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Abstract

Solymosi and Raghavan (2001), see [1], characterize the stability of the core of
the assignment game by means of a property of the valuation matrix. They show
that the core of an assignment game is a von Neumann-Morgenstern stable set
if and only if its valuation matrix has a dominant diagonal. While their proof
makes use of graph-theoretical tools, the alternative proof presented here relies
on the notion of the buyer-seller exact representative, as introduced by Núñez
and Rafels in [2].
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1. Introduction and preliminaries

An assignment market (M,M ′;A) consists of two different sectors: let us say
a finite set of buyers M and a finite set of sellers M ′ (M and M ′ disjoint) and a
non-negative valuation matrix A = (aij) i∈M

j∈M ′

that represents the potential joint

profit obtained by each mixed-pair (i, j) ∈ M×M ′. As in [1] and [2], we assume
that the assignment market is square, that is |M | = |M ′|.

A matching µ between M and M ′ is a subset of the Cartesian product, M ×
M ′, such that each agent belongs, at most, to one pair. The set of all possible
matchings is denoted by M(M,M ′). A matching µ ∈ M(M,M ′) is optimal
for the market (M,M ′, A) if

∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′

aij for all µ′ ∈ M(M,M ′).

We denote by MA(M,M ′) the set of all optimal matchings for the market
(M,M ′, A). The corresponding assignment game (M ∪ M ′, wA) has a player
set M ∪ M ′ and a characteristic function wA(S ∪ T ) = max

µ∈M(S,T )

∑
(i,j)∈µ

aij for

all S ⊆ M and T ⊆ M ′.
In this paper, we assume without loss of generality that µ = {(i, i) | i ∈ M},

the matching refers to the main diagonal, is optimal. We use “j” to denote both
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the jth buyer and the jth seller, since the distinction is always clear from the
context.

Once a matching between buyers and sellers that maximizes the total profit
in the market has been chosen, we need to determine how this profit can be
allocated among the agents. Given an assignment game (M ∪ M ′, wA), an
allocation is a payoff vector (u; v) ∈ R

|M| × R
|M ′|, where ul denotes the payoff

to buyer l ∈ M and vl denotes the payoff to seller l ∈ M ′. An imputation is a
payoff vector that is efficient,

∑
i∈M

ui +
∑

j∈M ′

vj = wA(M ∪M ′) and individually

rational, ui ≥ wA({i}) = 0 for all i ∈ M and vj ≥ wA({j}) = 0 for all j ∈ M ′.
We denote the set of imputations of an assignment game (M∪M ′, wA) by I(wA).

In an assignment game, the principal section consists of imputations that
satisfy ui + vi = aii for all i ∈ M . We denote it by B(wA). In the principal
section, side-payments only take place between matched agents. There are two
special and useful allocations (named the sector-optimal allocations): (a;0) ∈
R

|M| × R
|M ′|, defined by ak = akk for k ∈ M and ak = 0 for k ∈ M ′, and

(0;a) ∈ R
|M| × R

|M ′| defined by ak = 0 for k ∈ M and ak = akk for k ∈ M ′.
A binary relation, known as domination, is defined on the set of imputations.

Given two imputations (u; v) and (u′; v′), we say that (u; v) dominates (u′; v′)
if and only if there exists (i, j) ∈ M × M ′ such that ui > u′

i, vj > v′j and

ui + vj ≤ aij . We then write (u; v) dom A
{i,j}(u

′; v′), and (u; v) domA(u′; v′) to
denote that (u; v) dominates (u′; v′) by means of some pair (i, j) ∈ M × M ′.
Such definition only makes use of mixed-pair allocations, and for assignment
games it is equivalent to the usual dominance relation in [3].

The first solution concept for coalitional games that appears in the literature
is the notion of stable set. A subset V of the set of imputations I(wA) is a von
Neumann-Morgenstern stable set (a stable set) if it satisfies internal stability,
that is, for any (u; v), (u′; v′) ∈ V , (u; v) domA(u′; v′) does not hold; and external
stability, that is, for any (u′; v′) ∈ I(wA) \ V , there exists (u; v) ∈ V such that
(u; v) domA(u′; v′).

The core C(wA) is another solution concept that can also be defined, see [4],
by means of the dominance relation: it is the set of undominated imputations.

