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Abstract

Given an observation of a decision-maker’s uncertain behavior, we develop a robust in-
verse optimization model for imputing an objective function that is robust against mis-
specifications of the behavior. We characterize the inversely optimized cost vectors for
uncertainty sets that may or may not intersect the feasible region, and propose tractable
solution methods for special cases. We demonstrate the proposed model in the context of
diet recommendation.
Keywords: Inverse optimization, Robust optimization, Dietary recommendation

1. Introduction
Given an observation as input, the inverse optimization problem determines objective func-
tion parameters of an (forward) optimization problem that make the observation an (often
approximately) optimal solution for the forward problem. Inverse optimization has been ap-
plied in diverse areas, ranging from finance [1] and electricity markets [2] to medical decision-
making [3, 4]. It has been studied in various optimization frameworks including network
and linear [5], combinatorial [6], conic [7], integer and mixed-integer [8, 9, 10], variational
inequality [11], and countably infinite linear [12] problems. Recently, there has been a grow-
ing interest in inverse optimization with multiple solutions as input [11, 13, 14, 15, 16, 17].
While it is unlikely that multiple solutions can be simultaneously optimal, the above studies
aim to render the solutions nearly optimal by minimizing some function of residuals with
respect to optimality of the solutions.

In this study, instead of considering multiple data points, we consider an uncertainty set
that encapsulates all possible realizations of the input data. We adopt this idea from robust
optimization, which has been widely used for solving (forward) optimization problems with
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uncertain parameters [18]. Thus, by bringing robust and inverse optimization together, we
propose a robust inverse linear optimization model for uncertain input observations. We aim
to find a cost vector for the underlying forward problem such that the associated error is
minimized for the worst-case realization of the uncertainty in the observed solutions. That
is, such a cost vector is robust in the sense that it protects against the worst mis-specification
of a decision-maker’s behavior.

As an example, consider a diet problem. Suppose an individual wants to find diets that
follow specific nutritional constraints and satisfy his/her preferences. Our model aims to help
infer the preferences of the person from past diet patterns, which might be inconsistent or
vary over time, in order to generate personalized diets in the future. Assuming the person’s
behavior can be represented by an uncertainty set, it is important to infer his/her objective
function that renders the worst-case behavior within the uncertainty set as close to optimal
as possible. Under such an objective function, any non-worst-case diet will thus have a
smaller deviation from optimal diets.

To the best of our knowledge, this study is the first to propose a robust inverse optimiza-
tion framework. Chassein and Goerigk [19] consider robust optimization with variable-size
uncertainty sets and determine how large an uncertainty set can be while the nominal so-
lution remains optimal. That work can be seen as inverse robust optimization – it infers
an uncertainty set that makes a given solution optimal, whereas we propose robust inverse
optimization. More related to our work is the paper by Esfahani et al. [20], which considers
pairs of signal-response data from an ambiguous distribution as input to the inverse prob-
lem and determines an objective function from a limited set of candidates that minimizes a
prediction error. Our contributions are:

1. We develop an inverse optimization model that finds a cost vector that minimizes the
worst-case fit error associated with a realization of an uncertain input data point. We
show that solving the robust inverse model is equivalent to solving a finite number
of smaller problems, which are tractable in some cases, e.g., when the error function
corresponds to p-norm distance where p ∈ {1, 2,∞} and the uncertainty set is polyhe-
dral or ellipsoidal. Our model generalizes a previous single-observation nominal inverse
model as the uncertainty set can be reduced to a singleton.

2. We derive robust inverse optimization models with uncertainty sets that may or may
not intersect the feasible region, characterize the corresponding optimal solutions, and
propose tractable reformulations for special cases. We do not make any assumptions
on the structure of the input data.

3. We demonstrate the proposed methodology in the context of a diet problem and show
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how incorporating robust optimization into the inverse framework generates a cost
vector that appears less sensitive to the uncertain behavior. We compare optimal cost
vectors and diet plans from our robust inverse optimization model to those from a
classical (non-robust) inverse optimization model.

