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Abstract

In this paper, we investigate the energy system design problems with the multi-generation

technologies, i.e., simultaneous generation of multiple types of energy. Our results illustrate the

economic value of multi-generation technologies to reduce spatio-temporal demand uncertainty

by risk pooling both within and across different facilities.
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1 Introduction

Energy systems are multi-dimensional: Electricity, heat, oil, natural gas and even biofuels, are

distributed to meet demand with supply. An interesting feature of the energy systems is that

their dimensionalities are intertwined: Multiple types of energy can be generated simultaneously;

Consequently, the optimal design for the value chain of one type of energy, i.e., from generation

to distribution, should not be independent from another. This, however, poses great challenges to

policy makers and system planners.

In this paper, we investigate the energy systems design problems when multi-generation tech-

nologies are available. Co-generation of heat and electricity is a best-known example of such

technologies, which increases overall energy efficiency compared with separate production of heat

and power [14]. By making more efficient use of fuel inputs and renewable sources, multi-generation

technologies also allow low carbon emission [17]. A prominent trend in multi-generation technolo-

gies is that, different energy solutions and devices are increasingly installed at the users’ premises

to supply their local multi-energy needs [4].

Our research contributes to the state-of-the-art from a system perspective. In this paper, we

address the following two research questions:

• How to design an energy production network which integrates macro-level strategic decisions

(facility location, multi-generation technology investment, etc.) and micro-level operational

decisions (production planning, energy transportation etc.)?

• What is the economic value of the multi-generation technologies under demand uncertainties

for energy?

To be specific, the first research question explores methodologies for the system design prob-

lems. The second research question is motivated by the fact that both inter-temporal and spatial

demand uncertainties pose fundamental challenges to the design and optimization of energy sys-

tems. For example, adequate cooling demand in the summertime and thermal demand in the

wintertime are needed to make their joint generation economically feasible [17]. From this perspec-

tive, we not only make methodological contributions to tackle this challenge, but also offer insights

on the value of the multi-generation technologies to policy-makers.

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Section 3
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introduces our model setup. In Section 4, we carry out the analysis. In Section 5, we describe our

computational method, and provide numerical examples. Section 6 concludes this paper with a

discussion of the future research directions.

2 Related Work

Multi-generation technologies in power and energy systems become increasingly attractive to the

research community. A holistic multi-energy system assessment (gas, heat and power) is conducted

in [5]. The flexibility design problem to cope with the uncertainty in wind power generation is

addressed in [9]. In addition, investment in system flexibility helps the integration of wind power

to the combined heat and power network [3]. The existing literature often relies on variations of the

unit commitment model [8, 15, 16, 18, 19], or dynamic control [13], to solve a dynamic scheduling

problem. However, this approach restricts its application to the micro-level operational decisions

due to its computational complexity. In contrast to the aforementioned traditional approach, we

model the production scheduling component using an asymptotic proxy, which implicitly imple-

ments a dynamic allocation of production capacity, while abstracting away from the scheduling

details. This formulation is capable of being integrated with both macro- and micro-level decisions

in energy systems.

Facility location problems have been studied extensively in the operations research community.

The integrated approach of network design is proposed in [22], which is shown to be superior

than solving location and capacity planning problem separately. Our model is also related to the

literature on the transportation cost minimization [26], and service scheduling problem [20]. The

integration of the process flexibility into the network design has been studied by [11, 12].

Our model is also related to network flexibility design literature, such as [7] and the references

therein. Nevertheless, we avoid any a priori flexibility assumption by taking an engineering ap-

proach (stochastic programming with chance constraints). Note that this methodology has been

also applied to the unit commitment problems [23, 25]. The classic solution to such stochastic

program is by scenario sampling [2], or robust optimization [10]. In this paper, we adopt an ap-

proximation that is analogous to the “square-root staffing rule” from the queueing theory [24], and

derive a tractable approximation as mixed-integer second-order conic program (MISOCP), which

is less conservative and better interpreted than the existing approaches.
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3 Model

Energy network. We consider an energy network consisting of energy production facilities (plants,

denoted by a set I), to supply and satisfy local demands (customers, denoted by a set J) of multiple

types of energy. A plant may use different energy production units (equipments, denoted by a set L)

to meet local demands from customers. Customers generate demands for different types of energy

(denoted by a set K).

