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a b s t r a c t

We analyze a simple local search heuristic for the facility location problem using the notion of perturba-
tion resilience: an instance is γ -perturbation resilient if all costs can be perturbed by a factor of γ without
changing the optimal solution.

We prove that local search for FLP succeeds in finding the optimal solution for γ -perturbation resilient
instances for γ ≥ 3, and we show that this is tight.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The uncapacitated facility location problem (FLP) is a classical
optimization problem: given a set of customers and a set of loca-
tions, the goal is to open facilities at a subset of the locations in
order to serve all customers in the cheapest possibleway. The FLP is
NP-hard and even hard to approximate [7], but in practice, it seems
to be much less difficult to solve than indicated by its worst-case
complexity [8].

Of particular importance to solve such problems in practice are
local search heuristics: they are often simple and easy to imple-
ment, yet show a remarkable performance in practice, although
their worst-case behavior is usually poor. In order to get a better
understanding of the performance of local search heuristics for the
FLP, we apply the notion of perturbation resilience [2] to a simple
local search strategy for the FLP.

1.1. Facility location problem

In this paper, we consider the uncapacitated, metric facility
location problem (FLP):

Instances: a finite set F of locations, a finite set D of customers,
facility costs fi ≥ 0 for all i ∈ F , and service costs cij ≥ 0
for all i ∈ F and j ∈ D. The service costs are metric, i.e., cij ≤

ci′j + ci′j′ + cij′ for all i, i′ ∈ F , j, j′ ∈ D.
Solutions: a solution (X, σ ) for an instance (F ,D, f , c) of the FLP

consists of a nonempty set of open facilities X ⊆ F and a
customer assignment σ : D → X to open facilities.
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Objective function and goal: The cost of a solution is c(X, σ ) =∑
i∈X fi +

∑
j∈Dcσ (j)j. The goal is to minimize c(X, σ ).

This variant is called uncapacitated since all facilities can handle
an arbitrary number of customers and it is called metric because
the service costs satisfy an extension of the triangle inequality. For
the discussion of other variants, we refer to two surveys [11,10].

An optimal solution of an FLP instance is denoted as (X⋆, σ ⋆).
The costs of a solution (X, σ ) can be split into two parts: the facility
costs cF (X) =

∑
i∈X fi and service costs cS(X, σ ) =

∑
j∈Dcσ (j)j. Addi-

tionally, given an instance of the FLP and a set of open facilities X , it
is easy to compute an optimal corresponding customer assignment
σ : σ (j) = argmini∈Xcij, breaking ties arbitrarily. Thus, the customer
assignment is often dropped in the cost notations, which implies
that an optimal assignment is used.

The FLP cannot be approximated in polynomial time with a
factor smaller than 1.463 unless NP ⊆ DTime(nO(log log n)) [7]. On
the other hand, there are approximation algorithms that guarantee
a solution within a factor 1.5 of the optimal solution [6], and there
is a randomized 1.488 approximation algorithm [9].

Local search heuristics are a popular way to solve optimization
problems. They often show very poor performance in theoretical
studies, but are often very powerful in practice.

We consider the following simple local search heuristic for the
FLP: starting with an initial solution, we can obtain a new solution
Y from our current solution X by

• removing one facility of X , or
• adding one new facility to X , or
• replacing one facility in X by a new one.

A solution is a localminimumwith respect to this neighborhood
if we cannot find a cheaper solution by applying any of these rules
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once. Sinceweare only concernedwith the existence of non-global,
local minima in this paper, a specification how the initial solution
is computed orwhich step is chosen in case ofmultiple possibilities
is not needed.

1.2. Perturbation resilience

Attacking the discrepancy between theoretical intractability
and practical solvability has gained significant attention in the last
couple of years. By either applying probabilistic input models or
identifying properties that seem tomake problems easier, one tries
to find rigorous explanations why certain problems are easy in
practice yet difficult in the worst case.

In particular in the area of clustering problems, properties have
been identified that – if satisfied by the instance at hand – allow
for efficient algorithms to solve or approximate the clustering
problem [2,3,5,4]. Given the close relationship between clustering
on the one hand and FLP on the other hand, it seems natural to
transfer these notions also to the FLP.