2. Methodology

2.1. Preliminaries

Let x ∈ Rn, c ∈ Rn,A ∈ Rm×n, and b ∈ Rm. We define our forward linear optimization
(FO) problem as

FO(c) : minimize
x

c′x

subject to Ax ≥ b.
(1)

Let I = {1, . . . ,m} and J = {1, . . . , n} index constraints and variables in (1), respectively,
and ai denote the ith row of A. Assume the feasible region of x, denoted by X , is nonempty,
full-dimensional, and free of redundant constraints. Let ei be the i-th unit vector, XOPT(c)
be the set of optimal solutions to FO(c), and XOPT := ∪

c 6=0
XOPT(c) assumed non-empty.

Given an observed solution x0 ∈ XOPT, an inverse optimization (IO) model finds a vector
c ∈ C 6= ∅ that makes x0 optimal for FO(c). We consider C = {c ∈ Rn | ‖c‖1 = 1}, so as
to normalize the cost vector and prevent a trivial 0 vector from being feasible. The IO
formulation is written as

IO(x0) : minimize
c,y

0

subject to A′y = c,
c′x0 = b′y,
‖c‖1 = 1,
y ≥ 0.

(2)

The first and last constraints of IO(x0) enforce dual feasibility and the second constraint
enforces strong duality. Showing that IO(x0) is not feasible for x0 ∈ X \ XOPT (e.g., an
interior point), Chan et al. [21] propose a generalized inverse formulation, which finds a
cost vector c that minimizes the “fit error” associated with x0, measured in some norm.
Further generalizing their formulation, we write our nominal inverse optimization (NIO)
model, which finds c that minimizes a distance function between the corresponding optimal
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solution x ∈ XOPT(c) and the given solution x0, denoted by d(x,x0), as

NIO(x0) : minimize
c,y,x

d(x,x0)

subject to A′y = c,
c′x = b′y,
Ax ≥ b
‖c‖1 = 1,
y ≥ 0.

(3)

Note that, unlike Chan et al. [21], we allow x0 6∈ X , requiring the addition of primal feasibility
constraints for x. For the distance function d, we assume the following properties:

(i) d(x,x0) ≥ 0, (ii) if x = x0 then d(x,x0) = 0, (iii) d(x,x0) = d(x0,x),
(iv) d(x,x0) ≤ d(x, x̃) + d(x̃,x0), (v) d(x,x0) = d(x + γ,x0 + γ), and
(vi) |λ|d(x,x0) = d(λx, λx0).

These properties are general and apply to most distance functions (including general p-norm).

2.2. Robust Inverse Formulation

Consider a bounded, non-empty uncertainty set U ⊂ Rn. Our goal is to find a cost vector c
that is “robust” against U , i.e., minimizes the worst-case fit error over U . We first formulate
a general robust inverse optimization problem, and then consider three different cases for the
uncertainty set: (a) U in the complement of X (denoted by X̄ ), (b) U in X , and (c) U∩X 6= ∅
and U ∩ X̄ 6= ∅, for which we propose solution approaches under a certain choice of distance
function. Formally, we say a cost vector c is robust if c ∈ arg min

c∈C
min

x∈XOPT(c)
max
x̂∈U

d(x, x̂). We
propose the robust inverse optimization (RIO) model:

RIO(U) : minimize
c,y,x

max
x̂∈U

d(x, x̂)

subject to A′y = c,
c′x = b′y,
Ax ≥ b,
‖c‖1 = 1,
y ≥ 0.

(4)

Proposition 1. RIO(U) has an optimal solution for any bounded non-empty U .
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Proof. We first show that a feasible solution can always be constructed. Substituting A′y
for c using the first constraint, we rewrite constraints of problem (4) as

y′(Ax) = b′y,
Ax ≥ b,
‖A′y‖1 = 1,
y ≥ 0.