Customers. The customers’ energy demands follow Poisson distribution. We assume that

orders from different demand locations are independent. We parameterize the demand uncertainty

by a scenario ω, which is drawn from the sample space Ω (collections of all scenarios). Thus, we

can write the demand from customer j for energy k under a given scenario ω as a Poisson random

variable λjk (ω). The expectation of a customer j’s demand for energy k, which is the mean for the

corresponding Poisson random variable, is denoted by Λjk. Potential revenue from satisfying unit

demand for energy k is Vk, regardless of customer.

Plants. A plant is to be placed at a chosen location, and the setup cost for the plant at

location i is fi. We use a binary decision variable Zi to decide whether a plant should be in

potential location i. We can generate the distance between customer j and facility location i as dij .

The transportation cost φk (dij) can be any bounded function of distance dij , and also depending on

the energy type k. The cost of unit equipment l to be invested at location i is denoted by gil, where

the set of all equipments is L. Xil is a decision variable representing the number of equipment l

available at location i. Equipments can be placed at location i only when a plant has been set up

at this location, i.e.,

Xil ≤ MZi,∀i ∈ I, l ∈ L,

where M is an arbitrarily large positive number, e.g., the maximum number of equipments ex-

hausting all investment.

Multi-generation technology. Since an equipment represents a multi-generation unit, we

use π(k) to denote the set of equipments which can be used to produce energy k, while π−1(l)

denotes the types of energy which can be produced by equipment l. To model a flexible energy

production system, we assume a many-to-many mapping between the types of energy and multi-

generation units. Equipments differ in their flexibility. The production capacity at each plant

for energy k is determined by both the dedicated production units and the multi-generation units

which can be used to produce energy k.
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Production scheduling. We define Yijk(ω) as a binary variable if energy k from customer

j should be produced from location i. Without loss of generality, the production rates of different

equipments are deterministic and are normalized to one. A feasible production schedule should

assign at least one plant to produce energy k for customer j, i.e.,

∑

i∈I

Yijk (ω) = 1,∀j ∈ J, k ∈ K,ω ∈ Ω.

At the planning stage, the demands are not realized yet. The planner needs to consider the

uncertainty so that the equipments have sufficient capacity for demands with high guarantee. Let

ξ ⊆ 2K be any subset of energy (wherein the notation 2K represents the power set of K). The

aggregate production capacity for this set of energy is
∑

k∈ξ

∑

l∈π(k)Xil, while the aggregate demand

for this set of energy is
∑

k∈ξ

∑

j Yijk (ω)λjk (ω) . For small α, the service guarantee constraints

(resource constraints) require that:

p







∑

k∈ξ

∑

j∈J

Yijk (ω)λjk (ω) ≤
∑

k∈ξ

∑

l∈π(k)

Xil







= 1− α,∀i ∈ I, ξ ⊆ 2K ,

which intuitively means that the aggregate capacity exceeds demand with high probability. For

given equipment investment decisions {Xil}′s, these service guarantee constraints pin down feasible

production schedule decisions Yijk (ω).

Note that this formulation does not require the knowledge of which equipment is producing

energy for a particular customer. From a queueing theory perspective, it is similar to a multi-server

queueing model, which implies that, a state-dependent dynamic scheduling policy will be required

to implement the optimization solution in practice [1]. We will provide further discussion on this

issue in section 4.2.

Hierarchy of decision making. Macro-level strategic decisions include facility location

and equipment investment. At the beginning, a planner would decide how many plants are nec-

essary, and where they should be located. In addition, investment for different equipments are

made. Micro-level operational decisions include production and transportation planning. After

customers place orders, demands for energy are realized. The planner decides which plant should

produce energy to satisfy the demands. Once production plans are scheduled, the corresponding

transportation costs are determined.

Objective. The planner maximizes the aggregate revenue subtracted by the aggregate cost:

EP

∑

i∈I,j∈J,k∈K

(Vk − φk (dij))Yijk (ω)λjk (ω)−
∑

i∈I,l∈L

gilXil −
∑

i∈I

fiZi.
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Since the revenue is constant for each type of energy, it is equivalent to adopt a cost-minimization

framework, including transportation costs, equipment investment costs, and plant setup costs,

respectively. The expectation is taken over probability P associated with the sample space Ω.

We summarize the nomenclature in this paper as follows.

Ω The set of all possible realization of

uncertainty.

