑

P∈P′ γPxP . Now assume there is another path P ′ ∈ P with xP ′ > 0 and
0 < cP ′ < c′. W.l.o.g., choose P ′ such that cP ′ is maximized among all such paths.
We investigate the effect of shifting interdiction cost from P ′ to the paths in P ′ or
vice versa. Decreasing cP ′ by ε frees γP ′εxP ′ units of the flow player’s budget, which
can be used to increase uniformly the interdiction cost of all paths in P ′ by εγ

P ′xP ′

Γ′
.

In this case, the interdictor needs εxP ′ budget units less for stealing all flow from P ′,
therefore he can use c′∆+ εxP ′ budget units for stealing flow from paths in P ′. With
the increased interdiction costs for those paths, the amount of flow that remains after
the interdictor strikes, i. e., the profit of the flow player, is

f(ε) :=
∑

P∈P′

xP −
c′∆+ εxP ′

c′ + εγ
P ′xP ′

Γ′

.(3.1)

Note that this is also true for negative values of ε, i. e., increasing cP ′ by |ε| and
decreasing the interdiction cost of paths in P ′ uniformly by |ε|γP ′xP ′

Γ′
. In fact, f(ε)

determines the change in profit for any ε such that cP ′−ε ≥ 0 and cP ′+ε ≤ c′−εγ
P ′xP ′

Γ′
,

as within this interval all flow on P ′ will be interdicted before the interdictor touches
any path in P ′. Note that by optimality of c we have

0 = f ′(ε) = −
c′xP (1 −

γ
P ′

Γ′
∆)

(c′ + εγ
P ′xP

Γ′
)2

and so γP ′∆ = Γ′. Inserting this in (3.1) yields f(ε) =
∑

P∈P′ xP −∆, i. e., shifting
interdiction costs in either direction does not change the flow player’s profit. We
therefore can choose ε such that cP ′ + ε = c′ − εγ

P ′xP ′

Γ′
, equalizing the interdiction

cost of P ′ and all paths in P ′. This procedure can be repeated until cP = C for all P
with xP > 0 and some constant C. It then trivially follows that C = BF

Γ(x) .

Recall that we denote the surviving flow after the interdictor applies his greedy
strategy z ∈ Ω by x̄, where x̄P = xP −

∑

e∈P ze,P . Further observe that given any
flow x ∈ X , by choosing c in the same way as defined in the statement of Lemma 3.1

we obtain a solution (x, c) with profit
∑

P∈P x̄P =
∑

P∈P xP − Γ(x)
BF

BI . It follows that
the flow x∗ in the optimal solution (x∗, c∗) guaranteed by Lemma 3.1 must maximize
this linear objective. We obtain the following theorem.

Theorem 3.2. An optimal flow x ∈ X for the flow player in DP can be computed
by solving the following linear program:

[LPdesign] max
∑

P∈P

(

1−
BI

BF

∑

e∈P

γe

)

xP

s. t.
∑

P∈P:e∈P

xP ≤ ue for all e ∈ A,

xP ≥ 0 for all P ∈ P.

10

Corollary 3.3. Problem DP can be solved in strongly polynomial time. There
exists an optimal solution such that x is integral.

Proof. Consider the network D′ = (V,A′) where A′ := A∪{(t, s)} with capacities
u′(e) := u(e) for e ∈ A and u(t, s) := ∞. Let c(e) := BI

BF

γe for e ∈ A and c(t, s) := −1.
It is easy to see that an optimal solution to [LPdesign] corresponds to a minimum
cost circulation in (D′, u′, c) and vice versa (note that every negative cost cycle in
D′ contains (t, s)). We can thus solve the minimum cost flow problem in D′ in
strongly polynomial time and obtain an integral solution to [LPdesign] and DP.

Generalizations and integrality of solutions. Note that, as in Section 2, the
linear program [LPdesign] can be solved via its dual separation problem in polynomial
time for any set system for which a set P ∈ P minimizing

∑

e∈P ye for given non-
negative weights y ∈ R

A
+ can be computed in polynomial time. Therefore, our results

for DP also hold for all examples of set systems listed at the end of Section 2. However,
unlike in the previous section, Theorem 3.3 gives a stronger result for the case that P
is the set of s-t-paths in D, asserting integrality of the optimal solution and giving a
strongly polynomial algorithm. This stronger result also extends to the case where P
defines an abstract network, as the path weights 1 − BI

BF

∑

e∈P γe fulfill (1.1), and
we can thus solve [LPdesign] directly by using a combinatorial weighted abstract flow
algorithm [15].