(5)

We choose x = x̃ such that a′
ĩ
x̃ = bĩ for some ĩ and a′ix̃ > bi for all i ∈ I, i 6= ĩ. Then

there exists y = λeĩ for λ > 0 such that ‖λaĩ‖1 = 1, i.e., λ = 1/‖aĩ‖1, implying that the
pair x = x̃ and y = eĩ/aĩ is feasible for (5). Thus (c,y,x) = (λaĩ, λeĩ, x̃) is feasible for
problem (4). Since U is non-empty and bounded, and since any x feasible to (4) is in XOPT,
d(x, x̂) is finite for each x̂ ∈ U and thus the optimal cost is bounded.

Proposition 2. A cost vector c∗ optimal for RIO(U) is robust against U .

Proof. Let (c∗,y∗,x∗) be an optimal solution to RIO(U). Since the constraints of RIO(U)
enforce primal and dual feasibility as well as strong duality for the given (c∗,y∗,x∗), it must
be that x∗ ∈ XOPT(c∗), implying that RIO(U) is equivalent to min

c∈C,x∈XOP T (c)
max
x̂∈U

d(x, x̂).
Thus, c∗ ∈ arg min

c∈C
min

x∈XOP T (c)
max
x̂∈U

d(x, x̂), which is the definition of a robust cost vector
given earlier.

Note that RIO(U) is non-convex due to the second constraint in (4). RIO(U) becomes a
bilinear program when the distance function d can be linearized (e.g., p-norm distance where
p = 1,∞), c ≥ 0 and the substitution c = A′y is made as in (5), for which general bilinear
programming algorithms may be used.

Next, we present theoretical results that lead to the development of solution approaches
for a general distance function satisfying the above-stated properties (i)–(vi).

Proposition 3. A solution (c∗,y∗,x∗) is optimal for RIO(U) if and only if x∗ is optimal
for

minimize
x∈XOPT

max
x̂∈U

d(x, x̂), (6)

and (c∗,y∗) is optimal to IO(x∗).

Proof. (⇐) Since x∗ ∈ XOPT and (c∗,y∗) is optimal for IO(x∗), (c∗,y∗,x∗) is feasible for
RIO(U). Since XOPT = ∪

c 6=0
XOPT(c) = ∪

c 6=0
{x | Ax ≥ b, c′x = b′y,A′y = c for some y ≥

0} = ∪
c∈C
{x | Ax ≥ b, c′x = b′y,A′y = c for some y ≥ 0} (recall C = {c | ‖c‖1 = 1}),

i.e., the choice of x∗ in (6) is not restricted by (c,y), (6) provides a lower bound on the
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objective value of RIO(U). Substituting (c∗,y∗,x∗) into RIO(U), we achieve this lower
bound, implying that (c∗,y∗,x∗) is optimal for RIO(U). (⇒) Let (c∗,y∗,x∗) be an optimal
solution to RIO(U). Since the constraints of RIO(U) enforce primal and dual feasibility
as well as strong duality, x∗ ∈ XOPT(c∗). Suppose that there exists x̃ ∈ XOPT such that
x̃ 6= x∗ and max

x̂∈U
d(x̃, x̂) < max

x̂∈U
d(x∗, x̂). Since x̃ ∈ XOPT , there must exist a c̃ such

that x̃ ∈ XOPT (c̃), which implies that x̃ ∈ XOPT (c̃/‖c̃‖1). Thus, (c̃/‖c̃‖1, ỹ/‖c̃‖1, x̃) where
A′ỹ = c̃ and ỹ ≥ 0 is a feasible solution to RIO(U). As a result RIO(U) now has the
objective function value max

x̂∈U
d(x̃, x̂) < max

x̂∈U
d(x∗, x̂), which is a contradiction. Thus, x∗ ∈

arg min
x∈XOPT

max
x̂∈U

d(x, x̂) and (c∗,y∗) is an optimal solution to IO(x∗), as desired.