P Probability measure for the uncer-

tainty.

I The set of all potential locations for

energy production.

J The set of all customers (demand lo-

cations).

K The set of all types of energy. L The set of all equipments.

Vk Revenue from unit demand for en-

ergy k.

dij Distance between customer j and

plant i.

φ(·) Transportation cost function. gil Cost of equipment l at location i.

fi Setup cost for a plant at potential

location i.

λjk (·) Demand at j for energy k (for given

state or scenario).

Λjk Expected demand at j for energy k. Zi Binary decision variables for a plant

at location i.

Yijk(·) Whether energy k at j is to be pro-

duced from i (for given state or sce-

nario).

Xil Number (integer) of equipment l

available at location i.

π(k) The set of equipments to produce

energy k.

π−1(l) The types of energy produced by

equipment l.

4 Analysis

In general, the problem is intractable due to the uncountable set of scenarios Ω. We now add more

structure to the probability space. Suppose that the demands are determined indirectly by some

finite underlying states. In addition, we define Yijk(s) as a binary decision variable whether the

demand of energy k from customer j should be satisfied from the production at location i when the

state is s. The set of all states is S and each state takes place independently with probability ps.

Intuitively, a “scenario” is a random draw that can be viewed as “raw data”, while a state represents

market condition. The production decisions would be pooling for each state. The motivation to

use “state” in our formulation instead of “scenario” is to estimate average demand intensity under
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different market conditions

Lemma 1. Denote Λjk (s) = E [λjk (ω|s)], and assume that Λjk (s) → ∞. The resource constraint

can be replaced by

Φ−1 (1− α)

√

∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) +
∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K ,

(RE-ξ)

wherein Φ(·) is the standard normal distribution function.

Under such a resource investment policy, the system performance is analogous to the quality-

and-efficiency-driven regime (QED) in queueing theory [24]. Note that we need to assign at least

one plant to produce energy k for customer j for every state instead of every scenario, i.e., we

require that
∑

i∈I Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S. We summarize our model as follows:

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

subject to (RE − ξ), and
∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-1)

Xil ≤ MZi,∀i ∈ I, l ∈ L

Yijk (s) , Zi ∈ {0, 1} ,Xil ∈ Z.

4.1 Flexibility Structures due to Multi-Generation Technologies

In general, the capacity constraints RE-ξ are needed for all possible combinations of energy types.

We need to eliminate the redundant constraints to reduce the size of the optimization programs.

Proposition 1. Consider a partition ξt ⊂ ξ, for some t = 1, 2, ..., t < ∞, wherein {ξt}’s are

collectively exhaustive and mutually exclusive. If ∩t=1,2,.. (∪k∈ξtπ(k)) = ∅, then RE-ξ is redundant.

Example 1 (Dense chaining). Suppose we have |L| types of equipments and |K| = |L| types
of energy. We consider a particular dense flexibility structure. Each equipment can be used to

produce |L| − 1 types of energy, i.e., π−1(l) = {1, 2, ..., l − 1, l + 1, ..., |L|}, ∀l = 1, 2, ..., |L| − 1. For

∀i ∈ I, s ∈ S, the number of binding resource constraints can’t be greater than |L|+ 1.
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Example 2 (Star-flexibility). Suppose we have |L| types of equipment and |K| = |L|−1 types

of energy. Equipment l = 1, 2, ..., |L| − 1 can only be used to produce one type of energy each,

i.e., π−1(π(k)) = k, ∀k = 1, 2, ..., |L| − 1. Equipment l = |L| could be used to produce all types of

energy, i.e., π−1(|L|) = K. For ∀i ∈ I, s ∈ S, the number of binding resource constraints can’t be

greater than 2|L|−1 − 1.

4.2 Capacity Allocation: Responsive vs. Anticipative

We propose an alternative model in which the planner explicitly allocates the production capacity

for every equipments. Define ∆ilk(s) as the proportion of time each equipment l is scheduled for

energy k at location i. The model (P-1) can be modified as:

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-2)

Xil ≤ MZi,∀i ∈ I, l ∈ L

Φ−1 (1− α)

√

∑

j∈J

Yijk (s)Λjk (s) +
∑

j∈J

Yijk (s)Λjk (s) ≤
∑

l∈π(k)

Xil∆ilk(s),∀i ∈ I, k ∈ K, s ∈ S

∑

k

∆ilk(s) ≤ 1,∀i ∈ I, l ∈ L, s ∈ S

Yijk (s) , Zi ∈ {0, 1} ,Xil ∈ Z,∆ilk(s) ∈ [0, 1].

