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Abstract

In the study of extensions of polytopes of combinatorial optimization problems, a notori-

ous open question is that for the size of the smallest extended formulation of the Minimum

Spanning Tree problem on a complete graph with n nodes. The best known lower bound is

the trival (dimension) bound, Ω(n2), the best known upper bound is the extended formula-

tion by Wong (1980) of size O(n3) (also Martin, 1991).

In this note we give a nondeterministic communication protocol with cost log
2
(n2 log n)+

O(1) for the support of the spanning tree slack matrix. This means that the combinatorial

lower bounds can improve the trivial lower bound only by a factor of (at most) O(log n).

Keywords: Polyhedral Combinatorial Optimization, Extension Complexity, Communi-

cation Complexity; Spanning Tree polytope.

1 Introduction

The Spanning Tree polytope, Pn, has as its vertices the characteristic vectors in R(
[n]
2 ) of

edge-sets of trees with node set [n] := {1, . . . , n} (we use binomial coefficient notation for sets

of subsets). A complete system of inequalities and equations was given by Edmonds [2]:

∑

e∈([n]
2 )

xe = n− 1 (1a)

∑

e∈(S2)

xe ≤ |S| − 1 ∀S ⊂ [n], |S| > 1 (1b)

xe ≥ 0 ∀e ∈

(

[n]

2

)

. (1c)

This system has exponentially many facet-defining inequalities. There is a classical extended

formulation by Wong/Martin [14, 9] with O(n3) inequalities (and variables). A notorious

open problem in polyhedral combinatorial optimization, highlighted by M. Goemans at the

2010 Cargèse Workshop on Combinatorial Optimization, asks whether or not an extended

formulation with o(n3) inequalities exists.

There has been some progress on sub-trees in specific graph classes instead of the com-

plete graph (see, e.g., [4, 10] and the references therein), but there does not seem to be a
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compelling reason to believe that there exists an extended formulation with o(n3) inequali-

ties in the setting of the complete graph, as described here.

The only known lower bound is Ω(n2) — a “trivial” lower bound (it is the dimension of the

spanning tree polytope, Pn).

The smallest number of inequalities in an extended formulation is called the extension

complexity. More formally and generally, let P ⊂ Rd be a polytope. A polytope Q ⊂ Re

is called an extension of P , if there exists a projective mapping π : Re → Rd which maps P
onto Q. This allows to reduce linear programming over P to linear programming over Q. The

size of the extension is the number of facets of Q, and the extension complexity [5] of P is the

smallest size of an extension of P .

There are links between extension complexity and communication complexity, a fact which

has been observed and used by Yannakakis [15], and recently strengthened by Faenza et

al. [3]. One of these links is the following. Denoting by F (P ) and V (P ) the set of facets and

vertices, respectively, of the polytope P , let fP : F (P ) × V (P ) → {0, 1} be the boolean func-

tion which maps a pair of a facet and a vertex to 0, if the vertex lies on the facet, and to 1
otherwise. Then the nondeterministic communication complexity of fP is a lower bound for

the binary logarithm of the extension complexity of P [15]. Nondeterministic communication

complexity can be defined as the binary logarithm of the so-called rectangle covering num-

ber, a combinatorial concept, but in this paper, we stick to the terminology of communication

complexity.1

Lower bounds based on nondeterministic communication complexity have been successful

for several families of polytopes of combinatorial optimization problems, e.g., the Bipartite

Matching polytopes, Traveling Salesman polytopes, Cut polytopes, Stable Set polytopes (see

[6] for more examples).

For Spanning Tree polytopes, we can disregard the O(n2) nonnegativity inequalities (1c)

(see next section). Defining

S :=
{

S ( [n]
∣

∣

∣
|S| > 1

}

and

T :=
{

T ⊆

(

[n]

2

)

∣

∣

∣
([n], T ) tree

}

,

(we use the notation (V,E) for a graph with node set V and edge set E), the resulting boolean

function can be written as

fn : S × T : (S, T ) 7→























1, if the sub-forest of T induced by S,

(S, T ∩
(

S

2

)

), is disconnected;

0, if the sub-forest of T induced by S is a tree,

i.e., (S, T ∩
(

S

2

)

) is connected.

(2)

Indeed, a tree T is on a facet defined by an inequality of the type (1b), if and only if that in-

equality is satisfied with equation when plugging in the characteristic vector xT of T (mean-

ing xT
e = 1 iff e ∈ T , otherwise 0), which is the case if and only if the sub-forest of T induced

by S is a tree.