Proposition 3 elucidates the fact that once an x∗ ∈ XOPT is identified that minimizes the
maximum distance to U , then (c,y,x∗) will be optimal to RIO(U) for any (c,y) that satisfy
dual feasibility and strong duality with respect to x∗. Importantly, Proposition 3 shows
that formulation (4) can be decomposed into two problems: the upper-level optimization
problem that finds x∗ that minimizes the maximum distance to x̂ ∈ U , and the lower-level
satisfaction problem where the corresponding c∗ such that x∗ ∈ FO(c∗) is determined. The
next result exploits this structure and characterizes an optimal solution to RIO(U).

Corollary 1. An optimal solution to RIO(U) is (c∗,y∗,x∗) = (ai/‖ai‖1, ei/‖ai‖1,x∗) where
x∗ = arg min

{x|a′ix=bi,Ax≥b}
max
x̂∈U

d(x, x̂) for some i ∈ I.

Proof. From Proposition 3, c∗ is optimal for RIO(U) if and only if it is optimal for IO(x∗)
where x∗ ∈ arg min

x∈XOPT
max
x̂∈U

d(x, x̂). Let I(x∗) = {i | a′ix∗ = bi}. Then c∗ ∈ C∗ = { ∑
i∈I(x∗)

aiyi | yi ≥

0,∀i ∈ I(x∗), ‖ ∑
i∈I(x∗)

aiyi‖1 = 1}. By setting yĩ = 1/‖aĩ‖1 for some ĩ ∈ I(x∗) and yi = 0 for

i 6= ĩ, we construct c∗ = aĩ/‖aĩ‖1 ∈ C∗, with the corresponding choice of y being y∗, i.e.,
y∗ = eĩ/‖aĩ‖1 as desired.

The above result implies that the search for an optimal c is reduced to searching over
a set of finite alternatives, each corresponding to one of the constraints. Moreover, x∗ is a
point on some hyperplane a′ix = bi that is a perturbation of the best worst-case point in U ,
i.e., x∗ = xw − ε∗ where xw ∈ arg max

x̂∈U
d(x∗, x̂) and ε∗ is an optimal perturbation vector. In

the special case where xw is known, e.g., U = {x0}, RIO(U) reduces to NIO(xw), i.e., the
single-point problem. For such a problem with a feasible single observation, Chan et al. [21]
show the same structure for c∗ and y∗, and a closed-form expression for ε∗ (and hence x∗)
under an arbitrary norm objective. For a general U and a general distance function, a closed-
form expression for x∗ is unlikely to exist. However, below we leverage the solution structure
described in Corollary 1 and show that RIO(U) can be decomposed into m sub-problems.
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Theorem 1. For each i ∈ I, let (x̃i, z̃i) be an optimal solution to

minimize
x,zi

zi

subject to zi ≥ d(x, x̂), x̂ ∈ U
a′ix = bi,

Ax ≥ b.

(7)

Then an optimal solution to RIO(U) is (c∗,y∗,x∗) = (ai∗/‖ai∗‖1, ei∗/‖ai∗‖1, x̃i∗)
where i∗ ∈ arg min

i∈I
z̃i.

Proof. For each i ∈ I, z̃i = minimize
{x|a′ix=bi,Ax≥b}

max
x̃∈U

d(x, x̂), and x̃i ∈ arg min
{x|a′ix=bi,Ax≥b}

max
x̃∈U

d(x, x̂).

Thus, (c∗,y∗,x∗) = (ai∗/‖ai∗‖1, ei∗/‖ai∗‖1, x̃i∗) where i∗ ∈ arg min
i∈I

z̃i satisfies the structure
identified in Corollary 1. It remains to show that the optimal value of RIO(U) is achieved
for i∗ ∈ arg min

i∈I
z̃i. To see that this property is true, note that

x̃i∗ ∈ arg min⋃
i∈I

{x | a′ix=bi,Ax≥b}

{
max
x̃∈U

d(x, x̂)
}
, (8)

and ⋃
i∈I
{x | a′ix = bi,Ax ≥ b} in (8) is equivalent to XOPT , implying that (8) is identical to

(6). Thus, (ai∗/‖ai∗‖1, ei∗/‖ai∗‖1, x̃i∗), where i∗ ∈ arg min
i∈I

z̃i, is optimal to RIO(U).

