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We consider a single queue with two identical servers and two types of customers. The
high-type customer is more delay-sensitive but brings less workload to the system than
the low-type customer. We obtain the equilibrium queueing strategy for each type of cus-
tomers.
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1. Introduction

It is commonly observed that a queueing system contains different types of customers.
Consider a checkout queue in a retailer store such as a supermarket. Customers can be
categorized into two types based on the workload they bring to the server and their delay
sensitivity. The high-type customers are often highly delay-sensitive but only checkout
a few items, bringing little workload to the queue, whereas the low-type customers are
often highly delay-insensitive but checkout many items, bringing heavy workload to the
queue. Supermarkets serve these two types of customers either via two separate queues or
via a single queue. For example, some supermarkets differentiate the customers who buy
less than, say, 5 items from the others and serve these two groups of customers separately
via a “fast line” and a “regular” line. In contrast, other supermarkets do not differenti-
ate customers and serve them via a single multi-server queue, regardless of whether they
checkout many or a few. Under the former separating case, the checkout system contains
two dedicated queues. Customers’ strategic queueing behavior can thus be found for each
individual queue from the rich literature on queueing strategy; see Hassin and Haviv [1]
for a survey. In contrast, under the latter pooling case, the system has multiple servers
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with a mixture of two types of customers with different delay sensitivities and bringing
different workload requirements. The customer queueing strategy for this type of system
has not been analyzed according to our best knowledge. This motivates our study.

For the sake of analytical tractability, we make the following assumptions in our model.
Customers arrive to the system according to a Poisson process. There is a single queue
with two identical servers, i.e., the servers have the same service speed. Customers bring
random amounts of workload to a server, which is assumed to be exponentially distributed.
And customers are classified into two types according to their delay sensitivity and work-
load amount. The high-type customer is highly delay-sensitive and brings a stochastically
smaller amount of workload to the server whereas the low-type customer is lowly delay-
sensitive and brings a stochastically larger amount of workload to the server. The service
reward of two types of customers are also different.

Our paper is related to the study on customers’ strategic queueing behaviors, dated
back to Naor [2]. Naor [2] considers a fully observable queueing system with one server
where the customers choose whether to balk or to join based on the service rewards and
the waiting time. A large body of research along this line has been conducted henceafter;
see Hassin and Haviv [1] and Hassin [3] for the comprehensive literature reviews in this
field. In particular, our paper is related to those papers studying the queueing system
with different types of customers and multiple servers. Kulkarni [4] studies an M/G/1/1
system with two players who have different waiting costs. Ni et al. [5] investigate the
service provider’s service speed and price decisions when the M/M/1 system contains two
types of customers. However, in these papers, only one server is considered while we
consider two servers. Moreover, the service time in our work is type-dependent. Thus, the
unconditional service time does not follow an exponential distribution, which makes the
analysis here much more challenging.

Our analysis shows that if the longest waiting time that the low-type customer is willing
to bear is more than that of the high-type customer, all the low-type customers join the
queue as long as some of the high-type customers join. Otherwise, the high-type customers
all join the queue once some low-type customers join.

This paper is organized as follows. Section 2 describes the model and the notations.
Section 3 provides the expression of the expected waiting time and related properties. In
Section 4, we analyze the customers’ strategic queueing behavior.

2. Model Setup

Consider two types of customers: a high type (labelled H) and a low type (labelled
L). They arrive to the system according to a Poisson process with rate Λ. The fraction of
the high-type customers in the arriving customers is γ. Let λH and λL denote the potential
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arrival rates of the high- and low-type customers, respectively. Then,

λH = γΛ and λL = (1 − γ)Λ.

The two types of customers differ from each other in the following three aspects. First,
the two types of customers are heterogeneous in their delay sensitivity, denoted by θi,
i = H, L. The high-type customer is more delay sensitive than the low-type customer, i.e.,
θH > θL. Second, the two types of customers may checkout different kinds of products.
Denote the reward received by a type-i customer once the checkout is complete by Ri,
i = H, L. We do not posit the constraint on the relative magnitude between RH and RL.
Third, the two types of customers bring to the system different workload sizes. The high-
type customer normally checkouts less items than the low-type customer and thus normally
brings less workload to the system. We assume that the workload size for the low-type
customers follows an exponential distribution with mean 1/µL = 1/µ and that for the high-
type customers follows an exponential distribution with mean 1/µH = 1/(βµ), where β > 1.
By this assumption, the workload brought by each low-type customer is stochastically
larger than that of the high-type customer.