An 3 log2 n + O(1) upper bound for the nondeterministic communication complexity of

the Spanning Tree polytope follows from the existence O(n3) extended formulation, and a

nondeterministic communication protocol with that cost can be readily written down (see

next section).

Over the last 6 years, many a fingernail was gnawed when researchers (including the

authors) attempted to prove a non-trivial lower bound for the extension complexity of the

Spanning Tree polytope through nondeterministic communication complexity. The binary

logarithm of the dimension of any polytope P is a trivial lower bound to the nondeterministic

1We do that for employment purposes: Mainly of Alice & Bob (who would otherwise be out of work), but also of
the authors (because communication complexity is currently so much easier to sell than combinatorics).
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communication complexity of fP (not just to the binary logarithm of the extension complex-

ity). For the Spanning Tree polytope, this amounts to 2 log2 n − O(1), and nothing better is

known. Weltge [13] made progress by proving an upper bound of 8

3
log

2
n+ log

2
log

2
n+O(1)

for a very important lower bound to the nondeterministic communication complexity: the (bi-

nary logarithm of the) fractional rectangle covering number. However, no new upper bound

to the nondeterministic communication complexity can be derived from Weltge’s result. Re-

cently, another convenient lower bound to the nondeterministic communication complexity,

the so-called fooling-set bound was proved to be useless [7] (a result that was not so surpris-

ing, seeing as the fooling-set bound of a “typical” boolean function appears to grow at most

slightly faster than the dimension [11]).

In this note, we give an efficient nondeterministic communication protocol for fn, which

implies the following upper bound for fPn
, the boolean function associated with the Spanning

Tree polytope.

Theorem 1. The nondeterministic communication complexity of fPn
is 2 log

2
n+log

2
log

2
(n)+

O(1).

The remainder of this paper is organized as follows. In Section 2, we review some

basic definitions and lay the ground on which our nondeterministic communication protocol,

described in Section 3, is based. In Section 4, we prove the correctness of the protocol. The

paper closes with a short discussion, in Section 5, of the new status quo on the extension

complexity of the Spanning Tree polytope.

2 The Trivial Bound on the Nondeterministic Communi-

cation Complexity of the Spanning Tree Polytope

In an attempt to make this note accessible to the non-expert in communication complexity,

we briefly review the definition of nondeterministic communication complexity.

Let f : X×Y → {0, 1} be a boolean function. In Communication Complexity, Alice and Bob

are tasked with computing the value f(x, y), when Alice and Bob each know only part of the

input: Alice gets x, and Bob gets y. They have to communication in order to determine f(x, y).
Full knowledge of f and unlimited computational power are assumed. In nondeterministic

communication complexity, there is, in addition, a Prover, who tries to convince Alice and

Bob that the output is 1: the Prover will send a certificate to Alice and Bob, based on which

they must make a decision.

A nondeterministic communication protocol consists of a set C of possible certificates that

the Prover can send, together with description of how Alice and Bob react, based on their

respective inputs, to the certificate sent by the Prover. Alice and Bob can communicate

(i.e., send/receive bits) with each other (although in the protocols in this paper, they don’t,

so we hand-wave that part of the definition of a nondeterministic communication protocol).

Ultimately, Alice and Bob each either accepts or rejects their respective inputs based on the

certificate sent by the Prover.

Such a protocol computes f , if:

(i) For each input (x, y) with f(x, y) = 1, there is a certificate C ∈ C such that, if the Prover

sends C, then Alice and Bob both accept;

(ii) For each input (x, y) with f(x, y) = 0, for every certificate C ∈ C, if the Prover sends C,

then at least one of Alice and Bob rejects.

Informally, the way we talk about the Prover is that his goal is to make Alice and Bob accept.

Knowing Alice’s and Bob’s parts of the protocol, if the input (x, y) is such that f(x, y) = 1, he

is honest, i.e., he sends a certificate which really proves that f(x, y) = 1 in a way agreed to

between the three parties. If, however, the input (x, y) is such that f(x, y) = 0, the Prover

has no chance but to lie, and he does so in a way that will fool Alice and Bob into accepting,

if that is possible.
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The cost of a protocol is number of bits sent by Alice and Bob, plus log2(|C|), the (idealized,

since possibly fractional) number of bits sent by the Prover.