Remark 1. Formulation (7) for each i ∈ I is a robust optimization problem with uncertainty
in constraint parameters. Therefore, Theorem 1 suggests that RIO(U) can be solved by
decomposing it into m robust optimization problems, one for each i ∈ I, and finding the
minimum worst-case distance over all i ∈ I.

Note that there may exist multiple i∗’s that lead to the same minimum worst-case dis-
tance. In this case, one may use a secondary objective function to break the ties, e.g., choose
i∗ that corresponds to a cost vector closest to a target vector, as proposed by Ahuja and
Orlin [5]. The complexity of (7) depends on the function d(x, x̂) and the structure of U .
In general, if d can be rewritten as a convex function in (7), then a tractable reformulation
of model (7) can be derived for some well-studied uncertainty sets [22]. For instance, for
d(x, x̂) = ‖x− x̂‖p where p ∈ {1,∞}, which can be linearized, (7) can be reformulated as a
linear or conic program if U is a polyhedron or an ellipsoid, respectively. As an example, a
linear reformulation of (7) when d(x, x̂) = ‖x − x̂‖∞ and U is a polyhedron is provided in
the Appendix.
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X
U

max
x̂∈U

d(x∗(c∗), x̂)

c∗

(a) U ⊂ X

X
U

max
x̂∈U

d(x∗(c∗), x̂)

c∗

(b) U ⊂ X̄

X
U

max
x̂∈U

d(x∗(c∗), x̂)

c∗

(c) U ∩ X 6= ∅ and U ∩ X̄ 6= ∅

Figure 1: Illustration of the optimal cost vector c∗ when d(x, x̂) = ‖x− x̂‖2.

In the following subsections, we consider three types of uncertainty sets in geometric
relation to X : (a) U ⊂ X̄ , (b) U ⊆ X , and (c) U ∩X 6= ∅ and U ∩X̄ 6= ∅. Figure 1 illustrates
the geometrical intuition for the three cases when the 2-norm distance function is used (i.e.,
d(x, x̂) = ‖x − x̂‖2). In general, solving RIO(U) corresponds to finding and projecting
xw ∈ U onto XOPT. When U ⊂ X̄ , doing so is equivalent to projecting xw onto a convex set
X whereas when U ⊆ X̄ the projection is onto the non-convex X̄ . When U ∩ X 6= ∅, and
U ∩ X̄ 6= ∅, the problem requires partitioning U into U ∩ X and U ∩ X̄ .

2.2.1. U ⊂ X̄

First, consider the uncertainty set U that is outside the feasible region of the forward problem.
In this case, solving RIO(U) is easier than in the case of a general U .

Proposition 4. Let U ⊂ X̄ . If x∗ is optimal for

minimize
x∈X

max
x̂∈U

d(x, x̂), (9)

then there exist c∗ ∈ Rn and y∗ ∈ Rm such that (c∗,y∗,x∗) is optimal for RIO(U).

Proof. Let x∗ be an optimal solution for (9). All we need to show is that x∗ optimal for
(9) is feasible for (6) because the feasible region of (6) is a subset of that of (9). We
use contradiction. Suppose that x∗ ∈ X \ XOPT , i.e., max

x̂∈U
d(x∗, x̂) < max

x̂∈U
d(x, x̂) for all

x ∈ XOPT . For every x̂ ∈ U , since it is outside the feasible region X and X is convex, there
must exist a point in XOPT , say x̃ ∈ XOPT , such that x̃ = λx∗ + (1− λ)x̂, λ ∈ (0, 1). Then
we have

d(x∗, x̂)− d(x̃, x̂) = d(x∗, x̂)− d(λx∗ + (1− λ)x̂, x̂)
= d(x∗, x̂)− d(λx∗, x̂− (1− λ)x̂)
= d(x∗, x̂)− d(λx∗, λx̂)
= d(x∗, x̂)− |λ|d(x∗, x̂) > 0,

(10)
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where the second and fourth equalities are due to distance function properties (v) and (vi),
respectively. From (10), max

x̂∈U
d(x̃, x̂) < max

x̂∈U
d(x∗, x̂), which is a contradiction. Therefore,

x∗ ∈ XOPT and thus is feasible for (6). As a result, x∗ is an optimal solution to (6). Since
x∗ ∈ XOPT , there exists a solution (c∗,y∗) feasible for IO(x∗). The rest of the proof follows
the proof of Proposition 3.