The system has one single queue with two identical servers. The service policy is first-
come first served. That is, the customer waiting at the front of the queue is served by the
first available server.

Customers care about the expected waiting time in the queue. Hereafter, we refer to
the waiting time in the queue as the waiting time for simplicity. The relaxation of this
assumption to consider the sojourn time (the sum of waiting time in the queue and the
service time) will not affect the qualitative results of our paper. We also assume that
the queue length is unobservable when a customer makes her queueing decision and a
customer knows her own type. This assumption is natural for the supermarket case. Note
that customers usually have a shopping list in their mind and have a target shop before
they go. Given the arrival rates λH and λL, a tagged type-i customer obtains the following
utility if she joins the queue:

Ui = Ri − θiW(λH, λL), i = H, L,

where W(λH, λL) is the expected waiting time. If a customer balks, she receives an utility
of 0. The expected waiting time of each customer is affected by the equilibrium joining
strategies of both types of customers.

3. Expected Waiting Time

We follow Kotiah and Slater [6] to calculate the expected waiting time in this two-
server Poisson queue with two types of customers. Given the arrival rates of the high-
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and low-type customers, λH and λL, the probability that an incoming customer is type i,
i = H, L can be derived as

αi =
λi

λH + λL
.

Define

λ := λH + λL; ρ :=
1
2

(
λH

µH
+
λL

µL

)
.

Then following Kotiah and Slater [6], the expected waiting time if all the incoming cus-
tomers join the queue can be derived as

W(λH, λL) =

(
1 − 1

2ρ

) (
αH
2µ2

H
+ αL

2µ2
L

)
λ + 1

2ρ

(
PH,0;1

µH
+

PL,0;1

µL

)
1 − ρ

, (1)

where Pi,0;1 represents the probability that there is only one type-i customer in the system
and she is served by server 1, i = H, L. It can be shown that

PH,0;1 =
(1 − ρ)λαHDL

αL(λ + 2µL)DH + αH(λ + 2µH)DL
and PL,0;1 =

(1 − ρ)λαLDH

αL(λ + 2µL)DH + αH(λ + 2µH)DL
,

where

Di = 2µiy + 3µix0 + λx2
0, y =

2µHµLρ

λ2

x0 = 1 −
λ + µH + µL −

√
(λ + µH + µL)2 − 4λ(αHµH + αLµL)

2λ
.

We can further derive the following result. The proof is relegated to the appendix.

Lemma 1. ∂W(λH ,λL)
∂λL

> ∂W(λH ,λL)
∂λH

for any β > 1.

Lemma 1 implies that the marginal impact of the low-type customer on the system waiting
time is larger than that of the high-type customer. This is rather intuitive as the low-type
customer brings more workload to the system and needs a longer service time than the
high-type customer.

4. Equilibrium Queueing Strategy Analysis

In this section, we derive the equilibrium queueing strategies of two types of customers
in the two-server queue. Let

vi =
Ri

θi
, i = H, L.
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Recall that Ri is the service reward of the type-i customer from joining the queue and
receiving the service from the server while θi is her delay sensitivity parameter, i = H, L.
Thus, vi represents the longest time that a type-i customer is willing to wait for getting
the service. For ease of exposition, we say that the low-type customer has a relatively
higher (respectively, lower) patience level than the high-type customer when vL > vH

(respectively, vL < vH). Below we analyze the equilibrium joining strategies of the high-
and low-type customers for the cases vL > vH and vL < vH, respectively.

4.1. Customer Equilibrium Queueing Strategy When vL > vH

When vL > vH, as long as high type customers join at a non-zero rate, then all of the
low-type customers join the queue. This is because the low-type customer has a higher
patience level than the high-type one and both types of customers queue in the same line.
Therefore, we can derive the customers’ equilibrium queueing strategies by focusing on
analyzing the high-type customers’ equilibrium joining behavior. Let the superscript “e”
denote the results in equilibrium.
Scenario 1: All the high-type customers balk, i.e., λe

H = 0.
Under this scenario, equation (1) can be rewritten as

W(0, λL) =
ρ2

L

(4 − ρ2
L)µ
,

where
ρL :=

(1 − γ)Λ
µ

.