In what follows, we compare this model (P-2) with (P-1).

Proposition 2. The aggregate cost under anticipative allocation (P-2) provides an upper bound

for that under responsive allocation (P-1).

The names “anticipative” and “responsive” are motivated by the resemblance of our resource

constraints to the Conservation Law in queueing theory [21]. Using an analogy in queueing systems,

(P-2) is called “anticipative” since we know how many servers (equipments) will be used for certain

types of customers (energy). (P-1) is called “responsive” since the optimization results only inform

us what equipments should be pooled together to produce what types of energy, the implementation

of which requires a dynamic scheduling mechanism. Intuitively, with a fixed production schedule in

(P-2), the planner fails to take advantage of the flexibility structure dynamically (in response to the
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realization of demands). Thus, the planner does not make full use of the risk pooling instrument,

and (P-2) yields a higher aggregate cost.

5 Computational Techniques and Numerical Examples

(P-1) is a mixed integer program, which is difficult to solve. However, we can show that it can be

solved easily under reformulation.

Proposition 3. (P-1) is equivalent to the following tractable MISOCP.

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-3)

Xil ≤ MZi,∀i ∈ I, l ∈ L

∑

k∈ξ

∑

j∈J

Y 2
ijk (s)Λjk (s) 6 t2i (s) ,∀i ∈ I, s ∈ S

∥

∥

∥

∥

∥

∥

∥

ti (s) +
Φ−1(1−α)

2

1
2

(

1−∑

k∈ξ

∑

l∈π(k)Xil −
[

Φ−1(1−α)
2

]2
)

∥

∥

∥

∥

∥

∥

∥

2

≤ 1

2



1 +
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2


 ,∀i ∈ I, s ∈ S, ξ ⊆ 2K

Yijk (s) , Zi ∈ {0, 1} , ti (s) ∈ R
+,Xil ∈ Z.

Using this computational technique, we conduct numerical experiments to illustrate the eco-

nomic value of the multi-generation technologies in lieu of the spatial and inter-temporal demand

uncertainty for energy: the average demand is drawn from a two-type distribution wherein we

interpret the demand difference between two states as “inter-temporal” while the difference among

locations as “inter-spatial”. We observe the following impacts of the multi-generation technology

from the numerical experiments:

• It reduces uncertainty by pooling capacity both within and across different facilities.
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• It can compensate the loss in de-centralization due to the increase in the transportation cost.

• It can amplify the risk-pooling effects due to centralization triggered by increasing setup costs.

The readers are referred to the Appendix for details of these major observations summarized

in the main paper.

6 Conclusion

In this paper, we investigate the system design problems in energy systems when multi-generation

technologies are available. Our modeling framework can be adapted to incorporate extensions.

For example, in many cases, we would like to improve over the existing infrastructure instead of

designing the entire system. This case can be handled by replacing the corresponding decision

variables with known parameters. In addition, some operational rules may have strategic impacts,

such as some upper and lower limits for production capacity and equipment start-up costs. These

can also be taken care of with additional operational constraints in the optimization problem.

In terms of future research, it will be fruitful to apply our methodology by focusing on a

particular sector, so that more structural results can be generated to develop a problem-specific

optimization algorithm. It will be also desirable to implement our methodology in case studies for a

specific energy market. Furthermore, we assume in this paper that the demand is uncertainty (state-

dependent) while the energy production is stationary. For the integration of certain sustainable

energy, such as wind power, the energy supply can also be uncertain (state-dependent). Another

interesting direction is to incorporate energy storage as an alternative instrument for energy supply

chain flexibility design.
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A Appendix. Proofs.

In this appendix, we first provide the detailed proofs of the main results.