In this paper, we apply the notion of perturbation resilience to
the FLP. Perturbation resilience, introduced and applied to cluster-
ing by Awasthi et al. [2], is a degeneracy condition: by how much
can the costs be perturbedwithout changing the optimal solution?
Intuitively, themore the instance can be perturbedwithout chang-
ing the optimal solution, the easier it should be to find the optimal
solution.

Definition 1. An instance (F ,D, f ′, c ′) of the non-metric FLP is a
γ -perturbation of instance (F ,D, f , c) of the FLP, with γ ≥ 1, if
and only if fi ≤ f ′

i ≤ γ fi for all i ∈ F and cij ≤ c ′

ij ≤ γ cij for all
i ∈ F , j ∈ D. If it is clear from the context which F and D are used,
a γ -perturbed instance can also be denoted as (f ′, c ′).

A γ -perturbed instance is any instance that is a γ -perturbation
of some fixed FLP instance.

Note that γ -perturbed instances are not necessarilymetric. This
definition allows only to increase the costs, but this is only amatter
of scaling. Using the definition of γ -perturbed instances, we can
define γ -perturbation resilience for the FLP.

Definition 2. An instance (F ,D, f , c) of the FLP is γ -perturbation
resilient with γ ≥ 1 if and only if all γ -perturbations (f ′, c ′) of
(F ,D, f , c) have the same unique optimal solution (X⋆, σ ⋆).

If costs of γ -perturbed instances are compared, the notation of
the perturbed costs follow from the names given to the perturbed
instances. So, for example, if (f ′, c ′) is a γ -perturbed instance, then
c ′(X) denotes the cost of solution X in the perturbed instance.

Any γ -perturbation resilient instance of the FLP is a valid γ -
perturbation of itself, so γ -perturbation resilience implies that
the original instance has the same optimal solution as any of its
perturbations. If an instance has multiple optimal solutions, it is
not γ -perturbation resilient for any γ . Furthermore, if an instance
is γ -perturbation resilient, then it is also γ ′-perturbation resilient
for any γ ′ < γ .

1.3. Our contribution

In this paper,weprove that local search for FLP finds the optimal
solution for all 3-perturbation resilient instances. Furthermore,
we show that this bound is tight. We admit that 3-perturbation
resilience is a quite strong assumption. Nevertheless, this is a
first step towards applying recent techniques from the analysis of
algorithms to the FLP in order to better understand its practical
tractability.

2. Local minima are global minima for γ ≥ 3

In this section,we show that, for γ ≥ 3, γ -perturbation resilient
instances do not have local minima except for the unique global
minimum. In the next section, we show that this is tight.

The following theorem is a result for local search algorithms on
any FLP instance.

Theorem 3 (Arya et al. 2004 [1]). For a given instance of the FLP,
let X be a local minimum, and let X⋆ be an optimal solution. Then
cF (X) ≤ cF (X⋆) + 2cS(X⋆) and cS(X) ≤ cF (X⋆) + cS(X⋆). Combined,
this yields c(X) ≤ 3c(X⋆).

This theorem will be used to show that there are no local
minima except for the optimal solution for 3-perturbation resilient
FLP instances (Theorem 5). To prove this, we first prove the folow-
ing lemma, which states the following: if there exists some γ -
perturbation resilient instance with a non-global local optimum,
then we can remove all facilities that belong neither to the non-
global local optimum nor to the global optimum. This newly con-
structed instance is still γ -perturbation resilient and both the local
and global optima are maintained.

Lemma 4. Assume a γ -perturbation resilient instance (F ,D, f , c) of
the FLP exists with a local minimum (X, σ ) not equal to the optimal
solution (X⋆, σ ⋆).

Then an instance (F ′,D′, f ′, c ′) of the FLP exists with the following
properties:

• the instance (F ′,D′, f ′, c ′) is γ -perturbation resilient, and
• the instance (F ′,D′, f ′, c ′) has a local minimum (X ′, σ ′) not

equal to the optimal solution (X ′⋆, σ ′⋆), and
• F ′

= X ′
∪ X ′⋆, and

• f ′

i = 0 for all i ∈ X ′
∩ X ′⋆, and

• for all j ∈ D′, we have σ ′(j) ̸∈ X ′
∩ X ′⋆ or σ ′⋆(j) ̸∈ X ′

∩ X ′⋆.