Equivalently, an imputation (u; v) ∈ I(wA) belongs to the core of the assign-
ment game C(wA) if for all (i, j) ∈ M ×M ′ it holds ui+vj ≥ aij . It is shown in
[5] that an assignment game (M ∪M ′, wA) always has a non-empty core. Notice
that the core always satisfies internal stability but may fail to satisfy external
stability. This raises the question as to which valuation matrices correspond to
assignment games with an externally stable (and hence stable) core.

Solymosi and Raghavan introduce in [1] the dominant diagonal property for
valuation matrices. A square valuation matrix A has a dominant diagonal if
all diagonal elements are row and column maxima: aii ≥ max{aij , aji} for all
(i, j) ∈ M ×M ′. Hence, an optimal matching is placed on the main diagonal. It
is straightforward to see that a valuation matrix A has a dominant diagonal if
and only if the sector-optimal allocations (a;0) and (0;a) belong to the core. It
is then proved in [1] that “the core of a square assignment game (M ∪M ′, wA)
is a von Neumann-Morgenstern stable set if and only if the valuation matrix

2
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A has a dominant diagonal”. The authors’ proof is based on graph-theoretical
arguments while here we base ours on the properties of the buyer-seller exact
representative of an assignment game proposed in [2].

Given any assignment game (M ∪M ′, wA), there exists a unique valuation
matrix Ar such that C(wA) = C(wAr ) and Ar is the maximum with this prop-
erty. That is, if any entry in Ar is raised, the resulting game has a different core.
As a consequence, if the matrix Ar is the buyer-seller exact representative of A,
then for all (i, j) ∈ M ×M ′ there exists (u, v) ∈ C(wAr ) such that ui+vj = arij .
Notice that for each (i, j) ∈ M ×M ′, arij is the lower bound for the joint payoff
of agents i ∈ M and j ∈ M ′ in the core.

Based on [2], we are now able to offer a proof of the characterization of
core stability for assignment games alternative to that provided in [1]. The
advantage of this new approach is that it relies solely on the structure of the
assignment game, that is, on the known bounds for the payoff to each mixed-
pair in the core. For this reason, it might be possible to apply these ideas to
the characterization of core stability for markets with more than two sectors,
which, to the best of our knowledge, remains an open question.

2. Core stability

In this section, we provide the main result of this paper, an alternative proof
of the characterization of core stability for the two-sided assignment game.

To do so, we first show that when the valuation matrix has a dominant
diagonal, each core allocation can be connected to the two sector-optimal allo-
cations, (a;0) and (0;a), by a continuous monotonic curve with parameter τ .
Shapley claims this lemma but does not offer the proof.

Lemma 1. Let (M ∪M ′, wA) be a square two-sided assignment game such that
its valuation matrix A has a dominant diagonal. Given any vector belonging to
the core of the game, (u; v) ∈ C(wA), and any τ ∈ R, the vector (u(τ); v(τ))
defined by

ui(τ) = med {0, ui − τ, aii} for all i ∈ M, (1)

vi(τ) = med {0, vi + τ, aii} for all i ∈ M ′,

belongs to C(wA).

Proof. Note first that for τ1 = max
i∈M

aii, (u(τ1); v(τ1)) = (0;a) and for τ2 =

−τ1, (u(τ2); v(τ2)) = (a;0). Notice that since (u; v) ∈ C(wA), we have ui+vi =
aii for all i ∈ M and hence, for all τ ∈ R and all i ∈ M

vi + τ = aii − ui + τ = aii − (ui − τ). (2)

It is then straightforward to show that ui(τ) + vi(τ) = aii for all i ∈ M .
Take now i 6= j and consider three different cases to check that (u(τ); v(τ))

satisfies the core constraints:

3
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1. τ < −min{vi, vj}, that is either ui(τ) = aii or vj(τ) = 0. In the first
case, ui(τ) = aii, we have ui(τ)+ vj(τ) ≥ ui(τ) = aii ≥ aij where the last
inequality follows from the dominant diagonal assumption. Otherwise, if
ui(τ) < aii and vj(τ) = 0, then since vj(τ) = med{0, vj + τ, ajj}, vj + τ ≤
0. This implies τ ≤ 0 and also ui(τ) + vj(τ) = ui − τ ≥ ui + vj ≥ aij ,
where the last inequality follows from (u, v) being in the core.