Proof of Lemma 1. With the scenario aggregation that Λjk (s) = E [λjk (ω|s)], we can

re-write the resource constraint as

p







∑

k∈ξ

∑

j

Yijk (s)λjk (ω|s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil







= 1− α,∀s ∈ S. (1)

Next we show that this constraint can be replaced by

Φ−1 (1− α)

√

∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) +
∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K ,

(RE-ξ)

as Λjk (s) → ∞, wherein Φ is the distribution function for standard normal random variable. To

see this, we replace the service guarantee by Gaussian approximation:

p







∑

k∈ξ

∑

j∈J

Yijk (s)λjk (ω|s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil







= p











∑
k∈ξ

∑
j∈J Yijk(s)[λjk(ω|s)−Λjk(s)]√∑
k∈ξ

∑
j∈J Yijk(s)Λjk(s)

≤
∑

k∈ξ

∑
l∈π(k) Xil−

∑
k∈ξ

∑
j∈J Yijk(s)Λjk(s)√∑

k∈ξ

∑
j∈J Yijk(s)Λjk(s)

,











(2)

for ∀i ∈ I, s ∈ S, ξ ⊆ 2K . Let a feasible investment level be to choose the minimum
∑

k∈ξ

∑

l∈π(k)Xil

that is larger than
∑

k∈ξ

∑

j Yijk (s)Λjk (s)+Φ−1 (1− α)
√

∑

k∈ξ

∑

j Yijk (s) Λjk (s), the right-hand

side is 1− α due to the Central Limit Theorem. �

Proof of Proposition 1. For ∀ξ,
∑

k∈ξ

∑

j Yijk (s)Λjk (s)+Φ−1 (1− α)
√

∑

k∈ξ

∑

j Yijk (s)Λjk (s)

=





∑

k∈ξ1

+
∑

k∈ξ2

+...





∑

j

Yijk (s)Λjk (s) + Φ−1 (1− α)

√

√

√

√

√





∑

k∈ξ1

+
∑

k∈ξ2

+...





∑

j

Yijk (s)Λjk (s)

≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S. (3)

Therefore, RE-ξ is redundant. Note that the converse is not true, i.e., if ∩k∈ξπ(k) 6= ∅, then it is

still possible that RE-ξ is redundant. �
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Proof of Proposition 2. To prove that this is a upper bound, it suffices to check the

feasibility of (P-2)’s solution to (P-1)’s constraints:

∑

k∈ξ

∑

j

Yijk (s)Λjk (s) + Φ−1 (1− α)

√

∑

k∈ξ

∑

j

Yijk (s)Λjk (s)

≤
∑

k∈ξ

∑

j

Yijk (s)Λjk (s) + Φ−1 (1− α)
∑

k∈ξ

√

∑

j

Yijk (s)Λjk (s)

≤
∑

k∈ξ

∑

l∈π(k)

Xil∆ilk(s)

≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, ξ ∈ 2K , s ∈ S. (4)

The first inequality is due to the property of square-root function (or Jensen’s inequality). The

second inequality holds via the feasibility of (P-2). The third inequality is true since ∆ilk(s) ≤ 1.

Since any solution of (P-2) is feasible for (P-1), (P-2) is more restrictive and thus returns a higher

cost. �

Proof of Proposition 3. For convenience, we write (P-1) as follows:

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

subject to

Φ−1 (1− α)

√

∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) +
∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K .

∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-1)

Xil ≤ MZi,∀i ∈ I, l ∈ L

Yijk (s) , Zi ∈ {0, 1} ,Xil ∈ Z.

Since Yijk (s)
′ s are binary, they will be equivalent to Y 2

ijk (s), by which we can re-write the

resource constraints as

Φ−1 (1− α)

√

∑

k∈ξ

∑

j∈J

Y 2
ijk (s)Λjk (s) +

∑

k∈ξ

∑

j∈J

Y 2
ijk (s)Λjk (s) ≤

∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K .

(5)

14



We can introduce variable ti (s)
′ s such that

∑

k∈ξ

∑

j∈J

Y 2
ijk (s) Λjk (s) = t2i (s) , (6)

we can re-write the resource constraints as

Φ−1 (1− α) ti (s) + t2i (s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K . (7)

Adding
[

Φ−1(1−α)
2

]2
on both sides:

[

ti (s) +
Φ−1 (1− α)

2

]2

≤
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2

,∀i ∈ I, s ∈ S, ξ ⊆ 2K . (8)

Now the problem becomes:

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

subject to

∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-1’)

Xil ≤ MZi,∀i ∈ I, l ∈ L

∑

k∈ξ

∑

j∈J

Y 2
ijk (s)Λjk (s) = t2i (s) ,∀i ∈ I, s ∈ S

[

ti (s) +
Φ−1 (1− α)

2

]2

≤
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2

,∀i ∈ I, s ∈ S, ξ ⊆ 2K .