The nondeterministic communication complexity of a function f is the smallest cost of a

protocol computing f .

Remark 2. Wlog, Alice and Bob do not communicate among themselves: the Prover could

simply send the messages they would be exchanging, which they would verify. In that case,

it is easy to see that, for every C ∈ C, the set of (x, y) ∈ X × Y for which Alice and Bob both

accept is of the form K × L — a rectangle. The protocol is correct, if (1) no such rectangle

contains an input (x, y) with f(x, y) = 0, and (2) every input (x, y) ∈ X × Y with f(x, y) = 1 is

contained in one such rectangle. Hence, the nondeterministic communication complexity is

equal to the log2 of the minimum number of 1-rectangles needed to cover all 1-inputs.

The O(n3) Protocol for Spanning Tree

As an example, we consider X := S, Y := T , and fn as defined in (2). So Alice will get a set

S ∈ S, and Bob will get a tree T ∈ T , and they should both accept if T is disconnected on S.

We set

C := [n]3 =
{

(u, t, v) | u, t, v ∈ [n]
}

.

Figure 1 describes Alice’s and Bob’s parts of the protocol.

Alice:

1. Let S ∈ S be Alice’s input.

2. Let (u, t, v) ∈ C be the triple sent by the Prover.

3. IF u, v ∈ S, t 6∈ S, ACCEPT;

4. ELSE REJECT.

Bob:

1. Let T ∈ T be Bob’s input.

2. Let (u, t, v) ∈ C be the triple sent by the Prover.

3. IF t is on the path in T between u and v, ACCEPT;

4. ELSE REJECT.

Figure 1: O(n3) protocol for Spanning Tree (Alice-Bob part)

It is fairly obvious that the protocol computes fn, but we take the opportunity to make a

definition that we will need later. Given (S, T ) ∈ S × T , we say that a triple (u, t, v) ∈ [n]3 is

a witness for fn(S, T ) = 1, if the conditions in the protocol in Figure 1 hold, i.e., if:

(A) u, v ∈ S, t 6∈ S; and

(B) t is on the path in T between u and v.

The terminology makes sense: For ever (S, T ) ∈ S × T , we have fn(S, T ) = 1, if and only if

a witness for fn(S, T ) = 1 exists. Indeed, the sub-forest of T induced by S is disconnected,

if and only if there is a pair of nodes u, v such that the (unique) path between u and v in T
leads through a node t which is not in T .

Hence, on the one hand, the Prover can accurately prove that to Alice and Bob that

fn(S, T ) = 1 by sending a witness for that fact as certificate. On the other hand, if fn(S, T ) =
0, no triple forms a witness, so by verifying the two conditions, Alice and Bob can refute the

certificate sent by the Prover. The key property of the conditions in the context of commu-

nication complexity is that Alice and Bob can verify their respective parts of the condition

independently by only looking at their own input.

Note that the definition of witness is symmetric in u, v: (u, t, v) is a witness for fn(S, T ) = 1
iff (v, t, u) is one. Clearly, if u = v, (u, t, v) is never a witness for anything.
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Nonnegativity Inequalities

For the sake of completeness, we sketch the argument why the
(

n

2

)

nonnegativity inequali-

ties (1c) can be omitted for the upper bound on fPn
.

Lemma 3 (Folklore). Let X = X0 ∪X1 with X0 ∩X1 = ∅, let f i : X i × Y → {0, 1} be boolean

functions, and let f : X × Y be defined through f(x, y) = f0(x, y), if x ∈ X0 and f(x, y) =
f1(x, y), if x ∈ X1. Then nondeterministic communication protocols for f0 and f1 can be

combined to form a protocol for f whose cost is at most 1 plus the maximum of the costs of the

protocols for f0 and f1.

Sketch of Proof. To certify that f(x, y) = 1, the Prover first sends one bit i ∈ {0, 1}, signifying

that x ∈ X i, then he sends the certificate for that case. Alice can check whether the Prover

lies in the first bit, and rejects if he does, otherwise proceeds as in the corresponding protocol.

Bob follows the protocol indicated by i.

Combining the lemma with the fact that the nondeterministic communication complexity

of f : X × Y → {0, 1} is at most log
2
(|X |) (the Prover can send x), when adding the nonnega-

tivity inequalities, we obtain a protocol which uses at most 1 more bit than the one described

in the next section. This bit is swalloed in the O(1)-term of Theorem 1.