This result is consistent with that in the literature regarding the expected waiting time in an
M/M/2 system; see, e.g., Gross et al. [7, pp. 67-69]. Regarding the low-type customers,
if UL = RL − θLW(0, λL) ≥ 0, or equivalently, W(0, λL) ≤ vL, then all of the low-type
customers join the queue in equilibrium. In addition, since no high-type customer joins
the queue, it implies that UH = RH − θHW(0, λL) < 0. Thus, when vH < W(0, λL) ≤ vL, in
equilibrium, all the low-type customers join the queue while all the high-type customers
balk.

Next, consider the case that UL = RL − θLW(0, λL) < 0. That is, if all the low-type
customers join the queue, then their utility is negative. Thus, in equilibrium, some low-
type customers join the queue while others balk. The equilibrium arrival rate of the low-
type customers, denoted by λe

L, must satisfy

RL − θLW(0, λe
L) = 0, (2)

where

W(0, λe
L) =

(ρe
L)2

(4 − (ρe
L)2)µ

; ρe
L :=
λe

L

µ
.
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Because W(0, λe
L) is increasing in λe

L, it can be shown that equation (2) has a unique
solution as follows:

λe
L = 2µ

√
vLµ

1 + vLµ
.

Scenario 2: A fraction of the high-type customers joins the queue, i.e., λe
H > 0.

Under this scenario, since some high-type customers join the queue, as aforemen-
tioned, all the low-type customers shall join the queue. That is, λe

L = λL. Moreover,
we have UH = RH − θHW(0, λL) > 0; otherwise, it is impossible for a high-type cus-
tomer to join the queue. When UH = RH − θHW(λH, λL) > 0, or equivalently, when
W(λH, λL) ≤ vH, then all of the high-type customers join the queue in equilibrium. How-
ever, if W(λH, λL) > vH, then some high-type customers balk the system. Under such
scenario (i.e., when W(λH, λL) > vH and RH − θHW(0, λL) > 0 ), the equilibrium arrival
rate is given by the solution to UH = RH − θHW(λe

H, λL) = 0, which can be simplified to

W(λe
H, λL) = vH.

In this queueing system, as arrival rate λe
H increases, the queue becomes stochastically

longer and hence W(λe
H, λL) is increasing in λe

H. It can be shown that there exists a unique
λe

H = {̂λ : W (̂λ, λL) = vH}.
Based on the above analysis, we can derive the following proposition.

Proposition 1. When the low-type customer has a higher patience level than the high-
type customer, i.e., vL > vH, the customers’ equilibrium joining-balking behaviors are as
follows.

(a) When vH < vL <
ρ2

L
(4−ρ2

L)µ , in equilibrium all the high-type customers balk, i.e., λe
H = 0.

A fraction of the low-type customers join the queue and the corresponding equilibrium
arrival rate λe

L = 2µ
√

vLµ

vLµ+1 .

(b) When vH <
ρ2

L
(4−ρ2

L)µ ≤ vL, in equilibrium all the low-type customers join the queue while
all the high-type customers balk, i.e., λe

H = 0, λe
L = λL.

(c) When vL > vH ≥
ρ2

L
(4−ρ2

L)µ and W(λH, λL) > vH, in equilibrium all the low-type customers
join the queue, i.e., λe

L = λL. A fraction of the high-type customers join the queue and
the corresponding equilibrium arrival rate satisfies W(λe

H, λL) = vH.

(d) When vL > vH ≥
ρ2

L
(4−ρ2

L)µ and W(λH, λL) ≤ vH, all customers of both types join the queue
in equilibrium, i.e., λe

H = λH, λe
L = λL.

6



4.2. Customer Equilibrium Queueing Strategy When vH > vL

In this section, we consider the situation in which the high-type customer has a higher
patience level than the low-type customer. We can also derive the equilibrium queueing
strategies of the two types of customers by conducting the similar analysis as that of §4.1.
Define

ρH =
γΛ

βµ
.

The following Proposition 2 summarizes the results.

Proposition 2. When the high-type customer has a higher patience level than the low-
type customer, i.e., vH > vL, the customers’ equilibrium joining-balking behaviors are as
follows.

(i) When vL < vH <
ρ2

H
(4−ρ2

H)βµ , in equilibrium all the low-type customers balk, i.e., λe
L = 0.

A fraction of the high-type customers join the queue and the corresponding equilib-

rium arrival rate λe
H = 2βµ

√
vHβµ

vHβµ+1 .