Yijk (s) , Zi ∈ {0, 1} , ti (s) ∈ R
+,Xil ∈ Z.

We shall now prove that (P-1’) and (P-3) are equivalent by contradiction. We write down (P-3)

for your convenience.

Minimize
∑

i∈I,j∈J,k∈K,s∈S

φk (dij)Yijk (s)Λjk (s) ps +
∑

i∈I,l∈L

gilXil +
∑

i∈I

fiZi,

∑

i∈I

Yijk (s) = 1,∀j ∈ J, k ∈ K, s ∈ S (P-3)
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Xil ≤ MZi,∀i ∈ I, l ∈ L

∑

j∈J

Y 2
ijk (s)Λjk (s) 6 t2i (s) ,∀i ∈ I, s ∈ S

[

ti (s) +
Φ−1 (1− α)

2

]2

≤
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2

,∀i ∈ I, s ∈ S, ξ ⊆ 2K ,

Yijk (s) , Zi ∈ {0, 1} , ti (s) ∈ R
+,Xil ∈ Z.

Firstly, any solution of (P-1’) satisfies (P-3), since (P-3) is a relaxation. Suppose that a solution

of (P-3) does not satisfy (P-1’), then
∑

k∈ξ

∑

j∈J Y
2
ijk (s)Λjk (s) = t2i (s) ,∀i ∈ I, s ∈ S, is not

strictly binding: ∃i ∈ I, s ∈ S such that
∑

k∈ξ

∑

j∈J Y
2
ijk (s)Λjk (s) < t2i (s). Then, suppose that

t2i (s) =
∑

k∈ξ

∑

j∈J Y
2
ijk (s) Λjk (s) + ε for some ε > 0. However, this can not be optimal for (P-3),

since we can further decrease ti (s). As

[

ti (s) +
Φ−1 (1− α)

2

]2

≤
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2

, (9)

we can reduce some of the Xil and thus the objective function. Reductio ad absurdum, solution of

(P-3) satisfy (P-1’), and thus they are equivalent.

Finally, we need to show that

Φ−1 (1− α) ti (s) + t2i (s) ≤
∑

k∈ξ

∑

l∈π(k)

Xil,∀i ∈ I, s ∈ S, ξ ⊆ 2K , (10)

is a second-order cone. We have already demonstrated that it is equivalent to

[

ti (s) +
Φ−1 (1− α)

2

]2

≤
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2

,∀i ∈ I, s ∈ S, ξ ⊆ 2K , (11)

which is quadratic, and can be re-written as:

∥

∥

∥

∥

∥

∥

∥

ti (s) +
Φ−1(1−α)

2

1
2

(

1−
∑

k∈ξ

∑

l∈π(k)Xil −
[

Φ−1(1−α)
2

]2
)

∥

∥

∥

∥

∥

∥

∥

2

≤ 1

2



1 +
∑

k∈ξ

∑

l∈π(k)

Xil +

[

Φ−1 (1− α)

2

]2


 . (12)

�
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B Numerical Results.

We assume that there are three different types of energy, i.e., K = {A,S,H}. There are four

different equipments, i.e., L = {A,S,H,F}, where F indicates an equipment with full flexibility.

The plants are located potentially in J , a set of 18 cities (LA, SD, SJ, SF, LB, OAK, SAC, FRE,

SA, ANA, RIV, STKN, HB, GNDL, BKD, FMT, MOD, SB). Demands are also from the same

potential locations, i.e., I = J . There are two possible states of the world, i.e., S = {H,L}.

Transportation costs are generated proportional to the distance dij from [6], i.e., φk (dij) = φdij

and the scaling coefficient φ = 2. We assume that the investment coefficient Φ−1 (1− α) = 0.2.

We use heterogeneous service rates as a generalization of the model, wherein (P1) can be easily

adapted by the following modification to RE-ξ constraints:

Φ−1 (1− α)

√

∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s)+
∑

k∈ξ

∑

j∈J

Yijk (s)Λjk (s) ≤
∑

k∈ξ

∑

l∈π(k)

µilkXil,∀i ∈ I, s ∈ S, ξ ⊆ 2K ,

wherein the service rates can depend on location i, the equipment l, and potentially the energy

type k, without changing the structure of this optimization problem. We assume that µA = 500,

µS = 460, µH = 420. The multi-generation technologies can be used to produce all three types

of energy, and the corresponding service rate is µF = 400. Two states are realized with equal

probability, i.e., Pr(H) = Pr(L) = 0.5. The setup costs for potential locations are proportional to

the real estate prices in that city.