2. τ > min{ui, uj}, that is either vj(τ) = ajj or ui(τ) = 0. If vj(τ) =
ajj then ui(τ) + vj(τ) ≥ ajj ≥ aij because of the dominant diagonal
assumption. If vj(τ) < ajj but ui(τ) = 0, since ui(τ) = med{0, ui−τ, aii},
we have ui−τ ≤ 0. Then, τ ≥ 0 and hence ui(τ)+vj(τ) = vj(τ) = vj+τ ≥
vj + ui ≥ aij , where the last inequality follows from (u, v) being in the
core.

3. −min{vi, vj} ≤ τ ≤ min{ui, uj}. This implies ui(τ) = ui− τ and vj(τ) =
vj + τ and hence, again from (u, v) being in the core, ui(τ) + vj(τ) =
ui + vj ≥ aij .

Next, to show that the core of a square two-sided assignment game is a
von Neumann-Morgenstern stable set if and only if its valuation matrix has a
dominant diagonal, we need to prove the following lemma that states a property
of the principal section.

Lemma 2. Let (M ∪M ′, wA) be a square two-sided assignment game with an
optimal matching on the main diagonal. Given (x; y) ∈ B(wA) \ C(wA), there
exists a pair (i, j) ∈ M × M ′ and a core allocation (u; v) ∈ C(wA) such that
xi + yj < aij = ui + vj .

Proof. From [2], for any assignment game (M ∪M ′, wA) there exists another
assignment game (M ∪M ′, wAr ) with the same core, C(wA) = C(wAr ), and Ar

maximum with this property. Hence, if (x; y) /∈ C(wA), then (x; y) /∈ C(wAr ).
This means xi + yj < arij for some (i, j) ∈ M × M ′ and there exists a core
allocation (u; v) such that

xi + yj < arij = ui + vj . (3)

If arij = aij , the lemma is proved. Otherwise, by the definition of Ar, see page
433 in [2], arij = aik1

+ ak1k2
+ ak2k3

+ ... + akrj − ak1k1
− ... − akrkr

for some
k1, ..., kr ∈ M \ {i, j} and all of them different.

Since (u; v) is a core allocation and the main diagonal is an optimal matching,

ui + vj = aik1
+ ak1k2

+ ...+ akrj − ak1k1
− ...− akrkr

(4)

= aik1
+ ak1k2

+ ...+ akrj − (uk1
+ vk1

)− ...− (ukr
+ vkr

).

By rearranging (4), we obtain

ui + vk1
+ uk1

+ vk2
+ ...+ ukr

+ vj = aik1
+ ...+ akrj . (5)

4
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From (u; v) ∈ C(wA), and (5), we obtain

ul1 + vl2 = al1l2

for all (l1, l2) ∈ {(i, k1), (k1, k2), ..., (kr−1, kr), (kr, j)}.
Since (x; y) ∈ B(wA), we know xt+yt = att = ut+vt for all t ∈ {k1, k2, . . . , kr}.

Now,

xi + yk1
+ xk1

+ yk2
+ ...+ xkr

+ yj = xi + yj +

r∑

l=1

xkl
+ ykl

< ui + vj +
r∑

l=1

ukl
+ vkl

= ui + vk1
+ uk1

+ vk2
+ ...+ ukr

+ vj

= aik1
+ ...+ akrj ,

where the inequality follows from (3) and the last equality follows from (5).
Then, xi + yk1

+ xk1
+ yk2

+ ...+ xkr
+ yj < aik1

+ ak1k2
+ ... + akrj . This

means that xi + yk1
< aik1

= ui + vk1
, or xkr

+ yj < akrj = ukr
+ vj , or

xkl
+ ykl+1

< aklkl+1
= ukl

+ vkl+1
for some l ∈ {1, . . . , r − 1}.

We can now state and prove the main result.

Theorem 3. Let (M ∪M ′, wA) be a square assignment game with an optimal
matching on the main diagonal. Then the following statements are equivalent:

(i) A has a dominant diagonal,

(ii) C(wA) is a von Neumann-Morgenstern stable set.

