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Abstract

The purpose of this paper is to prove the existence of solutions of quasi-equilibrium

problems without any generalized monotonicity assumption. Additionally, we give

an application to quasi-optimization problems.
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1 Introduction and definitions

Given a real topological vector space X , a subset C of X , a bifunction f : C×C →
R and a set-valued map K : C ⇒ C, the quasi-equilibrium problem (QEP) consists in

finding

x ∈ K(x) such that f(x, y) ≥ 0, for all y ∈ K(x). (1)

When K(x) = C for any x ∈ C, the QEP coincides with the classical equilibrium

problem, which was introduced by Oettli and Blum in [4], and has been extensively

studied in recent years (see for instance [3, 5, 10] and the references therein).

The classical example of quasi-equilibrium problem is the quasi-variational in-

equality problem, which consists in finding x ∈ K(x), such that there exists x∗ ∈ T (x)
with 〈x∗, y − x〉 ≥ 0, for all y ∈ K(x) where T : X ⇒ X∗ is a set-valued map, X∗

is the dual space of X and 〈·, ·〉 denotes the duality paring between X and X∗. So, if

T has compact values, and we define the representative bifunction fT of T by

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉,

it follows that every solution of the QEP associated to fT and K is a solution of the

quasi-variational inequality problem associated to T and K , and conversely.

Recently in [1] the authors show existence of solution of the QEP using generalized

monotonicity for f in a finite dimensional space. Castellani and Giuli ([6]) proved an

existence result which does not involve any monotonicity assumption of f in separable

Banach spaces.

The aim of this note is to show existence of solution for the QEP without general-

ized monotonicity assumptions but for Hausdorff locally convex real topological vector

spaces which generalizes the spaces in [1, 6].
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2 Existence results

Our existence result will be obtained as a consequence of Kakutani’s Fixed Point

Theorem which is stated in the next result and it can be found in [9].

Theorem 2.1 (Kakutani’s theorem). Let C be a nonempty compact convex subset of

a locally convex space X and let S : C ⇒ C be a set-valued map. If S is upper

semicontinuous such that for all x ∈ C, S(x) is nonempty, closed and convex, then S
admits a fixed point.

We denote by QEP(f,K) the solution set of (1) and we define the following set-

valued map S : C ⇒ C by

S(x) = {x0 ∈ K(x) : f(x0, y) ≥ 0 for all y ∈ K(x)}.

The proposition below plays an important role in our existence result.

Proposition 2.1. Let f : C × C → R be a bifunction and let K : C ⇒ C be a

set-valued map, where C is a nonempty subset of a real topological vector space X . If

K is closed and lower semicontinuous and {(x, y) ∈ C ×C : f(x, y) ≥ 0} is closed;

then S is closed.

Proof. Let (xn, zn)n∈N be a sequence contained in the graph of S converging to (x0, z0).
Since K is closed, we have z0 ∈ K(x0). The lower semicontinuity of K implies that

for any y ∈ K(x0), there exists (yn)∈N converging to y such that yn ∈ K(xn), for all

n ∈ N. Additionally, as zn ∈ S(xn) we have f(zn, yn) ≥ 0 for every n ∈ N, which in

turn implies by hypothesis that f(z0, y) ≥ 0. Therefore, z0 ∈ S(x0).

We finish this section with our main existence result.

Theorem 2.2. Let f : C×C → R be a bifunction and let K : C ⇒ C be a set-valued

map, where C is a compact convex and nonempty subset of a Hausdorff locally convex

real topological vector space X . If the following hold:

i) K is closed and lower semicontinuous with convex values;

ii) {x ∈ C : f(x, y) ≥ 0} is convex, for every y ∈ C;

iii) for any subset {x1, . . . , xn} of C, and any x ∈ co({x1, . . . , xn}) (here co is

the convex hull), maxi=1,...,n f(x, xi) ≥ 0;

iv) {(x, y) ∈ C × C : f(x, y) ≥ 0} is closed;

then QEP(f,K) is nonempty.

For the prove of the previous theorem we need the following result.

Theorem 2.3. [10, Theorem 2.3] Let f : C × C → R be a bifunction, where C is a

compact convex and nonempty subset of a Hausdorff real topological vector space X .