We consider a revenue maximizing framework, wherein valuations for energy consumption are

heterogeneous, i.e., VA = 800, VS = 725, VH = 600. Equipment costs are homogeneous across all

locations, i.e., giA = 90000, giS = 70000, giH = 50000, giF = 100000, ∀i ∈ I. Finally, we generate

aggregate demand in proportion to the population in each city, and split across different types of

energy. We choose to split in a way to generate both spatial and inter-temporal (state-dependent)

heterogeneity (see appendix for the demand distribution).

Table 1 and Table 2 summarize the optimal equipment quantities for the chosen locations

under both high and low spatial demand heterogeneity. We compare the results with and without

multi-generation technologies. Under high spatial heterogeneity, it would be optimal to invest in

the multi-generation technologies more than that under low spatial heterogeneity. In addition, with

the investment in multi-generation technologies, the number of equipments needed is smaller than

that in the non-flexible case. Such improvement is more significant when spatial heterogeneity is

high. We summarize the insight as follows.
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Table 1: Optimal equipments quantities, with multi-generation technologies.

High spatial heterogeneity Low spatial heterogeneity

Location Chosen LA MOD OAK SD FRE LA OAK SD

# Equipment H 5 1 2 2 0 5 3 2

# Equipment A 4 0 2 1 0 4 2 1

# Equipment S 0 0 0 0 0 2 1 1

# Multi-generation units 3 1 2 1 1 1 1 0

Table 2: Optimal equipments quantities, without multi-generation technologies.

High spatial heterogeneity Low spatial heterogeneity

Location Chosen FRE LA OAK SD LA MOD OAK SD

# Equipment H 1 6 4 3 5 1 3 2

# Equipment A 1 6 4 2 5 1 2 1

# Equipment S 1 2 2 1 2 1 1 1
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Observation 1. The multi-generation technologies reduce uncertainty by pooling capacity both

within and across different facilities.

Table 3: Sensitivity analysis for transportation cost coefficient, with multi-generation technologies

φ 1 1.5 2 2.5 3

Total # open sites 3 5 7 7 7

Total # multi-generation units 2 2 5 5 5

Total # equipments H 9 9 9 9 9

Total # equipments A 15 15 14 14 14

Total # equipment S 4 4 3 3 3

Total equipment cost ($) 2280000 2280000 2420000 2420000 2420000

Total transportation cost ($) 437045 452159 335854 378496 454195

Total net revenue ($) 4648697 4483583 4359888 4277246 4201547

Table 4: Sensitivity analysis for transportation cost coefficient, without multi-generation technolo-

gies

φ 1 1.5 2 2.5 3

Total # open sites 3 4 6 6 6

Total # equipments H 9 10 11 11 11

Total # equipments A 17 17 17 17 17

Total # equipment S 5 5 6 6 6

Aggregate equipment cost ($) 2330000 2380000 2500000 2500000 2500000

Aggregate transportation cost ($) 469570 582149 498881 623601 748321

Aggregate net revenue ($) 4516172 4303593 4166861 4042141 3917421

Table 3 and Table 4 compare the optimal facility location and equipment investment decisions

with different transportation costs, with and without the multi-generation technologies. With the

increase of the transportation cost coefficient φ, it is optimal to set up more plants so that the

demands can be satisfied by the nearest location. With the increasing number of the open sites,
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more multi-generation units are needed because the production capacity is more de-centralized,

and the system suffers more from demand uncertainty both within and across different locations.

Surprisingly, the aggregate transportation cost decreases when φ increases from 1.5 to 2.

Observation 2. Investment in the multi-generation technologies can compensate the loss in de-

centralization due to the increase of the transportation cost coefficient. Consequently, the overall

transportation costs could decrease.

The increase of the setup cost has the opposite effect to the transportation cost coefficient,

summarized in the following observation and the remaining two tables.

Table 5: Sensitivity analysis for set up cost, with multi-generation technologies.