3 A Parsimonious Protocol

(From now on, we abbreviate fn to f .) The protocol in the previous section requires the

Prover to send one of O(n3) certificates. To reduce that number, the fundamental intuition is

to perform a “lossy compression” of the witness: some information is lost, but Alice and Bob

can still make their decisions. This only works if the certificate which the Prover sends on

input (S, T ) in the case f(S, T ) = 1 are carefully chosen.

To describe the Prover’s message, we need the following definition. Consider u, v ∈ [n]
with u < v. We say that v’s range is the set Rv of numbers in [n] which are closer to v than

to u, and v’s range is the set Rv of numbers which are at least as close to u as they are to v;

in symbols:

Ru := {j ∈ N | j ≤ (u+ v)/2},

Rv := {j ∈ N | (u+ v)/2 < j}.

Now we are ready to describe the Prover’s message. Suppose Alice’s input is the set S and

Bob’s input is the tree T . If f(S, T ) = 1, among all witnesses (u, t, v) with u < v, the Prover

chooses one which minimizes the expression

µ(u, t, v) := |t− u|+ |t− v|. (3)

We call such a witness (satisfying u < v and minimizing (3)) a valid witness. If f(S, T ) = 1,

the Prover takes any valid witness and sends a quintuple h(u, t, v) consisting of

• the numbers u, and v;

• one bit, π, indicating whether t ∈ Rv (i.e., 1, if that is the case and 0 if it isn’t);

• one bit, δ, indicating whether t < u, if t ∈ Ru, or t < v, if t ∈ Rv, respectively;

• the number d := ⌊log2 |t− u|⌋, if u ∈ Ru, or d := ⌊log2 |t− v|⌋, if v ∈ Rv, respectively.

Here is the set of certificates:

C :=
{

(u, v, π, δ, d) ∈ [n]× [n]× {0, 1} × {0, 1} × {0, . . . , ⌊log2 n⌋}
∣

∣

∣
u < v

}

Alice’s and Bob’s parts of the protocol are displayed in Figure 2. Since Alice and Bob do not

communicate, the total cost of the protcol is

log2 |C| = 2 log2 n+ 2 + log2 log2 n+O(1).

5



Alice:

1. Let S ∈ S be Alice’s input.

2. Let c := (u, v, π, δ, d) ∈ C be the certificate sent by the Prover.

3. IF u /∈ S or v /∈ S: REJECT.

4. FOR ALL r ∈ [n] \ {u, v} with h(u, r, v) = c:
IF r ∈ S: REJECT.

5. ACCEPT.

Bob:

1. Let T ∈ T be Bob’s input.

2. Let c := (u, v, π, δ, d) ∈ C be the certificate sent by the Prover.

3. FOR ALL r ∈ [n] \ {u, v} with h(u, r, v) = c:
IF r is on the path in T between u and v: ACCEPT.

4. REJECT.

Figure 2: The parsimonious protocol for Spanning Tree (Alice-Bob part)

If it were not for the rounding down, in d, of the log2 of the distance of t to either u
or v (whichever is closer), the certificate data would allow to reconstruct t exactly: with

d̃ := log2 |t− u|, if u ∈ Ru, or d̃ := log2 |t− v|, if v ∈ Rv, respectively, (i.e., d = ⌊d̃⌋) we have

t =

{

u+ (−1)δ 2d̃ if π = 0;

v + (−1)δ 2d̃ otherwise.

Sending the rounded-down d reduces the factor in front of the log2 n in the cost of the protocol

from 3 to 2, but it clearly incurs a loss of information. However, Alice and Bob can make

decisions based on d, in the way described in Figure 2. In the next section, we prove that

their decisions are correct (in the sense that the nondeterministic communication protocol

really computes f ).

4 Proof of Correctness

We now prove the correctness of the protocol described in the previous seciton.

We first consider the condition (ii) of the definition of a nondeterministic communication

protocol computing a function.

Lemma 4. Let S ∈ S be Alice’s input set and T ∈ T be Bob’s input tree. If Alice and Bob

accept, then f(S, T ) = 1.

Proof. Suppose that Bob accepts. That means that in the loop 3 of his part of the protocol,

he has found an r0 ∈ [n] \ {u, v} such that (u, r0, v) satisfies (B).

In Alice’s loop 4, she has checked the r0 found by Bob. If Alice has accepted, that means

that this r0 /∈ S, i.e., (u, r0, v) also satisfies (B). In short, (u, r0, v) is a witness for f(S, T ) =
1.