Thus, when U ⊂ X̄ , Proposition 4 suggests that x∗ can be found by solving a single
optimization problem, instead of m problems as described in Theorem 1 for the general case.
That is, formulation (7) over all i is replaced by

minimize
x

z

subject to z ≥ d(x, x̂), ∀x̂ ∈ U
Ax ≥ b.

(11)

Corollary 2. Given x∗ from formulation (11), an optimal solution to RIO(U) is (c∗,y∗,x∗) =
(ai/‖ai‖1, ei/‖ai‖1,x∗) where i satisfies a′ix∗ = bi.

2.2.2. U ⊆ X

If U is contained in the feasible region of the forward problem, formulation (6) is equivalent
to finding the distance of the worst-case point to the complement of a convex set. In general,
the problem can be solved by decomposition into m sub-problems, as shown in Theorem
1. One important special case that can be solved efficiently is when the distance function
corresponds to the duality gap.

Proposition 5. Let d(x, x̂; c) = |c′(x̂− x)| for a given c. Then RIO(U) can be written as

minimize
c,y,ε

ε

subject to A′y = c,
c′x̂− b′y ≤ ε, ∀x̂ ∈ U ,
‖c‖1 = 1,
y ≥ 0,

(12)

Proof. In RIO(U), replace d(x, x̂) with |c′(x̂ − x)| and remove the primal feasibility con-
straint since x̂ ∈ X . Additionally, since any optimal x for RIO(U) is in XOPT and x̂ ∈ X ,
due to weak duality we have c′(x̂ − x) ≥ 0, implying that the absolute value operator can
be removed. Further, we substitute max

x̂∈U
d(x, x̂) by ε where ε ≥ c′(x̂ − x) for all x̂ ∈ U .

9



Substituting c′x by b′y using the second constraint of RIO(U) (strong duality), we obtain
formulation (12).

In formulation (12), the second constraint relaxes strong duality and ensures that the duality
gap is minimized for the the worst-case realization of x̂ ∈ U . In practice, we often a priori
know that all cost coefficients should be non-negative, in which case we impose an additional
constraint c ≥ 0 to (12), which allows the constraint ‖c‖1 = 1 to be replaced by

∑

j∈J
cj = 1,

and thus the modified formulation becomes a linear or conic program when U is a polyhedron
or an ellipsoid, respectively [22].

2.2.3. U ∩ X 6= ∅ and U ∩ X̄ 6= ∅

Finally we consider U that partially overlaps X . We propose to divide the robust inverse
problem into two problems, RIO(U ∩ X ) and RIO(U ∩ X̄ ), which we solve separately as
described in subsections 2.2.1 and 2.2.2, and find c∗ that corresponds to the worst-case
distance between the two.

Proposition 6. RIO(U) is equivalent to max
{
RIO(U ∩ X ),RIO(U ∩ X̄ )

}
.

Proof. Assume U ∩ X 6= ∅ and U ∩ X̄ 6= ∅. Recall the objective function of RIO(U) is
min
c,y,x

{
max
x̂∈U

d(x, x̂)
}

. Then we have

min
c,y,x

{
max
x̂∈U

d(x, x̂)
}

=min
c,y,x

{
max

{
max

x̂∈U∩X
d(x, x̂), max

x̂∈U∩X̄
d(x, x̂)

}}

= max
{

min
c,y,x

{
max

x̂∈U∩X
d(x, x̂)

}
,min

c,y,x

{
max

x̂∈U∩X̄
d(x, x̂)

}}

= max{RIO(U ∩ X ),RIO(U ∩ X̄ )}.