Proof. Take any such instance (F ,D, f , c). We transform this in-
stance to a new instance (F ′,D′, f ′, c ′) using the following steps.
We apply each step until its conditions are satisfied for all local
minimaX ̸= X⋆, possibly applying earlier steps again in the process
if their conditions are not valid anymore after applying a later step.
Thus, at the beginning of every step, the conditions of all previous
steps are satisfied.

Step 1: Condition to satisfy: F = X ∪ X⋆. Drop all facilities not
in X or X⋆, i.e., F ′

= X ∪ X⋆. All customer assignments of σ and σ ⋆

remain valid and the costs c(X) and c(X⋆) are unchanged. Thus, the
resulting instance (F ′,D, f , c) is still γ -perturbation resilient with
optimal solution X⋆. Because all subsets of F ′ also are a subset of F ,
X ̸= X⋆ is still a local minimum. After doing this, the conditions of
step 1 are satisfied.

Step 2: Condition to satisfy: fi = 0 for all i ∈ X ∩ X⋆. Change the
facility costs to the following:

f̃i =

{
0 if i ∈ X ∩ X⋆, and
fi otherwise.

Note that the resulting instance (F ,D, f̃ , c) still has X as a local
minimum, since the cost of adding a facility to X is identical, com-
pared to instance (F ,D, f , c), and the cost of dropping or swapping
a facility from X is the equal or higher, as compared to instance
(F ,D, f , c). To show that the instance (F ,D, f̃ , c) is γ -perturbation
resilient with optimal solution X⋆, consider all nonempty sets of



B. Manthey, M.B. Tijink / Operations Research Letters 46 (2018) 215–218 217

open facilities Y ⊆ F and customer assignments σ ′ in all perturba-
tions of costs f ′

i and c ′

ij and equivalent perturbations of f̃i and cij:

c ′(X⋆, σ ⋆) = c ′

F (X
⋆) + c ′

S(X
⋆, σ ⋆)

=

∑
i∈X⋆\X

f ′

i +

∑
i∈X∩X⋆

f ′

i + c ′

S(X
⋆, σ ⋆)

= c̃ ′(X⋆, σ ⋆) +

∑
i∈X∩X⋆

f ′

i ,

c ′(Y , σ ′) = c ′

F (Y ) + c ′

S(Y , σ ′)

=

∑
i∈Y\(X∩X⋆)

f ′

i +

∑
i∈Y∩X∩X⋆

f ′

i + c ′

S(Y , σ ′)

= c̃ ′(Y , σ ′) +

∑
i∈Y∩X∩X⋆

f ′

i .

This implies that

c̃ ′(X⋆, σ ⋆) +

∑
i∈X∩X⋆

f ′

i ≤ c̃ ′(Y , σ ′) +

∑
i∈Y∩X∩X⋆

f ′

i ,

c̃ ′(X⋆, σ ⋆) +

∑
i∈(X∩X⋆)\Y

f ′

i ≤ c̃ ′(Y , σ ′), and

c̃ ′(X⋆, σ ⋆) ≤ c̃ ′(Y , σ ′).

So the instance (F ,D, f̃ , c) is indeed still γ -perturbation re-
silient. This satisfies the conditions for step 2.

Step 3. Condition to satisfy: for all j ∈ D, (σ (j) ̸∈ X ∩ X⋆ or
σ ⋆(j) ̸∈ X ∩ X⋆) must be true. Choose an arbitrary j ∈ D with
σ (j) ∈ X∩X⋆ andσ ⋆(j) ∈ X∩X⋆. By the definition of γ -perturbation
resilience, j cannot be assigned to any other facility in X⋆ in all of
the γ -perturbed costs c ′. Thus cσ ⋆(j)j < γ cij for all i ∈ X⋆

\ {σ ⋆(j)}.
Also, because F = X ∩ X⋆ and X is a local minimum, cσ (j)j ≤ cij for
i ∈ F \ X⋆

= X \ X⋆. Thus, the assignment σ (j) = σ ⋆(j) is the best
possible assignment in F .

Let c̃ denote the costs in instance (F ,D′, f , c).
The new instance (F ,D′, f , c) is created by removing customer j,

i.e.,D′
= D\{j}. As a result, X still is a localminimum in (F ,D′, f , c):

• Dropping a facility i ∈ X (if |X | > 2); If i = σ (j), then
fi = 0 because σ (j) ∈ X ∩ X∗. Thus, c̃(X \ {i}) ≥ c̃(X). If
i ̸= σ (j), then customer j is not connected to facility i, so
c̃(X) − c̃(X \ {i}) = c(X) − c(X \ {i}) ≥ 0. Hence, dropping
facility i ∈ X does not result in a better solution.