(ii) When vL <
ρ2

H
(4−ρ2

H)βµ ≤ vH, in equilibrium all the high-type customers join the queue
while all the low-type customers balk, i.e., λe

H = λH, λe
L = 0.

(iii) When vH > vL ≥
ρ2

H
(4−ρ2

H)βµ and W(λH, λL) > vL, in equilibrium all the high-type
customers join the queue, i.e., λe

H = λH. A fraction of the low-type customers join the
queue and the corresponding equilibrium arrival rate satisfies W(λH, λ

e
L) = vL.

(iv) When vH > vL ≥
ρ2

H
(4−ρ2

H)βµ and W(λH, λL) ≤ vL, all customers of both types join the
queue in equilibrium, i.e., λe

H = λH, λe
L = λL.

Propositions 1 and 2 show that when both types of customers are extremely patient (in
terms of the longest waiting times each type can tolerate), they both adopt the “all join”
strategy. When the high-type customer is more (respectively, less) patient than the low-
type customer, the low-type (respectively, high-type) customers may adopt the “all balk”
strategy whereas the high-type (respectively, low-type) customers adopt either the “all
join” strategy or a “ mixed strategy”, joining the queue with a probability.

4.3. Comparison
In this subsection, we illustrate the above queueing equilibrium analysis stated in §4.1

and §4.2 via four numerical examples. We also let

qe
i =
λe

i

λi
, i = H, L.
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Figure 1: Customers’ Equilibrium Joining Strategies
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Then, qe
i represents the equilibrium joining probability of the type-i customer, i = H, L.

Figure 1 depicts the equilibrium joining probabilities for both types of customers un-
der four scenarios. From Figure 1(a), we can see that when the low-type customer is more
patient than the high-type customer (vL > vH), a slight increase of γ (the fraction of the
high-type customer in the arrival population) may lead to a big change in the high-type cus-
tomers’ equilibrium joining probability. This may be caused by the fact that the marginal
contribution of a high-type customer towards the system waiting time is lower than that of
the low-type customer (as stated in Lemma 1). Consequently, the increase of the high-type
customer has less impact on the waiting time. Moreover, the joining probabilities of both
types of customers increase as there are more high-type customers in the arrival population
(i.e., a larger γ). In contrast, when the high-type customer is more patient than the low-
type customer (vH > vL), the equilibrium joining probability of the low-type customers can
either increase or decrease with γ, as illustrated in Figures 1(c) and 1(d). Figure 1(c) shows
the case that the equilibrium joining probability of the low-type customers decreases with
γ whereas Figure 1(d) shows the one that the equilibrium joining probability of the low-
type customers increases with γ. Moreover, Figure 1 implies that under all the scenarios,
the type that has a higher patience level is more likely to join the queue and “squeeze out”
the other type.
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Appendix: Proofs

Proof of Lemma 1. By the definition of the differential, we have

∆WL =
∂W(λH, λL)
∂λL

∆λL + o(∆λL),

∆WH =
∂W(λH, λL)
∂λL

∆λH + o(∆λH).

Now, let ∆λH = ∆λL = ∆λ→ 0. Because every low-type customer checkouts β > 1 items,
we have ∆WL =

β

2µ∆λ > ∆WH =
1

2µ∆λ. Hence, we obtain ∂W(λH ,λL)
∂λL

> ∂W(λH ,λL)
∂λH

.

9



References

[1] R. Hassin, M. Haviv, To queue or not to queue: Equilibrium behavior in queueing
systems, Springer Science & Business Media, 2003.

[2] P. Naor, The Regulation of Queue Size by Levying Tolls, Econometric 37 (1) (1969)
15–24.

[3] R. Hassin, Rational queueing, CRC press, 2016.

[4] V. G. Kulkarni, A game theoretic model for two types of customers competing for
service, Oper. Res. Lett. 2 (3) (1983) 119–122.

[5] G. Ni, Y. Xu, Y. Dong, Price and speed decisions in customer-intensive services with
two classes of customers, Eur. J. Oper. Res. 228 (2) (2013) 427–436.

[6] T . C . T . Kotiah; N . B . Slater, On Two-Server Poisson Queues with Two Types of
Customers, Oper. Res. 21 (2) (1973) 597–603.

[7] D. Gross, J. F. Shortle, J. M. Thompson, C. M. Harris, Fundamentals of Queueing
Theory, John Wiley & Sons, 2008.

10