If for any {x1, . . . , xn} ⊂ C and x ∈ co({x1, . . . , xn}), maxi=1,...,n f(x, xi) ≥ 0;

and {y ∈ C : f(x, y) ≥ 0} is closed, for every x ∈ C; then there exists x0 ∈ C such

that f(x0, y) ≥ 0, for all y ∈ C.

Proof of Theorem 2.2. By Proposition 2.1, the set-valued map S is closed. For each

x ∈ C, S(x) is closed, convex and nonempty due to conditions ii), iii) and iv), and

Theorem 2.3. As C is compact, we have that S is upper semicontinuous. Thus, by

Kakutani’s theorem S has a fixed point.

2



x

y

1

2

3

2

2

1

2

x

y

1 23

5

7

5

2

1

2

3

2

Figure 1: Graphs of h and K .

Remark 1. Notice that quasiconcavity with respect to the first variable of f implies

part ii) of Theorem 2.2. Moreover, if f(x, ·) is quasiconvex and f(x, x) = 0 for any

x ∈ C then part iii) of Theorem 2.2 holds. However, the converse is not true in general.

Consider for instance f : [0, 1]× [0, 1] → R defined by

f(x, y) =

{

1, y ∈ Q ∩ [0, 1]
0, y /∈ Q

.

Clearly f satisfies condition ii) of Theorem 2.2, but it is not quasiconvex with respect

to its second argument nor it vanishes on the diagonal of [0, 1]× [0, 1].

3 Application to quasi-optimization

Given a real-valued function h : C → R and a set-valued map K : C ⇒ C,

where C is a subset of a Hausdorff locally convex real topological vector space X , the

quasi-optimization problem (QOpt) is described as

find x0 ∈ K(x0) such that min
z∈K(x0)

h(z) = h(x0).

The terminology of quasi-optimization problems comes from [8] (see formula (8.3)

and Proposition 12) and has been recently used in [2, 7]. It emphasizes the fact that it

is not a standard optimization problem since the constraint set depends on the solution

and it also highlights the parallelism to quasi-equilibrium problems.

Remark 2. Under continuity of the constraint set-valued map the continuity of the

objective function is not a sufficient condition to guarantee the existence of solution for

the QOpt. Consider for instance the function h : [0, 2] → R and the set-valued map

K : [0, 2] ⇒ [0, 2] both defined by

h(x) =

{

|x− 1
2 |, 0 ≤ x ≤ 1

|x− 3
2 |, 1 < x ≤ 2

K(x) =

{

[− 3
2x+ 3

2 , 2], 0 ≤ x ≤ 1
[

0,− 3
2x+ 7

2

]

, 1 < x ≤ 2

Figure 1 shows the graphs of h and K . Clearly, h is continuous and K is closed

and lower semicontinuous. The set of fixed points of K is the interval [3/5, 7/5]. It is

not difficult to show that the QOpt does not have a solution.
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Associated to h and K , let us define the bifunction fh : C × C → R by

fh(x, y) = h(y)− h(x).

Now, we can characterize the solutions of the QOpt by solutions of the QEP associated

to fh and K . We denote by QOpt(h,K) the solution set of the QOpt. The definition

of fh implies the following lemma.

Lemma 3.1. With the previous notation and assuming thatx0 ∈ C, then x0 ∈ QEP(fh,K)
if and only if x0 ∈ QOpt(h,K).

Finally, we are ready for our result about the existence of solutions for the QOpt

which generalizes [2, Proposition 4.2 and Proposition 4.5].

Theorem 3.1. Let h : C → R be a function and let K : C ⇒ C be a set-valued map,

where C is a convex and compact subset of a Hausdorff locally convex real topological

vector space X . If K is closed and lower semicontinuous with convex values, and h is

quasiconvex and continuous; then QOpt(h,K) is nonempty.

Proof. We want to verify all assumptions of Theorem 2.2. The first one is trivial. Since

h is quasiconvex, the bifunction fh is quasiconcave with respect to its first argument,

which implies ii), and quasiconvex with respect to its second argument. Moreover, fh

vanishes on the diagonal of C × C, hence fh satisfies condition iii) (see Remark 1).

Additionally, as h is continuous then fh is continuous and hence condition iv) holds.

Therefore, there exists x0 ∈ QEP(fh,K). The result follows from Lemma 3.1.
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