• Adding a facility i ∈ F \ X; Removing customer j does not
change the cost of adding a facility, since σ ⋆(j) = σ (j) and
cσ (j)j ≤ cij: c̃(X) − c̃(X ∪ {i}) = c(X) − c(X ∪ {i}) ≥ 0. Thus,
adding facility i ∈ F \ X does not result in a better solution.

• Swapping an open facility i ∈ X with closed facility i′ ∈ F \X;
If i ̸= σ (j), the same reasoning as in adding a facility holds.
If i = σ (j), fi = 0 and this swap is not better than just
adding facility i′, which did not improve the cost either. Thus,
swapping open facility i ∈ X with closed facility i′ ∈ F \ X
does not result in a better solution.

To show that the new instance is γ -perturbation resilient with
optimal solution (X⋆, σ ⋆), consider all Y ⊆ F and γ -perturbations
(f ′, c ′). Let Y ′

= Y ∪ (X ∩X⋆) with optimal assignment (i.e., σ ′(x) =

argmini∈Y ′c ′

ix) and note that c ′(Y ′) ≤ c ′(Y ) since f ′

i = 0 for all
i ∈ X ∩ X⋆, even in the new instance (F ,D, f ′, c ′). Let c̃ ′ denote
the costs in instance (F ,D′, f ′, c ′). Thus:

c ′(X⋆, σ ⋆) = c ′

F (X
⋆) + c ′

S(X
⋆, σ ⋆)

= c ′

F (X
⋆) + c ′

σ ⋆(j)j +
∑
x∈D′

c ′

σ ⋆(x)x = c̃ ′(X⋆) + c ′

σ ⋆(j)j, (1)

c ′(Y ′, σ ′) = c ′

F (Y
′) + c ′

S(Y
′, σ ′)

= c ′

F (Y
′) + c ′

σ ′(j)j +
∑
x∈D′

c ′

σ ′(x)x = c̃ ′(Y ′, σ ) + c ′

σ ′(j)j. (2)

Note that c ′

σ ′(j)j ≤ c ′

σ ⋆(j)j, because σ ⋆(j) ∈ Y ′. This together with (1)
and (2) implies

c̃ ′(X⋆, σ ⋆) + c ′

σ ⋆(j)j ≤ c̃ ′(Y ′, σ ′) + c ′

σ ′(j)j and

c̃ ′(X⋆, σ ⋆) ≤ c̃ ′(Y ′, σ ′) ≤ c̃ ′(Y ),

so even after removal of customer j, the instance (F ,D′, f , c) is
γ -perturbation resilient with optimal solution X⋆. After doing this
a couple of times, the condition for step 3 is satisfied.

After step 3, all conditions required for the lemma are satisfied.
Note that all steps make the instance smaller in some way (less
facilities, less facilities with nonzero cost, less customers), so this
process terminates eventually. □

This lemma can be interpreted as removing complications
from the instance, except those which are necessary for either
γ -perturbation resilience or the existence of the local minimum
X . The following theorem uses Lemma 4 to show that any local
minimum of 3-perturbation resilient FLP instances always is the
global minimum.

Theorem 5. All local minima (X, σ ) of a γ -perturbation resilient
instance (F ,D, f , c) of the FLP with γ ≥ 3 are equal to the optimal
solution (X⋆, σ ⋆) of the instance.

Proof. Weassume the contrary anduse Lemma4 to get an instance
(F ,D, f , c) with F = X ∪ X⋆, fi = 0 for i ∈ X ∩ X⋆ and, for all j ∈ D,
(σ (j) ̸∈ X ∩ X⋆ or σ ⋆(j) ̸∈ X ∩ X⋆). Here (X⋆, σ ⋆) is the optimal
solution and (X, σ ) ̸= (X⋆, σ ⋆) the local minimum.

We perturb the costs as follows:

f ′

i =

{0 if i ∈ X ∩ X⋆, and
3fi if i ∈ X⋆

\ X , and
fi otherwise, and

c ′

ij =

{
3cij if σ ⋆(j) = i, and
cij otherwise.