3. Numerical Example
In this section, we apply the proposed robust inverse optimization methodology to a small-
scale example of the diet problem briefly described in Section 1. The forward optimization
problem is to determine optimal intake of each food type to minimize the overall cost while
satisfying pre-specified nutritional constraints. What we refer to as cost is not necessarily
monetary but represents the user’s general perception of a specific food type: higher cost
implies lower preference. Inverse optimization determines the cost function of the forward
diet problem such that the preferences encoded in the observed diets are preserved.
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The nominal inverse problem takes a single observation of the user’s food intake, x0,
as input (e.g., a one-day observation of the user behavior); that is, there is no uncertainty.
We assume that the observed diet may or may not be feasible for the forward problem and
may be represented as an uncertainty set. Data used for the forward and inverse problems is
shown in Table B.1 in the Appendix. For the robust inverse problem, we assume a polyhedral
uncertainty set surrounding the nominal, one-day observation, as outlined in Table B.2 in the
Appendix. We test all three cases: the uncertainty set being inside, outside, and partially
inside the feasible region. For the inside case, both the absolute duality gap and the `∞ norm
are used for the distance function, while for the other cases only the `∞ norm is used. In our
experiments, the inside duality gap case is solved by solving (12) with an additional constraint
c ≥ 0, and other instances are solved using Theorem 1 (i.e., formulation (7)). The linear
programming reformulation of (7) for the `∞ norm case is shown in (A.1) in the Appendix;
the reformulations of (12) for the inside duality gap case can be derived similarly. While
we only discuss the results for the inside duality gap instance in this section, implications
are similar for the remaining instances. Results for all of the instances are provided in the
Appendix.

Nominal and robust cost vectors: We solve NIO(x0) and RIO(U) with x0 and U as
input, respectively. If there are multiple optimal solutions, we pick the cost vector that
minimizes the maximum cost of any food item. The cost values were normalized so they add
up to 100. Figure 2(a) shows an observed one-time food intake (i.e., x0) in blue bars and
the uncertainty set around the initial observation (i.e., U) in red. As x0 does not contain
any meat and yogurt (food type 1 and 5, respectively), the nominal inverse model returns
c∗ ∈ {c | c1 + c5 = 100, cj = 0 for j 6= 1, 5, j ∈ J } (see Figure 2(b) for example), i.e., costs
are non-zero only for these two food types so that avoiding them is optimal for this specific
person. On the other hand, the red bars in Figure 2(b) show that the costs obtained by the
robust model are non-zero for all food types, with decreased values for types 1 and 5, which
reflects the increase in food types 1 and 5 in the uncertainty set.

Nominal and robust diet recommendation: To compare diet plans generated by the
nominal and robust cost vectors, we solve the forward problem with the respective costs. If
there exist multiple optimal solutions, we use a secondary objective for the forward problem
by which to select the solution that is closest to the original observation(s): when we use the
nominal cost vector, we find the solution closest to x̂ in `∞ norm; for the robust cost vector,
we find the solution closest to the centroid of the uncertainty set in `∞ norm. As shown in
Figure 2(c), food types 1 and 5 are not included in the nominal diet plan but are present in
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(c) Optimal diet recommendations

Figure 2: Food intake observation and nominal and robust costs

the robust one, reflecting the observed increase in their intake in the uncertainty set.

The effect of uncertainty on cost values: Next, we compare the robustness of the
nominal and robust cost vectors by comparing variation of the achieved objective function
values. Let cN and cR be the robust and nominal cost vectors, respectively. For randomly
generated 100 diets X̃ = [x1, . . . ,x100], each in U , the variance of the resulting objective
function values associated with cN (i.e., var(cN ′X̃)) was 175.02, whereas var(cR′X̃) was
27.47. That is, the robust cost vector gives a more consistent cost evaluation of the person’s
changing behavior and thus renders the varying diets closer to optimality. Results for other
instances can be found in Table B.4 in the Appendix.

Appendix. Supplementary Material
Supplementary material related to this article can be found in the attached e-component.
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