Set up cost Very low Low Medium High Very high

Total # open sites 7 4 3 3 2

Total # multi-generation units 5 5 2 2 3

Total # equipments H 9 11 9 9 10

Total # equipments A 14 13 15 15 14

Total # equipment S 3 2 4 4 3

Aggregate equipment cost ($) 2420000 2360000 2280000 2280000 2270000

Aggregate transportation cost ($) 335854 605403 776704 925164 1377640

Aggregate net revenue ($) 4359888 3931859 3677198 3482578 3095602

Observation 3. The multi-generation technologies amplify the risk-pooling effects due to central-

ization triggered by the increase of the setup costs.

C Demand Data.

In this appendix, we provide the demand data we use in the numerical experiment. The demand

is drawn from a two-type distribution wherein we interpret the demand difference between states

“H” and “L” as “inter-temporal” while the difference among locations as “inter-spatial”. We also

include the location-dependent setup costs used in our calculations.
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Table 6: Sensitivity analysis for set up cost, without multi-generation technologies.

Set up cost Very low Low Medium High Very high

Total # open sites 6 4 4 3 2

Total # equipments H 11 10 10 10 10

Total # equipments A 17 17 17 17 17

Total # equipment S 6 6 6 6 6

Aggregate equipment cost ($) 2500000 2450000 2450000 2450000 2450000

Aggregate transportation cost ($) 498881 683499 683499 945895 1366350

Aggregate net revenue ($) 4166861 3771763 3501403 3291847 2926894

Table 7: Setup costs for each potential locations.

City LA SD SJ SF LB OAK

Setup Cost ($) 214880 178320 238000 328400 151600 159280

City SAC FRE SA ANA RIV STKN

Setup Cost ($) 106800 86000 152720 165040 113200 78000

City HB GNDL BKD FMT MOD SB

Setup Cost ($) 233200 202800 93040 230000 85040 79280
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Table 8: Demands under high spatio-temporal heterogeneity.

States H L

Cities Demands (A) Demands (S) Demands (H) Demands (A) Demands (S) Demands (H)

LA 189.19 26.2764 47.2975 42.0422 157.658 63.0634

SD 134.929 18.7401 33.7322 18.7401 93.7005 74.9604

SF 43.3426 126.416 10.8356 108.356 18.0594 54.1782

SJ 263.103 36.5421 65.7758 36.5421 182.71 146.168

LB 148.185 20.5812 37.0462 20.5812 102.906 82.3248

OAK 24.7964 144.646 37.1947 144.646 20.6637 41.3274

SAC 438.266 2556.55 657.399 2191.33 730.443 730.443

FRE 343.386 47.6925 85.8465 76.308 286.155 114.462

ANA 41.7298 121.712 10.4324 104.324 17.3874 52.1622

RIV 104.055 303.494 26.0138 260.138 43.3563 130.069

SA 163 22.6389 40.75 36.2222 135.833 54.3334

HB 25.78 150.383 38.6699 150.383 21.4833 42.9666

STKN 104 303.332 25.9999 259.999 43.3332 130

GNDL 117.681 16.3446 29.4203 16.3446 81.723 65.3784

BKD 146.195 852.802 219.292 852.802 121.829 243.658

FMT 220.02 641.726 55.0051 550.051 91.6752 275.026

MOD 180.157 525.458 45.0392 450.392 75.0654 225.196

SB 49.5317 144.467 12.3829 123.829 20.6382 61.9146
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Table 9: Demands under low spatio-temporal heterogeneity.

States Both H and L

Cities Demands (A) Demands (S) Demands (H)

LA 115.616 91.9674 55.1804

SD 76.8344 56.2203 54.3463

SF 75.8495 72.2376 32.5069

SJ 149.823 109.626 105.972

LB 84.3829 61.7436 59.6855

OAK 84.7212 82.6548 39.261

SAC 1314.8 1643.5 693.921

FRE 209.847 166.924 100.154

ANA 73.0271 69.5496 31.2973

RIV 182.096 173.425 78.0413

SA 99.6112 79.2361 47.5417

HB 88.0815 85.9332 40.8183

STKN 181.999 173.333 77.9998

GNDL 67.0129 49.0338 47.3993

BKD 499.498 487.315 231.475

FMT 385.036 366.701 165.015

MOD 315.275 300.262 135.118

SB 86.6804 82.5528 37.1488
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