This is a valid γ -perturbation. Because the instance (F ,D, f , c) is
γ -perturbation resilient, the following holds:

c ′(X⋆, σ ⋆) = c ′

F (X
⋆) + c ′

S(X
⋆, σ ⋆)

=

∑
i∈X⋆\X

3fi +
∑
j∈D

3cσ ⋆(j)j (by choice of f ′

i and c ′

ij)

= 3c(X⋆, σ ⋆),
c ′(X, σ ) = cF (X) + cS(X, σ )

=

∑
i∈X\X⋆

fi +
∑
j∈D

cσ (j)j, (by the properties of

(F ,D, f , c), f ′

i and c ′

ij)
= c(X, σ ),

so 3c(X⋆, σ ⋆) < c(X, σ ).
By Theorem 3, c(X, σ ) ≤ 3c(X⋆, σ ⋆), so 3c(X⋆) < 3c(X⋆) which

is a contradiction. Thus, for γ -perturbation resilient instances of
the FLP with γ ≥ 3, no local minima exist except for the global
optimum. □

3. Non-global local minima for γ < 3

Now we show that Theorem 5 is tight: For every ε > 0, there
is a (3 − ε)-perturbation resilient instance that possesses a local
optimum that is no global optimum.

Theorem 6. There exist γ -perturbation resilient instances of the FLP
for all γ < 3 with local minima X ̸= X⋆.



218 B. Manthey, M.B. Tijink / Operations Research Letters 46 (2018) 215–218

Fig. 1. Example used in Theorem 6 (indirect service costs not shown).

Proof. The following example, inspired by Arya et al. [1], proves
the theorem (see also Fig. 1). Choose a k ∈ N, whose value will be
specified later on. Let

F = {0f , 1f , . . . , (k − 1)f , kf , ξf },
D = {0d, . . . , kd},

fi =

{
2k if i = ξf , and
1
k otherwise, and

cij =

{1 if i = ξf , and
1 if i = kf , j = kd for some k, and
3 otherwise.

In the optimal solution X⋆
= {0f , . . . , kf }, all k + 1 facilities of

costs 1/k are opened. Togetherwith the service costs of 1 per client,
this yields c(X⋆, σ ⋆) = (k + 1)(1 +

1
k ). This instance is 3k

(k+1)(1+1/k) -
perturbation resilient, as we will show by comparing all solutions
X ̸= X⋆ with X⋆ for all γ -perturbations (F ,D, f ′, c ′). By letting k go
to infinity, the perturbation resilience gets arbitrarily close to 3.

We consider two cases: ξf ∈ X and ξf ̸∈ X . For the first case,
assume ξf ∈ X . If this is the case, then c(X, σ ) ≥ 3k + 1. Thus,
c ′(X⋆, σ ⋆) ≤ 3k < 3k + 1 ≤ c ′(X, σ ), which completes the first
case.

The second case is when ξf ̸∈ X . Without loss of generality, let
X = {0f , . . . , (|X | − 1)f }. Since c ′

if id
< 3 ≤ c ′

i′ id
for i ∈ {0, . . . |X | −

1}, i′ ∈ F \ {if }, all customers {0d, . . . , (|X | − 1)d} are assigned to
the same facility in both X⋆ and X , i.e., σ ⋆(id) = σ (id) = if . For the
other customers jd with j ∈ {|X |, . . . , k}, we look at the following
quantity:

− f ′

jf + c ′

σ (jd)jd − c ′

σ ⋆(jd)jd ≥ −
3

(k + 1)(1 +
1
k )

+ 3 −
3k

(k + 1)(1 +
1
k )

=
3

k + 1
> 0.

Using this quantity, we can bound the difference between
c ′(X⋆, σ ⋆) and c ′(X, σ ):

c ′(X, σ ) − c ′(X⋆, σ ⋆) =

k∑
j=|X |

c ′

σ (jd)jd − c ′

σ ⋆(jd)jd − f ′

jf > 0,

so c ′(X⋆, σ ⋆) < c ′(X, σ ), completing the second case.
For both cases it holds that c ′(X⋆, σ ⋆) < c ′(X, σ ), for all solu-

tions X ̸= X⋆, so instance (F ,D, f , c) is 3k
(k+1)(1+1/k) -perturbation

resilient. Also, X = {ξf } ̸= X⋆ is a local minimum, completing the
proof. □
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