We now come to the condition (i) of the definition of a protocol computing a function. Fun-

damentally, the property of f which makes the protocol work is the “ubiquity” of witnesses:

If f(S, T ) = 1, “many” witnesses exist for that fact. The precise property we need is the

following.

Lemma 5 (Triangle Lemma). Let (S, T ) ∈ S × T , and let u, v, w ∈ S, x /∈ S. If (u, t, v) is a

witness for f(S, T ) = 1, then so is at least one of (v, t, w), (w, t, u).

6



Proof. Since the lemma is trivially true if |{u, v, w}| ≤ 2, we assume that u, v, w are all dis-

tinct.

Property (A) is clearly satisfied by all three triples. As for property (B), suppose (u, t, v)
is a witness for f(S, T ) = 1, and consider the rooted tree which results from T by choosing t
as the root. If (u, t, v) is a witness, u and v are descendants of two different children su, sv
of t, so at least one of these two children, s′, is not an ancestor of w. If s′ = su, then the path

between w and u goes through t, so (w, t, u) is a witness for f(S, T ) = 1; if s′ = sv, then (v, t, w)
is a witness.

Lemma 6. Let S ∈ S be Alice’s input set and T ∈ T be Bob’s input tree, and let (u, t, v) be a

valid witness for f(S, T ) = 1. If the prover sends h(u, t, v), then Alice and Bob both accept.

Proof. Let us start with Bob: Searching through all r in the loop 3, he will encounter t and

accept.

As for Alice, we have to prove that of all the r ∈ [n] \ {u, v} with h(u, r, v) = h(u, t, v), none

is in S. Here, we use the triangle lemma, and the minimality of the expression (3).

For a proof by contradiction, assume that r ∈ S and h(u, r, v) = h(u, t, v). Since the π-

entries of h(u, r, v) and h(u, t, v) are the same, r and t are both either in Ru (i.e., at least as

close to u as to v) or in Rv (i.e., closer to v than to u). Let us consider the case π = 0, which

indicates r, t ∈ Ru — the other case is similar.

Since the δ-entries of h(u, r, v) and h(u, t, v) are the same, r and t are both either to the

left of u or to the right of u. Let us assume δ = 0, which indicates u < r, t — the other case is

similar.

By the triangle lemma, one of (r, t, v) or (u, t, r) is a witness for f(S, T ) = 1. Let us consider

the case that (r, t, v) is such a witness, and consider µ(r, t, v). Since the right-most entry of

the triple has not changed, the second summand in the expression (3) for µ(r, t, v) is the same

as in µ(u, t, v). As for the left summand, let d denote the common rightmost entry of h(u, r, v)
and h(u, t, v). We have

u+ 2d ≤ r, t < u+ 2 · 2d, (4)

and hence

|r − t| < 2d ≤ |t− u|. (5)

This means that µ(r, t, v) < µ(u, t, v), and contradicts the condition that (u, t, v) is a valid

witness.

In the case that (u, t, r) is a witness for f(S, T ) = 1 instead of (r, t, v), we also have (4), also

implying (5). This time, the left summand in in the expression (3) for µ(u, t, r) is the same as

the one in µ(u, t, v), but for the right summand for µ(u, t, r) is

|r − t| < |t− u| ≤ |t− v|, (6)

where the second inequality follows from the assumption (case) that the π-entry in h(u, t, v)
is 0, i.e., t is closer to u than to v. The right-hand-side term in (6) is the second summand for

µ(u, t, v). Hence, in this case we also arrive at a statement contradicting the validity of the

witness (u, t, v).

This concludes the proof of Theorem 1.

5 Conclusions

Despite unrelenting interest in the problem over the last 6 years (e.g., [1, 8], Cargèse work-

shop Extended Formulations II (2014)), the extension complexity of the Spanning Tree poly-

tope seems to be as open as ever.

To the authors, it appears as if even the slightest improvement of either the upper bound

(e.g., n3/ log logn) or the lower bound (e.g., n2 log logn) to the extension complexity of the

7



Spanning Tree polytope could be a breakthrough. While Theorem 1 determines the non-

deterministic communication complexity lower bound of the Spanning Tree polytope up to a

multiplicative O(log n) term, it is still conceivable that that method could yield a lower bound

of Ω(n2 logn). However, it appears more promising to focus on the non-combinatorial bounds

(e.g., [12]).
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