Proof. We first consider (i) ⇒ (ii). The core of an assignment game is always
internally stable, thus we only need to settle the external stability. When an
allocation (x; y) belongs to I(wA) \B(wA), Shapley shows in his personal notes
that it is dominated by some core allocations. Here, we reproduce the proof
for completeness. Assume (x; y) ∈ I(wA) \ B(wA). Since (x; y) ∈ I(wA) and
µ = {(k, k)|k ∈ M} is an optimal matching,

∑
k∈M

xk + yk =
∑

k∈M

akk. Moreover,

since (x; y) /∈ B(wA), there is some i ∈ M such that xi + yi 6= aii. We can
assume xi + yi < aii since if xi′ + yi′ > ai′i′ for some i′ ∈ M , because of∑
k∈M

xk+yk =
∑

k∈M

akk, there is i ∈ M\{i′} with xi+yi < aii. Thus, xi < aii−yi,

which implies that there exists 0 ≤ xi < λ < aii − yi ≤ aii. By Lemma 1, there
exists (u; v) ∈ C(wA) with ui = λ. Then, ui > xi and ui < aii−yi which implies
yi < aii−ui = vi. Moreover, xi+yi < aii = ui+vi. Hence, (u; v) dom

A
{i,i}(x; y).

Assume now that (x; y) ∈ B(wA)\C(wA). We know by Lemma 2 that there
exists a pair (i, j) ∈ M×M ′ and (u; v) ∈ C(wA) such that xi+yj < aij = ui+vj .
Now, assume without loss of generality ui > xi. If also vj > yj , we obtain

(u; v) domA
{i,j}(x; y).

5
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Otherwise, assume vj ≤ yj. Since both (x; y) and (u; v) belong to B(wA),
xj + yj = uj + vj = ajj . Then, uj ≥ xj . Notice that ui > xi + yj − vj =
xi + (uj + vj − xj)− vj = xi + uj − xj . Hence,

uj − ui + xi < xj . (6)

We want to show that a core allocation exists that dominates (x; y) via coalition
{i, j}. To this end, we consider some cases:

1. xj > 0. Consider two cases:

(a) 0 ≤ xi < aii. Consider the continuous monotonic curve defined as in
(1) through (u; v), and take the point corresponding to τε = ui−xi−ε
where 0 < ε ≤ aii − xi. We prove that for some 0 < ε ≤ aii − xi,
(u(τε); v(τε)) dominates (x; y) via {i, j}. Notice that, for all 0 < ε ≤
aii−xi, ui(τ

ε) = med{0, ui−ui+xi+ε, aii} = xi+ε > xi. Now, since
uj(τ

ε) = med{0, uj−ui+xi+ε, ajj} and by (6) uj−ui+xi < xj ≤ ajj ,
there exists 0 < ε1 ≤ aii − xi small enough such that uj(τ

ε1 ) 6= ajj .
Then, we examine two cases:

i. uj(τ
ε1 ) = uj − ui + xi + ε1. Notice that ui(τ

ε1 ) > xi, uj(τ
ε1 ) <

xj or equivalently vj(τ
ε1 ) > yj which together with ui(τ

ε1 ) +

vj(τ
ε1 ) = ui + vj = aij proves (u(τε1); v(τε1 )) domA

{i,j}(x; y).

ii. uj(τ
ε1 ) = 0 < xj . Then, vj(τ

ε1 ) = ajj > yj. Moreover,
vj(τ

ε1 ) = ajj implies vj(τ
ε1 ) ≤ vj + τε1 . Since ui(τ

ε1 ) =
xi + ε = ui − τε1 , we have ui(τ

ε1 ) + vj(τ
ε1 ) ≤ ui + vj = aij .

Together with vj(τ
ε1 ) > yj and ui(τ

ε1 ) > xi this implies that

(u(τε1 ); v(τε1 )) domA
{i,j}(x; y).

(b) xi = aii. Since, by assumption, ui > xi, we obtain aii = xi < ui

which contradicts (u; v) ∈ C(wA).

2. xj = 0. Since (x; y) ∈ B(wA), yj = ajj . We obtain from xi+yj < aij that
ajj < aij , which contradicts the dominant diagonal assumption regarding
the valuation matrix.

This shows that any (x; y) ∈ B(wA) \ C(wA) is dominated by a core allocation
via coalition {i, j}, which concludes the proof of (i) ⇒ (ii).

Next, we prove (ii) ⇒ (i). Suppose A does not have a dominant diagonal,
then the sector-optimal allocation (a;0) does not belong to the core. On the
premise that C(wA) is a von Neumann-Morngenstern stable set, there exists
(u; v) ∈ C(wA) such that (u; v) domA

{i,j}(a;0) for some (i, j) ∈ M × M ′. So
that, ui > aii, a contradiction of (u; v) ∈ C(wA).
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