4. Increasing existing interdiction costs. We now consider a generalization
of the problem discussed in the previous section, in which initial interdiction costs c0

on the arcs are already present in the input graph, but in which further protection
can be obtained by the flow player at the cost of γec

+
e xe for an increase of c+e on an

arc e with flow xe. This is motivated by considering network infrastructure which
comes with some basic protection for free; in order to get better protection on a
particular arc, however, a user has to pay cost proportional to the level of protection
and amount of flow he wishes to send. We denote this problem by CP. The following
theorem reveals a surprising jump in complexity as compared to DP.

Theorem 4.1. It is NP -hard to decide whether an instance of CP has an optimal
objective value strictly larger than 0.

Proof. The proof uses a reduction from the arc-disjoint paths problem: Given a
directed graph D = (V,A) and two terminal pairs s1, t1 and s2, t2, decide whether
there is an s1-t1-path P1 and an s2-t2-path P2 such that P1 ∩ P2 = ∅. This problem
is NP-hard even in directed acyclic graphs [12]. In the following we assume without
loss of generality that s1 has only one outgoing arc and t1 has only one incoming arc.

Given an instance of the arc-disjoint path problem, we construct an instance of
CP as follows. We modify the graph by adding a super source s with arcs a1 = (s, s1)
and a2 = (s, s2) and a super sink t with arcs z1 = (t1, t) and z2 = (t2, t). Let
M := |A|+ 3 and set

ua1
= uz1 = 1, c0a1

= c0z1 = M, γa1
= γz1 = ∞,

ua2
= uz2 = M, c0a2

= c0z2 = 1, γa2
= γz2 = ∞,

ue = ∞, c0e = 1, γe = 1, for all e ∈ A.

We further set BF = |A|(M − 1) and BI = 2M − 1.
Assume there are arc-disjoint paths P1 from s1 to t1 and P2 from s2 to t2. The flow

player can send 1 unit of flow along P ′
1 := a1 ◦P1 ◦z1 and M units of flow along P ′

2 :=

11

a2◦P2◦z2. Furthermore, he can enforce an interdiction cost of |A|(M−1)/|P1|+1 ≥ M
on all arcs of P1. Note that c̄P ′

1
= M and c̄P ′

2
= 1 in this solution. The interdictor

thus uses M units from his budget to steal all flow from P ′
2. The remaining M − 1

units are used to steal 1− 1/M flow units from P ′
1. As a consequence, the remaining

flow after interdiction has value 1/M > 0 in this case.
Assume now that no pair of arc-disjoint paths exists. Let P2 denote the set of all

s-t-paths containing a2 or z2 and define P1 := P \P2. For a given flow player solution
with flow x and additional cost c+ define Y :=

∑

P∈P2
xP ≤ M + 1.

Let P ′
1 ∈ P1, that is, P

′
1 is of the form a1 ◦ P1 ◦ z1 for some s1-t1-path P1 in D.

As P1 shares at least one arc with every path in P2 (here we use the assumption on
the unique outgoing and incoming arc at s1 and t1, respectively), we have

(c̄P1
− 1)Y ≤

∑

e∈P1

c+e
∑

P∈P2:e∈P

xP ≤ BF = |A|(M − 1) .

Therefore c̄P1
≤ |A|(M − 1)/Y + 1 and thus

c̄P ′

1
≤ min{|A|(M − 1)/Y + 1, M} for every P ′

1 ∈ P1,(4.1)

where the upper bound M stems from the fact that the interdiction cost of a1 and z1
is fixed to M and cannot be increased. Further note that c̄P ′

2
= 1 for all P ′

2 ∈ P2 and
the interdictor thus steals all flow from such paths at a total cost of Y . If Y ≤ M − 1,
then the interdictor has a budget of at least M left, which is sufficient to steal all flow
from paths P ′

1 ∈ P1 as the total flow on these paths is at most ua1
= 1.

It remains to consider the case that M − 1 < Y ≤ M + 1. Then, due to (4.1),
c̄P ′

1
< |A|+ 1, for every P ′

1 ∈ P1. As the interdictor’s remaining budget after stealing
all flow from paths in P2 is 2M − 1 − Y ≥ M − 2 ≥ |A| + 1 and the total flow on
paths P ′

1 ∈ P1 is at most 1, also in this case, the interdictor can steal all flow.
Thus any algorithm that is able to distinguish between instances where the opti-

mal value for the flow player is 0 and instances where the value is positive can also
solve the arc-disjoint path problem.

Corollary 4.2. Unless P = NP , there is no g(|A|)-approximation algorithm
for CP for any polynomially computable function g.

5. Conclusion. We presented a new model for robust network flows, in which
the interdictor can fractionally remove flow from individual paths. Using structural
insights on the interdictor’s and flow player’s optimal strategies, we obtained polyno-
mial time algorithms for the maximum flow variant as well as for the variant where the
flow player additionally determines the protection of his flow. Both these results gen-
eralize to a broad class of packing problems. Somewhat surprisingly, for the variant
discussed in the last section, where initial protection infrastructure is already present,
we derived a strong inapproximability result. Still, it remains open whether this lat-
ter variant of the problem allows for bifactor approximation results in the following
sense: Find a solution of value at least α times the optimal surviving flow value, but
allow the flow player to exceed his budget BF by a factor of βF > 1, or diminish the
interdictor’s budget BI by a factor of βI < 1. Another interesting open question is
to investigate in how far our results can be translated to the robust flow model of [7],
either yielding a better approximation factor or a stronger inapproximability similar
to the reduction in the proof of Theorem 4.1.

12

REFERENCES

[1] D. S. Altner, Ö. Ergun, and N. A. Uhan, The maximum flow network interdiction problem:
valid inequalities, integrality gaps, and approximability, Operations Research Letters, 38
(2010), pp. 33–38.

[2] Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair, Maximizing residual flow under an
arc destruction, Networks, 38 (2001), pp. 194–198.

[3] J.-F. Baffier and V. Suppakitpaisarn, A (k+ 1)-approximation robust network flow algo-
rithm and a tighter heuristic method using iterative multiroute flow, in Algorithms and
Computation, vol. 8344 of Lecture Notes in Computer Science, Springer, 2014, pp. 68–79.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, Princeton University
Press, 2009.

[5] D. Bertsimas, D. B. Brown, and C. Caramanis, Theory and applications of robust optimiza-
tion, SIAM Review, 53 (2011), pp. 464–38.

[6] D. Bertsimas, E. Nasrabadi, and J. B. Orlin, On the power of randomization in network
interdiction, tech. report, arXiv:1312.3478, 2013.

[7] D. Bertsimas, E. Nasrabadi, and S. Stiller, Robust and adaptive network flows, Operations
Research, 61 (2013), pp. 1218–1242.

[8] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical
Programming, 98 (2003), pp. 49–71.

[9] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg, A
decomposition-based pseudoapproximation algorithm for network flow inhibition, in Net-
work Interdiction and Stochastic Integer Programming, Springer, 2003, ch. 3, pp. 51–68.

[10] K. J. Cormican, D. P. Morton, and R. K. Wood, Stochastic network interdiction, Opera-
tions Research, 46 (1998), pp. 184–197.

[11] D. Du and R. Chandrasekaran, The maximum residual flow problem: NP-hardness with
two-arc destruction, Networks, 50 (2007), pp. 181–182.

[12] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM Journal on Computing, 5 (1976), pp. 691–703.

[13] A. J. Hoffman, A generalization of max flow—min cut, Mathematical Programming, 6 (1974),
pp. 352–359.

[14] J. W. Kappmeier, J. Matuschke, and B. Peis, Abstract flows over time: A first step towards
solving dynamic packing problems, Theoretical Computer Science, 544 (2014), pp. 74–83.

[15] M. Martens and S. T. McCormick, A polynomial algorithm for weighted abstract flow, in
Integer Programming and Combinatorial Optimization, vol. 5035 of Lecture Notes in Com-
puter Science, Springer, 2008, pp. 97–111.

[16] S. T. McCormick, A polynomial algorithm for abstract maximum flow., in Proceedings of the
seventh annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 1996, pp. 490–497.

[17] S. T. McCormick, G. Oriolo, and B. Peis, Discrete Newton algorithms for budgeted network
problems, tech. report, RWTH Aachen, 2014.

[18] C. A. Phillips, The network inhibition problem, in Proceedings of the twenty-fifth annual
ACM Symposium on Theory of Computing, ACM, 1993, pp. 776–785.

[19] H. J. Prömel, Induzierte Partitionssätze, PhD thesis, (1982).
[20] T. Radzik, Fractional combinatorial optimization, in Handbook of Combinatorial Optimiza-

tion, Springer, 1998, pp. 1311–1355.
[21] J. O. Royset and R. K. Wood, Solving the bi-objective maximum-flow network-interdiction

problem, INFORMS Journal on Computing, 19 (2007), pp. 175–184.
[22] J. C. Smith and C. Lim, Algorithms for network interdiction and fortification games, in Pareto

Optimality, Game Theory And Equilibria, vol. 17 of Springer Optimization and Its Appli-
cations, Springer, 2008, pp. 609–644.

[23] A. Washburn and K. Wood, Two-person zero-sum games for network interdiction, Operations
Research, 43 (1995), pp. 243–251.

[24] R. Wollmer, Removing arcs from a network, Operations Research, 12 (1964), pp. 934–940.
[25] R. K. Wood, Deterministic network interdiction, Mathematical and Computer Modelling, 17

(1993), pp. 1–18.

13

